会议论文详细信息
22nd International Conference on Integrable Systems and Quantum Symmetries | |
Hamiltonian structure for a class of parametric coupled systems of the Korteweg-de Vries type | |
Sotomayor, Adrián^1 ; Restuccia, Alvaro^2,3 | |
Departament of Mathematics, Antofagasta University, Antofagasta, Chile^1 | |
Physics Department, Antofagasta University, Antofagasta, Chile^2 | |
Physics Department, Simón Bolívar University, Caracas, Venezuela^3 | |
关键词: Coupled systems; Hamiltonian structures; Korteweg-de Vries; Lagrangian; Parametric systems; Poisson algebras; Second class; | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/563/1/012028/pdf DOI : 10.1088/1742-6596/563/1/012028 |
|
来源: IOP | |
![]() |
【 摘 要 】
We obtain from a lagrangian action describing a class of coupled parametric systems of KdV type its hamiltonian structure. The Poisson algebra arises from second class constraints of the theory and the use of Dirac brackets. The coupled system has relevant applications in physics.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Hamiltonian structure for a class of parametric coupled systems of the Korteweg-de Vries type | 673KB | ![]() |