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Louvain (UCL), Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
2 Department of Mathematics, University of Liège, Grande Traverse 12, 4000 Liège, Belgium
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Abstract. Let (M, g) be an arbitrary pseudo-Riemannian manifold of dimension at least 3,
let ∆ := ∇agab∇b be the Laplace-Beltrami operator and let ∆Y be the conformal Laplacian. In
some references, Kalnins and Miller provide an intrinsic characterization for R-separation of the
Laplace equation ∆Ψ = 0 in terms of second order conformal symmetries of ∆. The main goal
of this paper is to generalize this result and to explain how the (resp. conformal) symmetries
of ∆Y + V (where V is an arbitrary potential) can be used to characterize the R-separation
of the Schrödinger equation (∆Y + V )Ψ = EΨ (resp. the Schrödinger equation at zero energy
(∆Y + V )Ψ = 0). Using a result exposed in our previous paper, we obtain characterizations of
the R-separation of the equations ∆Y Ψ = 0 and ∆Y Ψ = EΨ uniquely in terms of (conformal)
Killing tensors pertaining to (conformal) Killing-Stäckel algebras.

1. Introduction
We work over a pseudo-Riemannian manifold (M, g) of dimension n ≥ 3, with Levi-Civita
connection ∇ and scalar curvature Sc. The main result of [1] was the classification of all the
second order differential operators D1 such that the relation

∆YD1 = D2∆Y (1)

holds for some differential operator D2, where ∆Y := ∇agab∇b − n−2
4(n−1)Sc is the conformal

Laplacian. Such operators D1 are called conformal symmetries of order 2 of ∆Y . They preserve
the kernel of ∆Y , i.e. the solution space of the equation ∆Y ψ = 0, ψ ∈ C∞(M).

The main goal of this paper is to explain how the second-order (resp. conformal) symmetries
of ∆Y + V can be used to characterize the existence of R-separating coordinates systems for
the Schrödinger equation (∆Y + V )Ψ = EΨ (resp. the Schrödinger equation at zero energy
(∆Y +V )Ψ = 0), extending in this way the results in [2] and [3], where the authors characterized
the R-separation of the Laplace equation ∆Ψ = 0 and the Helmholtz equation ∆Ψ = EΨ using
(conformal) symmetries of the Laplace-Beltrami operator ∆.

The paper is organized as follows.
In the first section, in a first step, we recall briefly the basic notions that are necessary to

understand the paper: the conformal Laplacian ∆Y , (conformal) symmetries of ∆Y , (conformal)
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Killing tensors. In a second step, we recall the characterization of the existence of (conformal)
symmetries of ∆Y obtained in [1]. This characterization uses an obstruction operator defined
in [1] from curvature tensors. Then, we recall the structure of (conformal) symmetries of ∆Y

given in [1] thanks to the natural and conformally invariant quantization.
In the second section, we recall first the definition of the R-separability of the equations

(∆Y + V )Ψ = EΨ and (∆Y + V )Ψ = 0. Next, we give the definitions of (conformal) Killing-
Stäckel algebras which can be used to characterize the additive separation of the Hamilton-
Jacobi equation. We give then the characterizations of the R-separation of the equations
(∆Y +V )Ψ = EΨ and (∆Y +V )Ψ = 0 in terms of these (conformal) Killing-Stäckel algebras and
of (conformal) symmetries of ∆Y + V . Using a result in [1], we obtain then characterizations of
the R-separation of the equations ∆Y Ψ = 0 and ∆Y Ψ = EΨ uniquely in terms of (conformal)
Killing tensors belonging to (conformal) Killing-Stäckel algebras. Finally, we give a sufficient
(but not necessary) condition which ensures the R-separation of the equations ∆Y Ψ = EΨ and
∆Y Ψ = 0. This condition is expressed uniquely in terms of components of curvature tensors and
is similar to the Robertson condition which ensures the separation of the Schrödinger equation
∆Ψ = EΨ.

