会议论文详细信息
Physics and Mathematics of Nonlinear Phenomena 2013 | |
Generalized Lenard chains and multi-separability of the Smorodinsky_Winternitz system | |
Tondo, Giorgio^1 | |
Dipartimento di Matematica e Geoscienze, Università Degli Studi di Trieste, Piaz.le Europa 1, I-34127 Trieste, Italy^1 | |
关键词: Separation of variables; Symplectic; | |
Others : https://iopscience.iop.org/article/10.1088/1742-6596/482/1/012042/pdf DOI : 10.1088/1742-6596/482/1/012042 |
|
来源: IOP | |
【 摘 要 】
We show that the notion of generalized Lenard chains allows to formulate in a natural way the theory of multi-separable systems in the context of bi-Hamiltonian geometry. We prove that the existence of generalized Lenard chains generated by a Hamiltonian function and by a Nijenhuis tensor defined on a symplectic manifold guarantees the separation of variables. As an application, we construct such a chain for the case I of the classical Smorodinsky- Winternitz model.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
Generalized Lenard chains and multi-separability of the Smorodinsky_Winternitz system | 551KB | download |