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Abstract. We obtain from a lagrangian action describing a class of coupled parametric
systems of KdV type its hamiltonian structure. The Poisson algebra arises from second class
constraints of the theory and the use of Dirac brackets. The coupled system has relevant
applications in physics.

1. Introduction
Extensions of the Korteweg-de Vries equation have been object of an extensive study due to its
intrinsic mathematical properties and the wide range of applications in which they appear. In
particular, the coupled Korteweg-de Vries (KDV) systems are a special class of such extensions,
widely used and still deserving attention in view of the relevant open problems related to them
[1, 2, 3, 4, 5].

It is known, for example, that coupled KdV systems have, as the KdV equation, many
interesting properties, such as associated Bäcklund transformations, multisolitonic solutions,
Painlevé property, Lax pairs and hamiltonian formulations, among others.

We remind that the first hamiltonian formulation of KdV [6] was formulated in terms of
the Fourier coefficients in the expansion of the defining field. It that sense we have an infinite
dimensional hamiltonian equation. It was however necessary, to check the fulfillment of the
Jacobi identity, for the Poisson bracket candidate. Later, the method of Dirac was used to
obtain the same hamiltonian formulation [7, 8, 9]. The starting point here was a lagrangian
formulation in terms of a prepotential of the field which defines the KdV equation and then,
via a Legendre transformation and using the Dirac method for singular lagrangians [10], to
obtain the second class constraints which induce the Poisson structure. To obtain the second
hamiltonian structure it was necessary to consider the associated Miura transformation and
again the Dirac method allows to obtain the other hamiltonian structure of the KdV equation.
In both cases the Jacobi identity is a direct consequence of the formulation and the hamiltonian
structures are the most general ones, because they are defined in terms of the prepotential.

In this work we obtain for a parametric coupled KdV system its hamiltonian structure via a
lagrangian formulation and an associated Miura transformation with, of course, the associated
coupled Miura system. We follow the method of Dirac for constrained systems. On the way we
obtain the natural Casimirs of the theory arising directly from the Dirac construction. We notice
that the above results are not a direct consequence of the complexification (or “deformation”
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[11]) of the KdV equation. We also notice that this construction is the first step to construct
associated pencils of Poisson structures for the given coupled KdV system.

2. The parametric coupled KdV system and it hamiltonian structures
The coupled KdV system to be considered is given by

ut + uux + uxxx + λvvx = 0 (1)
vt + uxv + vxu + vxxx = 0 (2)

where λ is a real parameter. For the value λ > 0 the system is equivalent to two decoupled KdV
equations. The λ < 0 case is equivalent to the complex version of KdV equation and finally,
for λ = 0 we have a particular and interesting Hirota-Satsuma type system in the classification
given in [12, 13].

In [14] a Bäcklund and a Gardner transformation for the system (1),(2) were obtained , also
a permutability theorem was shown, which enables to generate new solutions from old ones.
From it an infinite family of multisolitonic and periodic solutions were found.

The Miura transformation together with the Miura system associated to the coupled system
(1),(2) are given by

u = µx − 1
6µ2 − λ

6ν2

v = νx − 1
3µν

(3)

and
µt + µxxx − 1

6µ2µx − λ
6ν2µx − λ

3µννx = 0

νt + νxxx − 1
6µ2νx − λ

6ν2νx − 1
3µνµx = 0.

(4)

The fundamental property of (3) is that it maps solutions of (4) into solutions of (1),(2) for
every value of the parameter λ.

Now we construct the hamiltonian structure of the given coupled KdV system. We consider
the two lagrangians L1 =

∫ T
0 dt

∫ +∞
−∞ dxL1 , L2 =

∫ T
0 dt

∫ +∞
−∞ dxL2 where

L1 = −1
2
wxwt −

1
6
wx

3 +
1
2
wxx

2 − λ

2
wxyx

2 − λ

2
yxyt +

λ

2
yxx

2, (5)

L2 = −1
2
wxyt −

1
2
wtyx −

1
2
w2

xyx − yxwxxx −
λ

6
y3

x (6)

and

u(x, t) = wx(x, t)
v(x, t) = yx(x, t)

where w and y are the prepotentials for u and v respectively. For the lagrangian defined by (5)
it is necessary to impose λ 6= 0.

By taking independent variations of L1 and L2 with respect to w and to y we obtain the field
equations, they are given by (1) and (2).

We start our construction with lagrangian L1. We introduce the conjugate momenta
associated to w and y, we denote them p and q respectively, we have

p =
δL1

δwt
= −1

2
wx , q =

δL1

δyt
= −λ

2
yx.
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We define
φ1 ≡ p +

1
2
wx , φ2 = q +

λ

2
yx.