In the appendices, we give the proof of the main theorem giving the characterization of the R-
separation of the equation (∆Y +V )Ψ = 0 in terms of conformal symmetries of ∆Y +V (Theorem
5). The proof is divided in two steps: first, we characterize the R-separation of (∆Y + V )Ψ = 0
in terms of the notions of conformal Stäckel metric and pseudo-Stäckel multiplier. We can notice
that this characterization was already obtained by the authors of [4] by means of a definition
of R-separation different from ours (but equivalent). In a second step, we prove Theorem 5 by
using the previous characterization and by adapting the proof given in [2] of the characterization
of the R-separation of the equation ∆ψ = 0.

2. Second order symmetries of the conformal Laplacian
We are going to recall the fundamental notions that are necessary to understand the paper. The
reader who would to know more details about them is invited to consult [1].

2.1. The conformal Laplacian
Starting from a pseudo-Riemannian manifold (M, g) of dimension n, the conformal Laplacian
∆Y is defined in the following way:

∆Y := ∇agab∇b −
n− 2

4(n− 1)
Sc,

where ∇ denotes the Levi-Civita connection of g and Sc the scalar curvature.

2.2. The algebra of symmetries of the conformal Laplacian
The symmetries of ∆Y are defined as differential operators that commute with ∆Y . Hence, they
preserve the eigenspaces of ∆Y .

More generally, conformal symmetries D1 are defined by the weaker algebraic condition

∆Y ◦D1 = D2 ◦∆Y , (2)

for some differential operator D2, so that they only preserve the kernel of ∆Y .

2.3. Killing tensors and conformal Killing tensors
Definition 1. Let (M, g) be a pseudo-Riemannian manifold and H = gijpipj the function on
T ∗M associated with g, where (xi, pi) denotes the canonical coordinates on T ∗M . If we denote
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by S0 the algebra of polynomial functions on T ∗M , the algebra of symmetries of the null geodesic
flow of g, denoted by K, is given by the following subalgebra of S0:

K = {K ∈ S0; {H,K} ∈ (H)}.

A function in K can be viewed as a conformal Killing tensor, when we view it as a symmetric
contravariant tensor.

Definition 2. The algebra of symmetries of the geodesic flow of g is given by the set of functions
in S0 that Poisson commute with H.

An element of this algebra can be viewed as a Killing tensor, when we view it as a symmetric
contravariant tensor.

2.4. Structure of the second order symmetries of ∆Y

In the sequel, Skδ denotes the space of polynomial functions of degree k on T ∗M with values in
the space of δ-densities whereas Dkλ,µ denotes the space of differential operators of order k acting
between λ and µ-densities, with µ− λ = δ.

Let us recall the formula giving the natural and conformally equivariant quantization at the
order two (see [5]):

Theorem 1. [5] Let δ /∈
{

2
n ,

n+2
2n , 1,

n+1
n , n+2

n

}
. A natural and conformally invariant

quantization Qλ,µ : S≤2
δ → D2

λ,µ is provided, on a pseudo-Riemannian manifold (M, g) of
dimension n, by the formulas

Qλ,µ(f) = f

Qλ,µ(X) = Xa∇a +
λ

1− δ
(∇aXa)

Qλ,µ(S) = Sab∇a∇b + β1(∇aSab)∇b + β2gab(∇aTrS)∇b (3)

+ β3(∇a∇bSab) + β4 gab∇a∇b(TrS),+β5 RicabS
ab + β6 Sc (TrS)

where f , X, S are symbols of degrees 0, 1, 2 respectively and TrS = gabS
ab. The coefficients βi

entering the last formula are given e.g. in [1] (see Theorem 2.4).

The principal symbol of a (conformal) symmetry of ∆Y has to be a (conformal) Killing tensor.
On an arbitrary pseudo-Riemannian manifold, a (conformal) Killing tensor has to satisfy some
condition to be the principal symbol of a (conformal) symmetry. This condition can be expressed
by means of a natural and conformally invariant operator which is denoted here by Obs and
which is defined below. In the following definition, C and A denote respectively the Weyl tensor
and the Cotton-York tensor.

