会议论文详细信息
30th International Colloquium on Group Theoretical Methods in Physics
Second order symmetries of the conformal laplacian and R-separation
Michel, Jean-Philippe^1 ; Radoux, Fabian^2 ; Silhan, Josef^3
Institut de Recherche en Mathematique et Physique (IRMP), Universite Catholique de Louvain (UCL), Chemin du Cyclotron 2, Louvain-la-Neuve
1348, Belgium^1
Department of Mathematics, University of Liege, Grande Traverse 12, Liege
4000, Belgium^2
Department of Algebra and Geometry, Masaryk University in Brno, Janakovo nam. 2a, Brno
662 95, Czech Republic^3
关键词: Arbitrary potentials;    Conformal symmetry;    Laplace-Beltrami operator;    Laplacians;    Riemannian manifold;    Second orders;    Zero energies;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/597/1/012058/pdf
DOI  :  10.1088/1742-6596/597/1/012058
来源: IOP
PDF
【 摘 要 】

Let (M, g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3, let Δ := ∇agab∇bbe the Laplace-Beltrami operator and let ΔYbe the conformal Laplacian. In some references, Kalnins and Miller provide an intrinsic characterization for R-separation of the Laplace equation ΔΨ = 0 in terms of second order conformal symmetries of Δ. The main goal of this paper is to generalize this result and to explain how the (resp. conformal) symmetries of ΔY+ V (where V is an arbitrary potential) can be used to characterize the R-separation of the Schrodinger equation (ΔY+ V)Ψ = EΨ (resp. The Schrodinger equation at zero energy (ΔY+ V)Ψ = 0). Using a result exposed in our previous paper, we obtain characterizations of the R-separation of the equations ΔYΨ = 0 and ΔYΨ = EΨ uniquely in terms of (conformal) Killing tensors pertaining to (conformal) Killing-Stackel algebras.

【 预 览 】
附件列表
Files Size Format View
Second order symmetries of the conformal laplacian and R-separation 869KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:34次