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Abstract. In real-world applications, most multi-view data sets are semi-supervised and large-

scale. In order to process these data sets, scholars have developed semi-supervise done-pass 

multi-view learning (SSOPMV). While SSOPMV cannot process matrix data sets. Thus this 

manuscript extends the model of SSOPMV to matrix version and the new learning machine is 

named matrix-instance-based SSOPMV, i.e. (MSSOPMV). Related experiments validate that 

MSSOPMV can process multi-view, semi-supervised, large-scale, and matrix data sets well. 

1. Introduction 

1.1. Background-Classical Data Sets 

In real-world applications, there are many different kinds of data sets, for example, multi-view data 

sets, semi-supervised data sets, large-scale data sets, and matrix data sets [1].  

Multi-view data sets consist of instances with multiple views. For example, each video of a video 

data set appears in multiple different forms, i.e., visual, audio, and text. Each form is regarded as a 

view. Moreover, each view has many features. Take the text view for example, information of text 

view can be represented by text size, text color, and text shape, then size, color, and shape are three 

features of text view and these features compose a feature set. Then we name this data set as a multi-

view data set. 

Semi-supervised data sets consists of labeled training instances and unlabeled training instances. 

As we know, most of real-world multi-view data sets consist of label-known instances (i.e., labeled 

instances) and label-unknown instances (i.e., unlabeled instances). For example, there is a multi-view 

video data set in the database of YouTube and hundreds of hours of videos are uploaded to YouTube 

every minute, then due to the lack of staff, only a small part of these videos are labeled as different 

classes including art video, entertainment video, sport video and so on. We call them labeled videos. 

Most videos are not labeled and we call them unlabeled videos. For such a data set with labeled and 

unlabeled instances, if we only adopt labeled ones for updating and optimizing the model of a learning 

machine, we define it as supervised data set. If we adopt labeled and some unlabeled instances for 

training, we define it as semi-supervised data set. 

Due to the coming of big-data age, more and more data sets are updated frequently. For example, 

hundreds of hours of videos are uploaded to YouTube every minute and we can regard YouTube as a 

large-scale video data set. Limited by the computation and storage ability, it is impossible for the 

traditional learning machines to store and process the whole data sets simultaneous. 

Instances represented by a d-dimensional vector are convenient in mathematics and we name them 

as vector instances. While in real-world applications, more and more instances are represented in 

matrix form, i.e., a matrix instance 𝐴 ∈ 𝑅𝑚×𝑛 and its dimension is 𝑚 × 𝑛. Data sets which consist of 
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those matrix instances are matrix data sets and images and videos are classical matrix ones. Moreover, 

processing vector instances brings three potential problems. First one is the loss of some implicit 

structural or local contextual information of matrix instances. Second one is the requirement of a large 

memory. Third one is the high risk of overtraining. On the contrary, according to [1] said, if one uses 

matrix instances for learning and designs a matrix learning machine, we can reduce the computational 

complexity and improve the classification performance. So, studying matrix data sets is important. 

1.2. Background-Corresponding Learning Machines 

In order to process those kinds of data sets, corresponding learning machines are developed in recent 

years.  

First, in order to process multi-view data sets, some scholars develop corresponding learning 

machines and according to reference [2], multi-view leaning machines can be classified into four 

groups: (1) multi-view subspace learning methods [3-4]; (2) pre-fusion methods [5]; (3) late-fusion 

methods [6-8]; (4) disagreement-based methods [9-11]. 

Second, locality sensitive discriminant feature (LSDF) [12], constraint scores for semi-supervised 

feature selection (CSSSFS) [13], semi-supervised online weighted multiple instance learning 

(SSOWMIL) [14], multi-view semi-supervised learning proposed by Zhu (MvSs-Zhu) [15], multiple-

view multiple-learner (MVML) [16], adaptive multi-view selection (AMVS) [17] are widely used 

semi-supervised learning machines to process the related semi-supervised data sets. 