Definition 3. The operator Obs is defined as follows:

Obs : S2
0 → S1

2/n : S 7→ 2(n− 2)

3(n+ 1)
F(S),

where (F(S))a = Cr
st
a∇rSst − 3Ars

aSrs.

In the following statement, Qλ0,λ0 denotes the natural and conformally invariant quantization
introduced in Theorem 1. If we denote by F 2

n
the fiber bundle of 2

n -densities, the isomorphism

Γ(TM ⊗ F 2
n

) ∼= Γ(T ∗M) provided by the metric is denoted by [ (see [1] for more details).

Theorem 2. The second order (conformal) symmetries of ∆Y are exactly the operators

Qλ0,λ0(K +X) + f,

where X is a (conformal) Killing vector field, K is a (conformal) Killing 2-tensor such that
Obs(K)[ is an exact one-form and f ∈ C∞(M) is defined up to a constant by Obs(K)[ = −2df .
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3. Application to the R-separation of the Schrödinger equations
Following [2, 3], we provide an intrinsic characterization for R-separation of the Schrödinger
equation and of the Schrödinger equation at fixed energy in terms of second order (conformal)
symmetries of the conformal Laplacian. Resorting to our previous results, this leads to a new
criterion for having R-separation of these equations. Proofs are deferred to appendices.

3.1. Definition of R-separation
The Schrödinger equation, with fixed potential V ∈ C∞(M), reads as

(∆Y + V )ψ = Eψ, (4)

where ψ ∈ C∞(M) is the unknown and E ∈ R is called the energy. Solving the Schrödinger
equation means to determine the solutions for all E ∈ R.

We consider also the Schrödinger equation at fixed energy, i.e., up to changing V ,

(∆Y + V )ψ = 0. (5)

Up to modifying V by the curvature term (n−2)
4(n−1)Sc, one can replace the conformal Laplacian

by the Laplace-Beltrami one, as done usually. Multiplicative R-separation for one of these
equations is usually understood [4, 6] as the search for a coordinate system (xi) and a family of
solutions of the form

ψ(x) = R(x)
n∏
i=1

φi(x
i, cα), (6)

parametrized by cα ∈ R with α = 1, . . . , 2n− 1, and satisfying the completeness condition

rank

[
∂

∂cα

(
φ′i
φ

) ∣∣∣∣ ∂

∂cα

(
φ′′i
φ

)]
= 2n− 1, with α = 1, . . . , 2n− 1 and i = 1, . . . , n.

We restrict ourself to separation along orthogonal coordinates (xi), i.e. such that gij = 0 if i 6= j.
We use an alternative working definition which is equivalent, see e.g. Remark 1.

Definition 4. [2, 3] Equation (5) is R-separable in an orthogonal coordinate system (xi) if there
exist n + 1 functions R, hi ∈ C∞(M) and n differential operators Li := ∂2

i + li(x
i)∂i + mi(x

i)
such that

R−1(∆Y + V )R =
n∑
i=1

hiLi.

The Schrödinger equation (4) is also R-separable in the coordinate system (xi) if, for all E ∈ R,
there exist n+1 functions R, hi ∈ C∞(M) and n differential operators Li := ∂2

i +li(x
i)∂i+mi(x

i)
such that

R−1(∆Y + V )R− E =
n∑
i=1

hiLi.

In the R-separation for the Schrödinger equation, it is clear that only the zero order
coefficients of the operators Li depend on E. More precisely, the functions mi are then
affine functions in E. Looking at the principal symbol of the Schrödinger equation or of the
equation (5), we deduce that the functions hi are equal to gii for all i = 1, . . . , n. One can show
that ψ, defined in (6), is a solution of the Schrödinger equation or of the equation (5) if and
only if Liφi = 0 for all i. One has the following easy but crucial fact:

Proposition 1. [6] The R-separability of the equation ∆Y ψ = 0 is a conformally invariant
property.
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3.2. Intrinsic characterizations for R-separation
Let (M, g) be a pseudo-Riemannian manifold, (xi, pi) a canonical coordinate system on T ∗M
and H = gijpipj ∈ S2. Remark that a quadratic symmetric tensor K ∈ S2 identifies via the
metric as a symmetric endomorphism of TM . In that way, H identifies with the identity. The
geodesic Hamilton-Jacobi equation is the coordinate independent equation

gij(∂iW )(∂jW ) = E,

where W ∈ C∞(M) is the unknown and E ∈ R is the energy. If E = 0, this is the null geodesic
Hamilton-Jacobi equation.

