会议论文详细信息
4th International Workshop on New Computational Methods for Inverse Problems
Particle MCMC for Bayesian Microwave Control
物理学;计算机科学
Minvielle, P.^1 ; Todeschini, A.^2 ; Caron, F.^3 ; Del Moral, P.^4
CEA-CESTA, Le Barp
33114, France^1
INRIA Bordeaux Sud-Ouest, cours de la Liberation, 351, Talence Cedex
33405, France^2
University of Oxford, 1 South Parks Road, Oxford, United Kingdom^3
UNSW, High Street, Kensington Sidney, Australia^4
关键词: Bayesian inference;    Electromagnetic scattering;    Higher-dimensional problems;    Metropolis Hastings;    Microwave control;    Multiple components;    Property estimation;    Rao-Blackwellised Sequential Monte Carlo;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/542/1/012007/pdf
DOI  :  10.1088/1742-6596/542/1/012007
学科分类:计算机科学(综合)
来源: IOP
PDF
【 摘 要 】

We consider the problem of local radioelectric property estimation from global electromagnetic scattering measurements. This challenging ill-posed high dimensional inverse problem can be explored by intensive computations of a parallel Maxwell solver on a petaflopic supercomputer. Then, it is shown how Bayesian inference can be perfomed with a Particle Marginal Metropolis-Hastings (PMMH) approach, which includes a Rao-Blackwellised Sequential Monte Carlo algorithm with interacting Kalman filters. Material properties, including a multiple components "Debye relaxation"/"Lorenzian resonant" material model, are estimated; it is illustrated on synthetic data. Eventually, we propose different ways to deal with higher dimensional problems, from parallelization to the original introduction of efficient sequential data assimilation techniques, widely used in weather forecasting, oceanography, geophysics, etc.

【 预 览 】
附件列表
Files Size Format View
Particle MCMC for Bayesian Microwave Control 1360KB PDF download
  文献评价指标  
  下载次数:29次 浏览次数:55次