We notice that φ1 and φ2 do not have any wt nor any yt dependence, hence φ1 = φ2 = 0 are
constraints on the phase space. It turns out that these are the only constraints on the phase
space. They are second class contraints. The hamiltonian may be obtain directly from L1 by
performing a Legendre transformation,

H1 = pwt + qyt − L1.

We obtain
H1 =

1
6
w3

x −
1
2
w2

xx +
λ

2
wxy2

x −
λ

2
y2

xx

and the corresponding hamiltonian H1 =
∫ +∞
−∞ dxH1.

We introduce a Poisson structure on the phase space defined by

{w(x), p(x̂)}PB = δ(x− x̂)
{y(x), q(x̂)}PB = δ(x− x̂)

with all other brackets between these variables being zero.
The resulting phase space is a constrained phase space and for that reason it is necessary to

introduce Dirac brackets. The Dirac brackets between two functionals F and G on phase space
is defined as

{F,G}DB = {F,G}PB −
〈〈{

F, φi(x′)
}

PB
Cij(x′, x′′)

{
φj(x′′), G

}
PB

〉
x′

〉
x′′

(7)

where <>x′ denotes integration on x′ from −∞ to +∞. It turns out, after some calculations,
that

{u(x), u(x̂)}DB = −∂xδ(x− x̂) , {v(x), v(x̂)}DB = − 1
λ

∂xδ(x− x̂)

{u(x), v(x̂)}DB = 0.

We notice that this Poisson bracket is not well defined for λ = 0. We have already assume λ 6= 0.
From them we obtain the Hamilton equations, which are of course the same as (1),(2):

ut = {u, H1}DB = −uux − uxxx − λvvx

vt = {v,H1}DB = −uxv − vxu− vxxx.
(8)

Moreover, we may obtain directly the Dirac bracket of any two functionals F (u, v) and G(u, v)
from (7) using the above bracket relations for u and v. We notice that the observables F and
G in (7) may be functionals of w, y, p and q, not only of u and v. In this sense the phase space
approach for singular lagrangians provides the most general space of observables. The same
comment will be valid for the phase space construction using lagrangians L2 and LM

1 , LM
2 in the

following.
We notice that that by construction φ1 and φ2 as well as any functional of them, in all the

cases we have considered, are Casimirs of the Poisson structure defined in terms of the Dirac
brackets. In fact,

{F, φ1)}DB = 0
{F, φ2)}DB = 0
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for any functional F on phase space. This is a general property of the Dirac bracket.
We now consider the lagrangian L2 and its associated hamiltonian structure. In this case we

denote the conjugate momenta to w and y by p̂ and q̂ respectively. We have

p̂ = −1
2
yx , q̂ = −1

2
wx.

The constraints become in this case

φ̂1 = p̂ +
1
2
yx = 0 , φ̂2 = q̂ +

1
2
wx = 0.

The corresponding Poisson brackets between φ̂i and φ̂j , i, j = 1, 2, are given by{
φ̂1(x), φ̂1(x′)

}
PB

= 0 ,
{

φ̂2(x), φ̂2(x′)
}

PB
= 0,{

φ̂1(x), φ̂2(x′)
}

PB
= ∂xδ(x− x′).

The corresponding construction of the Dirac brackets yields

{u(x), u(x̂)}DB = 0 , {v(x), v(x̂)}DB = 0,

{u(x), v(x̂)}DB = −∂xδ(x− x̂).

The hamiltonian H2 =
∫ +∞
−∞ dxH2 is given by the hamiltonian density

H2 =
1
2
w2

xyx + yxwxxx +
λ

6
y3

x.

The Hamilton equations

ut(x) = {u(x),H2}DB , vt(x) = {v(x),H2}DB

now using the corresponding Dirac brackets yield the same fields equations (1),(2) for any λ. We
have thus constructed two hamiltonian functionals and associated Poisson bracket structures.
These two hamiltonian structures arise directly from the basic lagrangians L1 and L2. We will
now construct two additional hamiltonian structures by considering the Miura transformation.