We need the following notions, borrowed from [7, 8] and [9, 10] respectively.

Definition 5. A Killing-Stäckel algebra is an n-dimensional linear space I of Killing 2-tensors
that satisfy the three following properties:

(i) they commute as linear operators,

(ii) they are diagonalizable as linear operators,

(iii) they are in involution: {K1,K2} = 0 for all K1,K2 ∈ K.

Note that the metric Hamiltonian H = gijpipj belongs to any Killing-Stäckel algebra (for
more details on this point, see [8], Theorem 7.8).

Definition 6. A conformal Killing-Stäckel algebra is an n-dimensional linear space I of
conformal Killing 2-tensors that satisfy the following conditions:

(i) they commute as linear operators,

(ii) they are diagonalizable as linear operators,

(iii) {K1,K2} ∈ (H) for all K1 and K2 in I.

As pointed out in [10], each conformal Killing-Stäckel space contains a tensor of the kind fH,
for some function f .

In the Riemannian case, the hypothesis (ii) in Definitions 5 and 6 is not necessary: indeed,
in this situation, the 2-tensors in the (conformal) Killing-Stäckel algebra are automatically
diagonalizable as linear operators because they are symmetric with respect to a Riemannian
metric.

Kalnins and Miller provide in [7] (resp. [9]) an intrinsic characterization for additive separation
of the (resp. null) geodesic Hamilton-Jacobi equation, in terms of (resp. conformal) Killing-
Stäckel algebra. These classical results, completing those of Stäckel [11] and Eisenhart [12] can
be summarized up as follows, see [7, 9] or [8, 10].

Theorem 3. If I is a (conformal) Killing-Stäckel algebra and if K ∈ I, then K, viewed as an
endomorphism, admits n principal directions which integrate in a local coordinate system (xi)
on M . In this coordinate system, the tensors in I are diagonal.

Theorem 4. The (resp. null) geodesic Hamilton-Jacobi equation admits additive separation in
an orthogonal coordinate system if and only if there exists a (resp. conformal) Killing-Stäckel
algebra.

Actually, it turns out that the coordinate system (xi) in Theorem 3 is a coordinate system
in which the (null) geodesic Hamilton-Jacobi equation is separable.

In [2, 3], Kalnins and Miller provide an analogue of the latter theorem for R-separation of
the equations ∆ψ = 0 and ∆ψ = Eψ. In the presence of potentials, their results extend easily,
leading to the two following theorems. We provide a proof for the first one in Appendix B, it
relies on [2] and on the material in Appendix A. The proof of the second one is similar and is
left to the reader.
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Theorem 5. Equation (5), (∆Y + V )ψ = 0, R-separates in an orthogonal coordinate system if
and only if:

(a) there exists a conformal Killing-Stäckel algebra I,

(b) for all K ∈ I, there exists D ∈ D2(M) with principal symbol σ2(D) = K such that
[∆Y + V,D] = A ◦ (∆Y + V ), for some A ∈ D(M).

Theorem 6. The Schrödinger equation, (∆Y + V )ψ = Eψ, R-separates in an orthogonal
coordinate system if and only if:

(a) there exists a Killing-Stäckel algebra I,

(b) for all K ∈ I, there exists D ∈ D2(M) with principal symbol σ2(D) = K such that
[∆Y + V,D] = 0.

Remark that, compared to the analogous theorems in [2, 3], we relax the hypothesis of
commutation of the symmetries of ∆Y +V between themselves. From our results on the second
order (resp. conformal) symmetries of the conformal Laplacian we deduce:

Corollary 1. The equation ∆Y ψ = 0 separates in orthogonal coordinates if and only if there
exists a conformal Killing-Stäckel algebra I such that Obs(K)[ is exact for all K ∈ I.

