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Abstract. This article presents a multi-agent adaptive fuzzy neuronet for a two days ahead 

forecasting of the hourly power from a photovoltaic system under random perturbations. In this 

research we consider a 5 KW Solar Power Plant for a residential building (model SA-5000M). 

The main objective of this research is to fulfil the multi-agent adaptive fuzzy neurone for 

hourly power forecasting for a photovoltaic system. The agents of the multi-agent adaptive 

fuzzy neuronet are fulfilled as two-layered recurrent networks. The standard Levenberg-

Marquardt algorithm is described. The analysis of the evolving errors shows the potential of 

the multi-agent adaptive fuzzy neuronet in the hourly power forecasting for a photovoltaic 

system. 

1. Introduction 

Researches of a photovoltaic (PV) system which integrated in electric power systems gained a great 

attention in modern energetics. The power forecasting for a PV system is critically important for 

planning effective transactions in the electricity market, in order to provide reliable grid operation. The 

day-ahead market imposes penalties for a deviation from the approved and expected day-ahead 

schedules of the hourly power from a PV system. The deviation's tolerance is 5% of the total capacity 

of the PV system. The power fluctuations from a real-life PV system under random perturbations of 

cloudiness have complex dynamics. A clear sky index and a clearness index are typically used in the 

relevant technical literature to describe cloudiness. The important advantage of the clear sky index is 

the removal of daily and seasonal oscillations from insolation data to reveal fluctuation power content.  

The neuronetbased solutions have been developed to approximate complex dynamics of the power 

from a PV system and show good performance. But there is a growing demand for an effective power 

forecasting model for a PV system. The effective approaches are those that provide solution based on 

intelligent algorithms. This paper presents a multi-agent adaptive fuzzy neuronet (MAFN) for a two 

days ahead forecasting of the hourly power from a PV system. Compared to existing fuzzy neuronets, 

including ANFIS, the MAFN is a Multi-Agent System. The algorithm of the agent’s interaction uses a 

fuzzy-possibilistic method. The agents of the MAFN are fulfilled based on recurrent networks. The 
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training algorithm of the MAFN must find the optimal network configuration within an architecture 

space.  

An automatic generation of the optimal architecture’s parameters of a neuronet is the most complex 

task. Within a multidimensional search space, the training algorithm must find both positional and 

dimensional optimum. The effective network architecture is up-to-date designed by a human expert, 

requiring a thorough system’s analysis and the trial-error process. This process is challenging because 

it requires fulfillment of the all conditions of optimal neuronet architecture. The global optimum 

provided by the multi-dimensional Particle Swarm Optimization (PSO) [1] process corresponds to an 

optimum MAFN architecture where the MAFN architecture’s parameters (delays, a number of nodes 

in hidden layer, corresponded weights and biases) are generated from the global optimum. 

Furthermore, the multi-dimensional PSO provides a ranked list of MAFN configurations, from the 

best to the worst. This is an important information, arguing which configurations can effective solve a 

particular problem. The MAFN was fulfilled based on an extensive empirical database.  

A database of the total power from a PV system, ambient temperature, meteorological parameters 

and insolation data was collected in the south-eastern part of Siberia, RF at the site of Abakan. In order 

to train the effective MAFN we use the algorithm, in which the multi-dimensional PSO [1] is 

combined with the Levenberg-Marquardt algorithm [2]. The multi-dimensional PSO is first applied to 

globally optimize the network's structure, and then the Levenberg-Marquardt algorithm is used to 

speed up the convergence process. The results of the MAFN on the challenging real-world problems 

[3-4] revealed its experimental validations and following advantages: it supports the real time mode 

and competitive performance, as compared to classical methods; a trained MAFN effectively 

processes noisy data. The simulation results show that proposed training algorithm outperforms multi-

dimensional PSO and Levenberg-Marquardt algorithm in training the effective MAFN for the power 

forecasting for a PV system. 

2. The power from a PV system 
In this research we consider a 5 KW Solar Power Plant for a residential building (model SA-5000M). 
This PV system locates at the site of Abakan. Figure 1 shows a scheme of the PV system. This PV 
system includes six solar PV modules (model number: CHN250-60P), a solar regulator, a battery bank 
and an inverter. 
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Figure 1.  The scheme of the PV system. 