The hamiltonians H1,H2 and HM
1 ,HM

2 in the following, were presented in [11].
For the Miura system given by (4) we have the lagrangians LM

1 , LM
2 defined in terms of the

lagrangians densities

LM
1 = −1

2
σtσx −

λ

2
ρtρx −

1
2
σxσxxx −

λ

2
ρxρxxx +

1
72

σx
4 − λ2

72
ρx

4 +
λ

12
ρ2

xσ2
x (9)

and
LM

2 = −1
2
σtρx −

1
2
σxρt − σxxxρx +

1
18

σx
3ρx +

λ

18
ρx

3σx (10)

where µ = σx, ν = ρx. As is previous case it is necessary to impose λ 6= 0 for the lagrangian
defined by (9). Using the method of Dirac for singular lagrangians we can deduce the two
additional hamiltonian structures corresponding to (9) and (10) for the coupled KdV system
given by (1) and (2). They are given by:
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{u(x), u(x̂)}DB = ∂xxxδ(x, x̂) +
1
3
uxδ(x, x̂) +

2
3
u∂xδ(x, x̂)

{v(x), v(x̂)}DB =
1
λ

∂xxxδ(x, x̂) +
1
3λ

uxδ(x, x̂) +
2
3λ

u∂xδ(x, x̂)

{u(x), v(x̂)}DB =
1
3
vxδ(x, x̂) +

2
3
v∂xδ(x, x̂)

and

{u(x), u(x̂)}DB =
λ

3
vxδ(x, x̂) +

2λ

3
v∂xδ(x, x̂)

{v(x), v(x̂)}DB =
1
3
vxδ(x, x̂) +

2
3
v∂xδ(x, x̂)

{u(x), v(x̂)}DB = ∂xxxδ(x, x̂) +
1
3
uxδ(x, x̂) +

2
3
u∂xδ(x, x̂)

and the corresponding hamiltonians are given by

HM
1 =

∫ +∞

−∞

(
v2 − u2

)
dx

HM
2 =

∫ +∞

−∞
(−uv).

We recall that it is necessary to assume λ 6= 0 to consider the hamiltonian structure related
with LM

1 .
We have then obtained four self-adjoint operators which define the hamiltonian basic

structures of the coupled KdV system given by (1),(2). We mention that this is the starting
construction in order to obtain a more general formulation in terms of pencils of Poisson
structures, that is, families of Poisson brackets depending on a given parameter. Another
interesting related problem is to consider supersymmetric extensions of the given coupled KdV
system.

The functions on phase space φ1 and φ2 defining the second class for each hamiltonian
structure are Casimirs of the Poisson algebra since they commute with all observables, this is a
direct consequence of the Dirac bracket construction.

3. Conclusions
We obtained four basic self-adjoint hamiltonians for the given coupled KdV system and its
corresponding hamiltonian stuctures, using the method of Dirac for singular lagrangians. We
also commented that this construction is the first step in order to obtain a full hamiltonian
structure for the given system in terms of pencils of Poisson structures.

Acknowledgments
A. R. and A. S. are partially supported by Projects Fondecyt 1121103 and Mecesup ANT398

(Chile).

XXII International Conference on Integrable Systems and Quantum Symmetries (ISQS-22) IOP Publishing
Journal of Physics: Conference Series 563 (2014) 012028 doi:10.1088/1742-6596/563/1/012028

5



References
[1] Hirota R and Satsuma J 1981 Phys. Lett. A 85 407
[2] Gear J A and Grimshaw R 1984 Stud. Appl. Math. 70, 235 ; Gear J A 1985 Stud. Appl. Math. 72, 95
[3] Lou S Y, Tong B, Hu H C and Tang X Y 2006 J. Phys. A: Math. Gen. 39 513-527
[4] Grimshaw R 2013 Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics,

Understanding Complex Systems Rubio R G et al (eds.) (Springer-Verlag Berlin Heidelberg)
[5] Bona J L, Ponce G, Saut J C and Tom M N 1992 Commun. Math. Phys. 143 287-313
[6] Gardner C. S. 1971 J. Math. Phys.12 1548-1551
[7] Nutku Y 1984 J. Math. Phys. 25 2007-2008
[8] Kentwell G W 1988 J. Math. Phys. 29 46-48
[9] Restuccia A and Sotomayor A 2013 J. Math. Phys. 54 113510
[10] P. A. M. Dirac 1964, Lectures on Quantum Mechanics Belfer Graduate School Monograph Series No.2,

Yeshiva University, New York
[11] Zuo D 2014 Preprint arXiv: math/ph 1403.0027 v1
[12] Sakovich S Yu 1999 J. Nonlin. Math. Phys. 6 N3 255-262
[13] Casati P and Ortenzi G 2006 J. Geom. and Phys. 56 418-449
[14] Cortés Vega L , Restuccia A and Sotomayor A 2014 Preprint arXiv: math/ph 1407.7743 v1

XXII International Conference on Integrable Systems and Quantum Symmetries (ISQS-22) IOP Publishing
Journal of Physics: Conference Series 563 (2014) 012028 doi:10.1088/1742-6596/563/1/012028

6