Third, in order to process large-scale data sets, one-pass strategy is developed. For example, one-

pass multi-view learning (OPMV) [18] and semi-supervised one-pass multi-view learning (SSOPMV) 

[1]. OPMV is a classical one-pass learning machine to process supervised multi-view data sets while 

SSOPMV aims to process semi-supervised multi-view data sets. 

Fourth, in order to process matrix data sets, many learning machines including matrix-pattern-

oriented Ho-Kashyap (HK) learning machine with regularization learning (MatMHKS) [19], new least 

squares support vector classification based on matrix patterns (MatLSSVC) [20], and one-class 

support vector machines based on matrix patterns (OCSVM) [21] have been developed.  

What’s more, in order to process more complicated data sets, some scholars combine these learning 

machines into together and develop more feasible learning machines. For example, double-fold 

localized multiple matrix learning machine with Universum (UDLMMLM) [22] is a combination of 

matrix learning and semi-supervised learning and UDLMMLM can process both matrix data sets and 

semi-supervised data sets. Furthermore, the mentioned SSOPMV is the combination of multi-view 

learning, semi-supervised learning, and one-pass learning and it can process semi-supervised data sets, 

large-scale data sets, and multi-view data sets simultaneous. Those above mentioned learning 

machines have been validated the effectiveness for different kinds of data sets. 

1.3. Problem, Solution, Contributions 

While to the best of our knowledge, there is no learning machine can process semi-supervised data 

sets, large-scale data sets, multi-view data sets, and matrix data sets simultaneous. Thus, in this 

manuscript, we adopt the SSOPMV as the basic and develop a matrix-instance-based SSOPMV 

(MSSOPMV). The contributions of the proposed MSSOPMV are (1) compared with traditional matrix 

learning, semi-supervised learning, multi-view learning, and one-pass learning, MSSOPMV is the 

combination of them and has an ability to process semi-supervised, large-scale, multi-view, and matrix 

data sets simultaneously; (2) compared with SSOPMV, MSSOPMV is feasible for both vector and 

matrix data sets. 

1.4. Framework 

Section 2 reviews OPMV and SSOPMV. Section 3 describes MSSOPMV. Section 4 shows the 

experimental results. Conclusions are given in section 5. 

2. Review of OPMV and SSOPMV 

2.1. OPMV 
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OPMV is used for supervised large-scale multi-view data sets and according to [18], suppose there is a 

supervised two-view data set 𝑆𝑛 with n instances. Each labeled instance is 𝑥𝑖 = {𝑥𝑖
1, 𝑥𝑖

2; 𝑦𝑖} denotes 

that this instance consists of information from the two views where 𝑖 ∈ {1,2, … , 𝑛} = [𝑛] . 𝑥𝑖
1 

represents information from the first view and 𝑥𝑖
2 represents information from the second view. 𝑦𝑖 is 

the class label. If 𝑦𝑖 = 1, this instance is classified into class +1 while if 𝑦𝑖 = −1 this instance is 

classified into class -1.  Suppose the learning machine for the first view is 𝜔1 and the one for the 

second view is ω2, and since OPMV processes instances one by one, then when the i-th instance 

arrives, the objective function of OPMV is given below where 𝛼𝑖 is dual variable, 𝜌 and 𝜆 are the 

penalty parameters, 𝜙𝑖(𝜔1) = ℓ(〈𝜔1, 𝑥𝑖
1〉, 𝑦𝑖) + 𝜆𝛺(𝜔1)  and 𝜓𝑖(𝜔2) = ℓ(〈𝜔2, 𝑥𝑖

2〉, 𝑦𝑖) + 𝜆𝛺(𝜔2) . 

Here, ℓ(〈𝜔1, 𝑥𝑖
1〉, 𝑦𝑖) represents the classification result of 𝑥𝑖

1under the first view. For ℓ(〈𝜔2, 𝑥𝑖
2〉, 𝑦𝑖), 

the meaning is same. If we have a corrected classification, the result is 0, otherwise, the result is 

1.𝛺(𝜔1) = ‖𝜔1‖2
2 and 𝛺(𝜔2) = ‖𝜔2‖2

2. 