Corollary 2. The Schrödinger equation separates in orthogonal coordinates if and only if there
exists a Killing-Stäckel algebra I such that Obs(K)[ is exact for all K ∈ I.

There exists a convenient and geometrical condition which ensures separation for the usual
Schrödinger equation ∆ψ = Eψ, where ∆ = ∇igij∇j is the Laplace-Beltrami Laplacian.
Namely, if the geodesic Hamilton-Jacobi equation separates in a coordinate system (xi), then
the Schrödinger equation separates in the same coordinate system if and only if the Ricci tensor
satisfies the Robertson condition: Ricij = 0 if i 6= j [12]. In particular, this condition implies the
R-separation for the Schrödinger equation in the coordinate system (xi). From the preceding
corollaries and the explicit form of the operator Obs, we get an analogous but distinct condition
for R-separation.

Proposition 2. Let (M, g) be a pseudo-Riemannian manifold of dimension at least 4. If there
exists a (resp. conformal) Killing-Stäckel algebra such that Cijjk = 0 in the corresponding
coordinate system, then the Schrödinger equation ∆Y ψ = Eψ (resp. the equation ∆Y ψ = 0)
admits R-separation in the same coordinate system. If M is of dimension 3, the condition
Cijjk = 0 should be replaced by Ajji = 0.

Proof. Indeed, on one hand, the tensors belonging to the (conformal) Killing-Stäckel algebra
ensuring the separation of the Hamilton-Jacobi equation are diagonal in the coordinate system
(xi) (see Theorem 3). On the other hand, recall that the operator Obs is equal to

2(n− 2)

3(n+ 1)
gimpi∂pj∂pl

(
Ck

jlm∇k − 3Ajlm

)
.

If (M, g) has a dimension greater than or equal to 4, then the fact that Cijjk = 0 implies that
Ajji = 0 thanks to the relation

(n− 3)Aabc = ∇rCbc
r
a.

We can then conclude that Obs(K) = 0 for all K ∈ I using the fact that the tensors in I are
diagonal.

If M is of dimension 3, then C vanishes and the condition Ajji = 0 is then sufficient to
conclude that Obs(K) = 0 for all K ∈ I.

Eventually, Corollaries 1 and 2 yield the result.
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However, neither the Robertson’s condition nor the one in Proposition 2 is necessary to get
R-separation of the Schrödinger equation. This is illustrated thanks to the DiPirro metrics given
in [1] (section 5, page 23). Let us recall that the Hamiltonians associated with these metrics are
given by

H = 1
2(γ(x1,x2)+c(x3))

(
a(x1, x2)p2

1 + b(x1, x2)p2
2 + p2

3

)
(7)

where a, b, c and γ are arbitrary functions and (xi, pi) are canonical coordinates on T ∗R3. The
DiPirro metrics admit diagonal Killing tensors K given by

K = 1
γ(x1,x2)+c(x3)

(
c(x3)a(x1, x2)p2

1 + c(x3)b(x1, x2)p2
2 − γ(x1, x2)p2

3

)
.

We know thanks to Proposition 5.1 in [1] that there exists a symmetry of ∆Y given by the Killing
tensor K defined above. If c(x3) = 1, DiPirro metrics admit a third Killing tensor K ′ = p2

3,

with a corresponding symmetry operator given by D′ = ∂2

∂(x3)2
. Thus, the 3-dimensional linear

space generated by H,K and K ′ constitutes a Killing-Stäckel algebra whose elements satisfy the
condition (b) in Theorem 6 because this condition is verified for each generator of this algebra.
Then, the Schrödinger equation R-separates in the coordinate system (x1, x2, x3). However, a
direct computation, performed e.g. with Mathematica, leads to Ric12 6= 0 and A112 6= 0.

