7th Maghreb Days of Material Sciences | |
Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere | |
Bouzar, Lila^1,2 ; Menas, Ferhat^2,3 ; Michael Müller, Martin^4,5 | |
Département de Physique Théorique, Faculté de Physique, Université des Sciences et de la Technologie Houari Boumedienne, BP 32, Al-Alia, Algiers | |
16111, Algeria^1 | |
Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri, BP 17, Tizi-ouzou | |
15000, Algeria^2 | |
Département de Physique, École Nationale Préparatoire Aux Études d'Ingéniorat, BP 05 Rouiba, Algiers | |
16012, Algeria^3 | |
Equipe Biophysstat, ICPMB-FR CNRS 2843, Université de Lorraine, 1 boulevard Arago, Metz | |
57070, France^4 | |
Institut Charles Sadron, CNRS-UdS, BP 84047, Strasbourg | |
67034, France^5 | |
关键词: All solutions; Contact areas; Degree of confinement; Equilibrium shape; Fluid membrane; Reduced volumes; Region of contact; Toroidal topology; | |
Others : https://iopscience.iop.org/article/10.1088/1757-899X/186/1/012021/pdf DOI : 10.1088/1757-899X/186/1/012021 |
|
来源: IOP | |
【 摘 要 】
We discuss how the equilibrium shapes of a confined toroidal fluid membrane vesicle change when an adhesion between membrane and confining sphere is taken into account. The case without adhesion was studied in Ref. [1]. Different types of solution were found and assembled in a phase diagram as a function of area and reduced volume of the membrane. Depending on the degree of confinement the vesicle is either free, in contact along a circle (contact-circle solutions) or on a surface (contact-area solutions). All solutions without adhesion are up-down symmetric. When the container is adhesive, the phase diagram is altered and new kinds of solution without up-down symmetry are found. For increasing values of adhesion the region of contact-circle solutions shrinks until it vanishes completely from the phase diagram.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Confining a fluid membrane vesicle of toroidal topology in an adhesive hard sphere | 1181KB | download |