𝐿𝑖(𝜔1, 𝜔2, 𝛼𝑖) = 𝜙𝑖(𝜔1) + 𝜓𝑖(𝜔2) − 𝛼𝑖
2 +

𝜌

2
(〈𝜔1, 𝑥𝑖

1〉 − 〈𝜔2, 𝑥𝑖
2〉 + 𝛼𝑖)

2
     (1) 

OPMV minimizes the Eq. (1) and gets the optimal ω1 and 𝜔2.Concretely speaking, OPMV updates 

them with each instance arrives, i.e,  

𝜔1
𝑖+1 = 𝜂𝑣1

𝑖 − 𝛽1
𝑖𝜔1

𝑖                                                             (2) 

where  

𝑣1
𝑖 = −𝛻𝜙𝑖(𝜔1

𝑖 ) +
1

𝜂
𝜔1

𝑖 + 𝜌(〈𝜔2
𝑖 , 𝑥𝑖

2〉 − 𝛼𝑖)𝑥𝑖
1                                   (3) 

𝛽1
𝑖 =

𝜌𝜂2〈𝑥𝑖
𝑖,𝑣1

𝑖 〉

1+𝜌𝜂〈𝑥𝑖
𝑖,𝑥𝑖

𝑖〉
                                                                  (4) 

𝜔2
𝑖+1 = 𝜂𝑣2

𝑖 − 𝛽2
𝑖 𝜔2

𝑖                                                               (5) 

where  

𝑣2
𝑖 = −𝛻𝜓𝑖(𝜔2

𝑖 ) +
1

𝜂
𝜔2

𝑖 + 𝜌(〈𝜔1
𝑖+1, 𝑥𝑖

1〉 + 𝛼𝑖)𝑥𝑖
2                                   (6) 

𝛽2
𝑖 =

𝜌𝜂2〈𝑥𝑖
2,𝑣2

𝑖 〉

1+𝜌𝜂〈𝑥𝑖
2,𝑥𝑖

2〉
                                                                  (7) 

Among these equations, 𝜔1
𝑖  and ω2

i  represent the 𝜔1 and 𝜔2 when i-th instance arrive. By these 

equations, after n instances arrive, we can get the optimal 𝜔1 and 𝜔2 and denote the optimal results are 

𝜔1
𝑜and 𝜔2

𝑜.Then for an unlabeled test instance 𝑥𝑛𝑒𝑤 = (𝑥𝑛𝑒𝑤
1 , 𝑥𝑛𝑒𝑤

2 ), one can predict its label as y =
sign(〈ω1

o, xnew
1 〉 + 〈ω2

o, xnew
2 〉). 

2.2. SSOPMV 

SSOPMV is the semi-supervised version of OPMV and it aims to process large-scale semi-supervised 

multi-view data set classification problems. According to [1] said, the procedure of SSOPMV consists 

of two main steps. First, once an unlabeled instance arrives, SSOPMV labels it with multiple view-

based learning machines. If different view-based learning machine including 𝜔1 and 𝜔2get the same 

labels, we add this unlabeled instance to the labeled set and update the learning machines including 𝜔1 

and 𝜔2 with OPMV. If the labels are not same, we don’t update the learning machines and wait the 

next instance arriving. Once a labeled instance arrives, we update the learning machines directly. 

Second, once we come through the present instances, for the left unlabeled ones, we adopt view-based 

learning machines to label them and update the learning machines according to the labelling results. If 

all unlabeled instances have been labeled or the learning machines cannot be updated again, we can 

end the procedure of SSOPMV and get the optimal learning machines.  

