会议论文详细信息
9th International Multidisciplinary Scientific and Research Conference "Modern Issues in Science and Technology" Workshop "Advanced Technologies in Aerospace, Mechanical and Automation Engineering"
Power forecasting for a photovoltaic system based on the multi-agent adaptive fuzzy neuronet
自然科学;工业技术
Degtyarev, Alexander S.^1 ; Kosenko, Viktor I.^2 ; Engel, Ekaterina A.^3 ; Engel, Nikita N.^3 ; Savelyeva, Marina V.^4
JSC Central Construction Bureau Geofizika, 89 Kirenskogo street, Krasnoyarsk, Russia^1
JSC Academician M F Reshetnev Information Satellite Systems, 52 Lenin street, Zheleznogorsk, Krasnoyarsk region
662972, Russia^2
Katanov Khakass State University, 92, Lenina ave., Abakan
655017, Russia^3
Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarsky Rabochy Av., Krasnoyarsk
660037, Russia^4
关键词: Adaptive fuzzy;    Levenberg-Marquardt algorithm;    Multi agent;    Photovoltaic systems;    Power forecasting;    Random perturbations;    Recurrent networks;    Residential building;   
Others  :  https://iopscience.iop.org/article/10.1088/1757-899X/450/7/072012/pdf
DOI  :  10.1088/1757-899X/450/7/072012
来源: IOP
PDF
【 摘 要 】

This article presents a multi-agent adaptive fuzzy neuronet for a two days ahead forecasting of the hourly power from a photovoltaic system under random perturbations. In this research we consider a 5 KW Solar Power Plant for a residential building (model SA-5000M). The main objective of this research is to fulfil the multi-agent adaptive fuzzy neurone for hourly power forecasting for a photovoltaic system. The agents of the multi-agent adaptive fuzzy neuronet are fulfilled as two-layered recurrent networks. The standard Levenberg-Marquardt algorithm is described. The analysis of the evolving errors shows the potential of the multi-agent adaptive fuzzy neuronet in the hourly power forecasting for a photovoltaic system.

【 预 览 】
附件列表
Files Size Format View
Power forecasting for a photovoltaic system based on the multi-agent adaptive fuzzy neuronet 822KB PDF download
  文献评价指标  
  下载次数:13次 浏览次数:30次