Let (xi) be a coordinate system which separates the (resp. null) geodesic Hamilton-Jacobi
equation. This is an open question to find a Robertson’s like condition, which exactly
determines if the coordinate system (xi) R-separates the Schrödinger equation (resp. the
equation ∆Y ψ = 0). Such a condition should be ideally written only in terms of the curvature
tensors, in the coordinate system (xi).
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Appendix A. Stäckel metrics
Appendix A.1. Stäckel metrics and Stäckel multipliers
Let (xi) be an orthogonal coordinate system for the metric g. We introduce two coordinates
dependent notions. First, the Stäckel operators are given by

Stij = ∂i∂j − (∂i log |gjj |)∂j − (∂j log |gii|)∂i, i 6= j, (A.1)

with no summation on the repeated indices. Second, a Stäckel matrix is an invertible matrix of
functions (Sij(x

i)), whose ith-row depends on the coordinate xi only.

Proposition 3. A metric g is called a Stäckel metric if there exist orthogonal coordinates (xi),
called Stäckel coordinates, such that one of the four following equivalent conditions is satisfied:

(i) gjj = Sj1

S , where Sj1 is the cofactor in (j, 1) of a Stäckel matrix (Sij) and S its determinant,

(ii) Stij(g
kk) = 0, for all i, j, k = 1, . . . , n and i 6= j,

(iii) there exists a Killing-Stäckel algebra with diagonal elements in the coordinates (xi),

(iv) the geodesic Hamilton-Jacobi equation separates in the coordinates (xi).

The notion of Stäckel metric goes back to Stäckel himself [11] and he proves the equivalence
between (i) and (iv). The remaining equivalences are proved in [12]. In particular, (i) and (iii)

are linked through the fact that I is generated by the tensors Ki = Sji

S p
2
j , for i = 1, . . . , n.

Remark that a given Stäckel metric can admit several inequivalent Stäckel coordinate systems.
They have been classified in the flat case in low dimensions, see e.g. [13] for the 3-dimensional
case.
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Proposition 4. A metric g is called a conformal Stäckel metric if there exist orthogonal
coordinates (xi), called conformal Stäckel coordinates, such that one of the four following
equivalent conditions is satisfied:

(i) there exists a Stäckel metric ĝ, with Stäckel coordinates (xi), conformally related to g,

(ii)
Stij(gkk)

gkk =
Stij(gll)

gll , for all i, j, k, l = 1, . . . , n and i 6= j,

(iii) there exists a conformal Killing-Stäckel algebra with diagonal elements in the
coordinates (xi),

(iv) the null geodesic Hamilton-Jacobi equation separates in the coordinates (xi).

The equivalence between (i) and (iv) goes back to Stäckel [11]. The proof of the equivalence
between the remaining statements can be found in [9]. We introduce now Stäckel multipliers.
They relate different Stäckel metrics in a conformal class, which admit common Stäckel
coordinates.

Proposition 5. Let g be a Stäckel metric with Stäckel coordinates (xi). A Stäckel multiplier is
a function Q satisfying one of the three following equivalent conditions:

(i) the metric Qg is a Stäckel metric, with Stäckel coordinates (xi),

(ii) Stij(Q) = 0, for all i, j = 1, . . . , n and i 6= j,

(iii) there exist functions kj(x
j) such that Q(x) =

∑n
j=1 gjjkj(x

j).

The equivalence of (i), (ii) and (iii) is established in [14]. The latter notion can be
straightforwardly extended to the case of conformal Stäckel metrics.

Proposition 6. Let g be a conformal Stäckel metric with conformal Stäckel coordinates (xi).
A pseudo-Stäckel multiplier is a function Q satisfying one of the three following equivalent
conditions:

(i) the metric Qg is a Stäckel metric, with Stäckel coordinates (xi),

(ii)
Stij(Q)
Q =

Stij(gkk)

gkk , for all i, j, k = 1, . . . , n and i 6= j,

(iii) there exist functions kj(x
j) such that Q(x) =

∑n
j=1 gjjkj(x

j).

Remark that, by the very definition of a conformal Stäckel metric, there always exist pseudo-
Stäckel multipliers.