3. Matrix-Instance-Based Semi-Supervised One-Pass Multi-View Learning (MSSOPMV) 
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With the limitation of manuscript length, we describe our MSSOPMV in simple. Suppose there is 

semi-supervised large-scale matrix multi-view data sets (in our manuscript, we use a two-view data set 

for example) 𝑋 = {𝐴1, … . 𝐴𝑖, … , 𝐴𝑛, 𝐵1, … . 𝐵𝑗, … , 𝐵𝑛′} where i-th labelled instance is 𝐴𝑖 =

{𝐴𝑖
1, 𝐴𝑖

2; 𝑦𝑖} and j-th unlabelled instance is 𝐵𝑗 = {𝐵𝑗
1, 𝐵𝑗

2}. 𝐴𝑖
1, 𝐴𝑖

2 and Bj
1, Bj

2 have the same meaning of 

𝑥𝑖
1, 𝑥𝑖

2. n and 𝑛′ are the numbers of labelled instances and unlabeled instances respectively. Then if the 

initial learning machines are 𝑊1
0 and 𝑊2

0, the procedure is given below. 

(1) When there is an instance arrives, if it is a labeled instance 𝐴𝑖, we update the learning machines 

W1
𝑖 and W2

𝑖 with the Eqs. (2)-(7). Notice, 𝑥𝑖
1, 𝑥𝑖

2 are replaced by 𝐴𝑖
1, 𝐴𝑖

2. 

(2) When there is an instance arrives, if it is an unlabeled instance 𝐵𝑗  and 〈𝑊1
𝑗−1

, 𝐵𝑗
1〉 =

〈𝑊2
𝑗−1

, 𝐵𝑗
2〉, we update the learning machines 𝑊1

𝑗−1
 and 𝑊2

𝑗−1
 with the Eqs. (2)-(7). Notice, 𝑥𝑖

1, 𝑥𝑖
2 are 

replaced by 𝐵𝑗
1, 𝐵𝑗

2.  Then we add 𝐵𝑗 into the labeled set. 

(3) When there is an instance arrives, if it is an unlabeled instance 𝐵𝑗  and 〈𝑊1
𝑗−1

, 𝐵𝑗
1〉 ≠

〈𝑊2
𝑗−1

, 𝐵𝑗
2〉, we don’t update the learning machines and wait the next instance arrive. 

(4) When all n+𝑛′ instances have been processed once, we suppose the present learning machines 

are 𝑊1
𝑞
 and 𝑊2

𝑞
. In terms of the left unlabeled instances, we use 𝑊1

𝑞
 and 𝑊2

𝑞
 to label them one by one 

and if 〈𝑊1
𝑞

, 𝐵𝑗
1〉 = 〈𝑊2

𝑞
, 𝐵𝑗

2〉, we put 𝐵𝑗 into the labelled set and update 𝑊1
𝑞

 and 𝑊2
𝑞

, otherwise, we 

wait the next time to label them. Similar with what SSOPMV has done, if all unlabeled instances have 

been labeled or the learning machines cannot be updated again, we can end the procedure of 

MSSOPMV and get the optimal learning machines, i.e., 𝑊1
𝑜 and 𝑊2

𝑜. 

(5) Once we get 𝑊1
𝑜 and 𝑊2

𝑜, for the unlabelled test instance 𝐶𝑛𝑒𝑤, its label is decided by 𝑦 =
𝑠𝑖𝑔𝑛(〈𝑊1

𝑜, 𝐶𝑛𝑒𝑤
1 〉 + 〈𝑊2

𝑜, 𝐶𝑛𝑒𝑤
2 〉). 

4. Experiments 

4.1. Used Data Sets 

In our experiments, the used data sets are given below. Details can be found in related references. For 

each data set, we divide it into 20% training instances, 30% validation ones, and 50% test ones. 

Multi-view data sets: Mfeat, Reuters, Corel [23]; 

Semi-supervised data sets: IMDB, News Group [1]; 

Large-scale data sets: Video, News [1]; 

Matrix data sets: Coil-20, Letter-Image, ORL [24]. 

4.2. Compared Learning Machines 

For the comparison, besides our MSSOPMV, the compared learning machines are given below. The 

details and parameter settings of these learning machines can be found in their respective references. 

