会议论文详细信息
3Quantum: Algebra Geometry Information
The structure of Ph*, generalized de Rham, and entropy
物理学;数学
Laudal, O.A.^1
Matematisk Institutt, University of Oslo, Pb. 1053, Blindern, Oslo
N-0316, Norway^1
关键词: Associative algebras;    de Rham complexes;    Dirac derivations;    Finite dimensional;    Functors;    Non-commutative;    Phase spaces;    Time-space;   
Others  :  https://iopscience.iop.org/article/10.1088/1742-6596/532/1/012013/pdf
DOI  :  10.1088/1742-6596/532/1/012013
来源: IOP
PDF
【 摘 要 】

In this note I shall continue the study of the non-commutative phase space functor, Ph(A), defined for any associative algebra A, and its derived differential co-simplicial algebra, Ph∗(A). The main focus will be on its relationship to the classical de Rham complex, to the dynamics of finite dimensional Ph∞(A)-modules, and to the notion of Entropy. These subjects are treated within the set-up of my book [2011 Geometry of Time-Spaces (World Scientific)].

【 预 览 】
附件列表
Files Size Format View
The structure of Ph*, generalized de Rham, and entropy 952KB PDF download
  文献评价指标  
  下载次数:18次 浏览次数:26次