Appendix A.2. Necessary and sufficient conditions for R-separation
It is well-known that multiplicative R-separation for the Schrödinger equation (4) implies
additive separation for the geodesic Hamilton-Jacobi equation, and that multiplicative R-
separation of the equation (5) implies additive separation of the null geodesic Hamilton-Jacobi
equation. The converse statement is not true and suppose an extra condition involving the
potential and the metric. The following theorem is a straightforward generalization of a result
in [2], see also [4].

Theorem 7. Equation (5), (∆Y + V )ψ = 0, R-separates in the orthogonal coordinate system
(xi) if and only if the two following conditions hold:

(i) g is a conformal Stäckel metric with conformal Stäckel coordinates (xi),

(ii) V + ∆Y R
R is a pseudo-Stäckel multiplier.

Moreover, the function R is then any function of the form S
Q(det g)1/2

∏
j aj, where ĝ = Qg is a

Stäckel metric, S is the determinant of a Stäckel matrix (Sij) of ĝ and where the functions aj
are such that their derivatives ∂jaj depend only on the coordinate xj.
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Proof. The R-separation of Equation (5) occurs in coordinates (xi) if and only if there exists a
function R ∈ C∞(M) such that

R−1(∆Y + V )R =

n∑
j=1

gjjLj , (A.2)

where Lj = ∂2
j + lj∂j +mj , with the functions lj and mj which depend only on the coordinate

xj . Since g is diagonal in the coordinates (xi), we have the formula ∇igij∇j = gjj∂2
j + Γj∂j ,

where Γj = (det g)−1/2∂j(g
jj(det g)1/2) is the trace of the Christoffel symbol of ∇. A direct

computation shows that

R−1∆YR = gjj∂2
j + 2gjj(∂j logR)∂j + Γj∂j +

∆YR

R
.

In consequence, Equation (A.2) holds if and only if:{
∂j(log gjj) = lj − ∂j(2 logR+ log(det g)1/2), ∀j = 1, . . . , n,

V + ∆Y R
R =

∑
i giimi.

(A.3)

These two equations hold if and only if the metric g is a conformal Stäckel metric and V + ∆Y R
R is

a pseudo-Stäckel multiplier. We determine now the form of the function R. Since g is a conformal
Stäckel metric, there exists a pseudo-Stäckel multiplier Q and a Stäckel metric ĝ = Qg, with

Stäckel matrix (Sij). Denoting by S its determinant, one sets f = log Q(det g)1/2

S . By definition

of a Stäckel matrix we have ∂jS
j1 = 0, and the equality gjj∂jf = (det g)−1/2∂j(g

jj(det g)1/2)
follows. In consequence, we deduce that

2∂j logR = lj − ∂jf, ∀j = 1, . . . , n,

whose solutions are R =
(

S
Q(det g)1/2

)1/2∏
j aj with ∂jaj = −1

2 lj , and the functions lj are

free.

Remark 1. Theorem 7 is proved in [4, Proposition 23], but resorting to the definition of R-
separation of variables provided by Equation (6) rather than the one given in Definition 4. This
shows that these two definitions of R-separation of variables are indeed equivalent.

The following theorem is easily deduced from the preceding one.

Theorem 8. The Schrödinger equation (4) R-separates in the orthogonal coordinate system (xi)
if and only if the two following conditions hold:

(i) g is a Stäckel metric with Stäckel coordinates (xi),

(ii) V + ∆Y R
R is a Stäckel multiplier.

Proof. If the R-separation condition (A.3) holds for all E ∈ R, we deduce that constants are
pseudo-Stäckel multipliers. Hence, the metric g is Stäckel and the pseudo-Stäckel multiplier
V + ∆Y R

R is then a Stäckel multiplier.
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Appendix B. Proof of Theorem 5
First, we suppose that (xi) is an R-separable coordinate system for Equation (5) and prove
conditions (a) and (b). By the very definition of R-separation, there exists a function R ∈ C∞(M)
such that

R−1(∆Y + V )R =
n∑
j=1

gjjLj , (B.1)

where Lj = ∂2
j + lj∂j +mj , with the functions lj and mj which depend only on the coordinate

xj . Moreover, Theorem 7 applies and g is then a conformal Stäckel metric. In consequence,
there exists a pseudo-Stäckel multiplier Q and a Stäckel metric ĝ = Qg.