Multi-view learning machines: MvSs-Zhu [15], MVML [16], co-graph [25]; 

Semi-supervised learning machines: LSDF [12], CSSSFS [13],SSOWMIL [14], AMVS [17], 

UDLMMLM[22], SSOPMV [1]; 

One-pass learning machines: OPMV [18], SSOPMV [1]; 

Matrix learning machines: MatMHKS[19], MatLSSVC[20], OCSVM [21], DLMMLM (double-

fold localized multiple matrixized learning machine) [24], UDLMMLM[22]. 

4.3. Classification Performance Comparisons 

For different kinds of data sets, we adopt corresponding learning machines for experiments. The 

experiments are derived from 10-fold cross validation and we repeat each experiment for ten times. In 

order to get the optimal parameters, we adopt the grid-search strategy. Then we can get the average 

classification accuracy (%) and its standard deviation. Tables 1, 2, 3, and 4 show the related 

experimental results respectively. From those tables, it is found that our proposed MSSOPMV has a 

best performance on different data sets in average. Indeed, our MSSOPMV can process multi-view, 

semi-supervised, large-scale, and matrix data sets simultaneously. Furthermore, according to the result 
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of standard deviation, we find the one of MSSOPMV is smallest which indicates the performance of 

MSSOPMV is most stable. 

 

Table 1. Average classification accuracy (%) and the standard deviation comparisons with different 

multi-view learning machines on corresponding data sets. 

 MvSs-Zhu MVML co-graph MSSOPMV 

Mfeat 82.12  82.24  83.56  85.28  

 ±5.84  ±1.16  ±5.42  ±0.23  

Reuters 73.12  74.86  76.10  78.04  

 ±5.54  ±4.29  ±6.59  ±0.13  

Corel 83.09  83.96  84.01  84.38  

 ±5.44  ±8.20  ±1.43  ±0.66  

 

Table 2. Average classification accuracy (%) and the standard deviation comparisons with different 

semi-supervised learning machines on corresponding data sets. 

 LSDF CSSSFS SSOWMIL AMVS UDLMMLM SSOPMV MSSOPMV 

IMDB 73.87  76.29  76.82  78.90  80.14  81.30  81.53  

 ±0.55  ±4.12  ±2.50  ±6.50  ±4.99  ±6.38  ±0.43  

News 

Group 
82.01  84.39  86.08  87.37  89.21  91.41  93.98  

 ±4.56  ±7.52  ±6.99  ±2.66  ±5.09  ±3.32  ±0.23  

 

Table 3. Average classification accuracy (%) and the standard deviation comparisons with different 

one-pass learning machines on corresponding data sets. 

 OPMV SSOPMV MSSOPMV 

Video 86.12  87.27  87.78  

 ±6.55  ±1.28  ±1.22  

News 84.92  87.50  89.60  

 ±5.36  ±8.64  ±0.25  

 

Table 4. Average classification accuracy (%) and the standard deviation comparisons with different 

matrix learning machines on corresponding data sets. 

 MatMHKS MatLSSVC OCSVM DLMMLM UDLMMLM MSSOPMV 

Coil-20 65.12  67.80  70.43  71.39  73.83  77.10  

 ±2.27  ±6.30  ±4.85  ±2.09  ±1.32  ±0.39  

Letter-Image 79.31  79.66  80.31  83.52  84.32  85.66  

 ±6.36  ±0.64  ±0.92  ±6.39  ±7.28  ±0.15  

ORL 73.26  75.72  77.44  80.47  82.88  84.33  

 ±5.38  ±4.09  ±6.32  ±3.92  ±3.30  ±1.70  

5. Conclusions 

In this manuscript, we develop matrix-instance-based semi-supervised one-pass multi-view learning 

(MSSOPMV) which can process semi-supervised data sets, large-scale data sets, multi-view data sets, 

and matrix data sets simultaneously. Compared with traditional semi-supervised learning machines, 

one-pass learning machines, multi-view learning machines, and matrix learning machines, it is found 

that the developed MSSOPMV has a better and stable classification performance. What’s more, with 

experiments on different kinds of data sets, our MSSOPMV has a wider application fields. 
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