 

The total rate of radiation GC striking a PV system on a clear day calculated as follows: 

(cos cos( ) sin sin cos / 2 (cos ) / 2 (sin )(1 cos ) / 2)
km

s C
Gc Ae C p C    



           
                               (1) 

where m is the air mass, β is the altitude angle, φS is the solar azimuth angle, φC is the PV module 

azimuth angle, p is the reflection factor,   is the PV module tilt angle, C is the sky diffuse factor, A 

and k are parameters related to the Julian day number. 
The surface irradiance is less than its corresponding extraterrestrial irradiance. The degree of 

attenuation depends from cloudiness. The surface irradiance fluctuates randomly. These fluctuations are 
closely related to the cloudiness’ dynamics (figure 2). 
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Figure 2.  The extraterrestrial irradiance and the surface irradiance at the site of Abakan. 

In order to evaluate influences of the deterministic solar geometry and the nondeterministic 

atmospheric extinction separately the clear-sky index is used. In this paper, the clear-sky index is 

defined as follows: 

,/GcGsC                                                                                          (2) 

where Gs is the surface insolation, Gc is the clear-sky model’s insolation. The insolation is the 

integral of solar irradiance over a time period. The clear-sky model’s solar irradiance calculates as (1). 

Figure 3 shows that the clear-sky index C is big and has similar shape under sunny days (05/18/16, 

05/19/16) at the site of Abakan. In contrast, C is smaller and has more fluctuations on cloudy days 

(05/16/16, 05/17/16) than sunny days. 

 

Figure 3. The clear-sky index at the site of Abakan. 

 

The MAFN Fesjhq(xh
t) is fulfilled based on the data: 

                              zh
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where G0h
t is the extraterrestrial irradiance, Ph

t is the power from a PV system, Ph
 t-2 is the historical 

data of the power from a PV system, Ch
t-2 is the historical data of clear-sky index, Clh

t is the cloudiness 

(%), Ph
t is the pressure, Wh

t and Wdh
t are the wind speed and the wind direction, respectively, Th

t is the 

ambient temperature, h= 5..23 , t=1..730 . Notice that Clh
t, Ph

t, Wh
t, Wdh

t, Th
t are daily average 

parameters of the weather forecast. The number of samples is 13870 (h*t=19*730=13870). This 

database was collected at the site of Abakan (91.4° of longitude East, 53.7° of latitude North and 246 m 

of altitude) from March 2016 through February 2018.  

3. The training algorithms of the MAFN 
The main objective of this research is to fulfill the MAFN for hourly power forecasting for a PV 
system. The agents of the MAFN are fulfilled as two-layered recurrent networks. The two-layered 
recurrent networks architecture’s parameters (delays, weights and biases) have been coded into particles 
a. In order to train the effective agents of the MAFN for hourly power forecasting for a PV system the 
multi-dimensional PSO (Fig. 4) and the Levenberg-Marquardt algorithm have been elaborated. In this 
research we define a fitness function f(x) based on the Chebyshev criterion as follows: 
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where N is the number of data samples, ( )iI x  is the forecasted power of the PV system, ( )iP x  is 

the cumulative power of the  PV system. 

The standard Levenberg-Marquardt algorithm [2] can be briefly described as follows: 

Step 1. We initialize the weights (in this research the value of a parameter μ is 0.01). 

Step 2. We compute the train error f(w) according equation (4). 

Step 3. We calculate the increment of weights Δw as follows:  

Δw =[JT J+ μ I ] -1JT e, 

where J is the Jacobian matrix, μ is the learning rate which is to be updated using the β depending 

on the outcome. 

Step 4. We update w =w+Δw. We recomputed the trial train error f '(w) according (4). 

Step 5. IF E '(w)< E (w) THEN w =w+Δw; μ= μβ; Go to step 2: ELSE μ= μ/β; go to step 4 END IF. 

 

 

Figure 4. A multi-dimensional PSO. 

With the encoding of the MAFN structure into particles, multi-dimensional PSO provides not only 

the positional optimum in the error space, but as well the optimum dimension of space of a task and 

the dimensional optimum in the neuronet structure space.  