We denote by (Sij) a Stäckel matrix attached to the metric ĝ and by (Sij) the matrix of
cofactors, so that SijSjk = Sδik with S the determinant of (Sij). Hence, we obtain n independent

diagonal Killing tensors Ki = Sji

S p
2
j for ĝ, with K1 = ĝijpipj . They are automatically conformal

Killing tensors for g and they generate a conformal Killing-Stäckel algebra I, so the condition
(a) is satisfied. Following [2], we set

Ai =
∑
j

Sji

S

(
∂2
j + (∂jf)∂j + aj

)
,

where f = log Q(det g)1/2

S and aj = mj + 1
2∂j(∂jf − lj) + 1

4((∂jf)2 − l2j ). The principal symbol of

Ai is then Ki. Setting ρj(i) = ĝjj
Sji

S , the Poisson commutation relations, {K1,Ki} = 0, translate

as ∂k(ρ
j
(i)ĝ

jj) = ρk(i)(∂kĝ
jj) for all indices i, j, k. Then a direct computation shows that (see [2]),

[A1, Ai] = 0, ∀i = 1, . . . , n. (B.2)

The next step is to prove that QA1 = ∆Y + V . By definition of a Stäckel matrix we have

gjj = QSj1

S and ∂jS
j1 = 0. The equality gjj∂jf = (det g)−1/2∂j(g

jj(det g)1/2) follows. In

particular, one has ∆ := ∇igij∇j = gjj(∂2
j + (∂jf)∂j), which leads to

QA1 = ∆ +
∑
j

gjjaj .

According to the proof of Theorem 7, the equation (B.1) is equivalent to the system (A.3), which
reads now as {

2∂j(logR) = lj − ∂jf, ∀j = 1, . . . , n,

V + ∆Y R
R =

∑
i giimi.

Combining these two equations with the expression of aj and the equality ∆R
R = gjj(R−1∂2

j (R)+
(∂jf)(∂j logR)), we get QA1 = ∆Y + V . Therefore, Equation (B.2) implies that

[∆Y + V,Ai] = [Q,Ai] ◦A1

for i = 1, . . . , n. Since σ2(Ai) = Ki for i = 1, . . . , n and since the 2-tensors Ki (i = 1, . . . , n)
generate I, the condition (b) is satisfied.

We prove now that the conditions (a) and (b) imply that g is a conformal Stäkel metric and
V + ∆Y R

R is a pseudo-Stäckel multiplier. This leads to the conclusion thanks to Theorem 7.
We straightforwardly get that g is a conformal Stäckel metric by Proposition 4. Its conformally

related Stäckel metric ĝ = Qg admits a Stäckel matrix (Sij) so that the tensors Ki = Sji

S p
2
j
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(i = 1, . . . , n) are generators of the conformal Killing-Stäckel algebra I. Hence, we can introduce

f = log Q(det g)1/2

S as above and we set ρj(i) = ĝjj
Sji

S . Setting V ′ = V − n−2
4(n−1)Sc, we get that

∆Y + V = gjj(∂2
j + (∂jf)∂j) + V ′.

Let D1 = Q−1(∆Y + V ) and Di, (i = 2, . . . , n) be the conformal symmetries corresponding to
the tensors Ki (i = 1, . . . , n) defined above. If we set D̃i = ef/2Die

−f/2, the operators D̃i read
as ∑

j

ρj(i)ĝ
jj∂2

j + ξj(i)∂j + µ(i),

where ρj(1) = 1, ξj1 = 0 and µ(1) = Q−1(V + ∆Y R
R ) where 2 logR = −f . According to [2], the

equations
[D̃1, D̃j ] ∈ (D̃1), ∀j = 2, . . . , n,

imply that µ(1) = V + ∆Y R
R is a pseudo-Stäckel multiplier. Moreover, R = e−f/2 is one of the

admissible functions R for R-separation and Theorem 5 is then proved.
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