4. Fulfilment of the MAFN 

In order to train the effective agents of the MAFN for power forecasting for a PV system the multi-

dimensional PSO and the Levenberg-Marquardt algorithm have been combined. The dimension range 

of the multi-dimensional PSO is )64136( maxmin  ,DD (figure 4).The multi-dimensional PSO is first 

applied to globally optimize the network's structure (the PSO will stop after a global solution is 

localized within small region), and then the Levenberg-Marquardt algorithm is used to speed up a 

convergence process. The algorithm of the agent’s interaction (figure 5) uses a fuzzy-possibilistic 

method [3-4]. Fulfilment of the MAFN briefly can be described by figure 6.  
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Figure 5. Algorithm of the agent’s 

interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Fulfilment of the MAFN. 

 

Figure 6 shows the units of the proposed MAFN. The fuzzy-possibilistic method allows for the 

forecasting of the value of the power from the PV system in a flexible manner, so as to take into 

account the responses of all agents based on fuzzy measures and the fuzzy integral. 

5. Results 

To illustrate the benefits of the MAFN in two days ahead forecasting of the hourly power from the PV 

system, the numerical examples from the previous sections are revisited using the software [4-5]. There 

the three MAFN were fulfilled based on the training set of the data (3) t=1..702 . The first MAFN1 was 

trained using multi-dimensional PSO (o=1). Due to obtain statistical results, we perform 120 MD PSO 

runs with following parameters: S=250 (we use 250 particles), E=150 (we terminate at the end of 150 

epochs). Forecast accuracies of the aforementioned models are evaluated as the fitness function (4). 

Table 1 shows that only one set of MAFN architecture with dbest=56 can achieve the fitness function 

(4) under 4,8 % over the holdout set of the data (3), t= 702..730 .  

Table 1. Results of multi-dimensional PSO. 

The MAFN’s dbest dimension 36 46 56 66 76 86 106 116 126 136 146 

The fitness function (4) (%) 4.93 4.90 4.78 4.92 4.93 4.95 4.99 5.00 5.02 5.06 5.07 

We chose MAFN1 solution with dbest=56 as an optimum multi-agent adaptive fuzzy neuronet. The 
MAFN1 has three agents of each subculture Sk. The aforementioned agents are the two-layered 
recurrent neural network. The first and second agent’s number of hidden neurons and delays are 2. The 
third agent’s number of hidden neurons and delays are 1 and 2, respectively. MAFN2 has same 
architecture. The second MAFN (MAFN2, o=2) was trained by Levenberg-Marquardt algorithm. The 
third MAFN (MAFN3, o=3) was trained by the proposed algorithm, in which the multi-dimensional 
PSO is combined with the Levenberg-Marquardt algorithm. We applied the multi-dimensional PSO to 
globally optimize the MAFN's structure based on the training set of the data (3), and then we used the 
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Levenberg-Marquardt algorithm to speed up a convergence process. Figure 7 shows the mean 
convergence curves of the multi-dimensional PSO and the proposed algorithm for training a MAFN. 

 

Figure 7. The mean convergence curves. 

Figure 7 shows that the MAFN3 has definitely more convergence speed over training set of the data 

(3), t=1..702 , than the MAFN1 in the power forecasting for the PV system. 

Table 2 shows that errors (4) of the three MAFNs in sunny hours are quite small. 

Table 2.  A two days ahead forecasting of the hourly power from the PV system:  

comparison of results. 

The MAFN with dbest=56 
MAFN3 

solution 

MAFN1 

 solution 

MAFN2  

solution 

 Sunny Cloudy Sunny Cloudy Sunny Cloudy 

The fitness function (4) (%) 3,81 4,71 3,84 4,78 4,71 5,88 

 The performances of the MAFN1 and the MAFN3 are changing in sunny and cloudy hours (table 2). 

Nevertheless, the MAFN1 and the MAFN3 effectively track the complex dynamics of real measured 

data in cloudy hours. Table 2 indicates that the MAFN3 outperform the MAFN2 and the MAFN1, 

especially in the cloudy hours. The performance of the MAFN3 trained by proposed algorithm in which 

the multi-dimensional PSO is combined with the Levenberg-Marquardt algorithm is superior to the 

same one trained by multi-dimensional PSO or Levenberg-Marquardt algorithm, especially during fast 

fluctuations of cloudiness. Simulation comparison results for a two days ahead forecasting of the hourly 

power from the PV system demonstrates the effectiveness of the MAFN trained by the proposed 

algorithm as compared with the same ones trained by multi-dimensional PSO or Levenberg-Marquardt 

algorithm. The analysis of the evolving errors shows the potential of the MAFN in the hourly power 

forecasting for a PV system.  
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