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Abstract. We show that the notion of generalized Lenard chains allows to formulate in a
natural way the theory of multi–separable systems in the context of bi–Hamiltonian geometry.
We prove that the existence of generalized Lenard chains generated by a Hamiltonian function
and by a Nijenhuis tensor defined on a symplectic manifold guarantees the separation of
variables. As an application, we construct such a chain for the case I of the classical
Smorodinsky–Winternitz model.

1. Introduction: superintegrability and separation of variables
This paper is part of a joint research program with P. Tempesta started in [1], where we have
established a new connection between the theory of integrable and superintegrable systems on
one side, and that of bi–Hamiltonian separation of variables on the other side. In fact, we have
provided a theoretical framework for studying separation of variables for classical systems, by
means of the notion of generalized Lenard (GL) chains. These chains, jointly with a couple of
compatible Poisson tensors, are the main geometrical objects for our bi–Hamiltonian description
of classical mechanics. These structures guarantee the separation of variables in a suitable bi–
structured manifold.

In classical mechanics, superintegrable systems are Hamiltonian systems that possess more
than N integrals of motion functionally independent, globally defined in a 2N–dimensional
phase space (see e.g. [2] for a monograph on the topic). These systems are also called
noncommutatively integrable [3], [4]. Especially important are the maximally superintegrable
ones, i.e. those having 2N − 1 integrals. It turns out that for these systems all bounded orbits
are closed and the motion is periodic [5]. Among the physically most relevant superintegrable
potentials are the harmonic oscillator and the Kepler potential, the Calogero–Moser potential,
the Smorodinsky–Winternitz systems, the Euler top, etc. [2]–[7].

In quantum mechanics, superintegrable systems are also particularly interesting: they possess
accidental degeneracy of the energy levels. This degeneracy can be removed by considering the
quantum numbers associated to the additional integrals of motion. A paradigmatic example is
offered by the Coulomb atom [8]. Recently, new examples of superintegrable systems have been
discovered [9]–[12], both classical and quantum.

One of the most effective methods to solve Hamiltonian systems is to find a complete integral
of the corresponding Hamilton–Jacobi equation through the technique of separation of variables.
For the sake of clarity, we will recall briefly the geometric setting of Hamiltonian dynamics [13].
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Let (M,ω) be a symplectic manifold, i.e. a 2n–dimensional manifold endowed with a non
degenerate closed 2–form ω, said to be a symplectic form. Such a geometrical structure selects
a privileged dynamics on M , the one given by Hamiltonian vector fields defined by

iXHω = −dH

(iXH denotes the contraction operator w.r.t. the vector field XH and d denotes the exterior
derivative operator) or, equivalently

XH = (ω[)−1dH ,

where ω[ : TM → T ∗M denotes the fiber bundles isomorphism induced by ω. The function H is
said to be the Hamiltonian function of the vector field XH . A symplectic form acting on vector
fields is equivalent to a non degenerate Poisson bracket defined as

{F,G} := ω(XF , XG) =< dF,XG > , (1)

(<,> denotes the natural pairing between 1–forms and vector fields), i.e. as a skew–symmetric
derivation on the ring C∞(M), fulfilling the Jacobi identity. As we wish to study separable
Hamiltonian systems that are Liouville–integrable, in principle we can start with a set of
n independent Hamiltonian functions in involution w.r.t. the Poisson brackets (1). In this
framework, in the tradition of the Italian school [14], an important result has been obtained by
Benenti in [15]. It gives a characterization of separated coordinates in terms of Poisson bracket.

The Hamiltonian functions {Hi}1≤i≤n are separable in a set of canonical coordinates (q,p)
if and only if they are in separable involution, i.e. if and only if they satisfy

{Hi, Hj}|k =
∂Hi

∂qk

∂Hj

∂pk
− ∂Hi

∂pk

∂Hj

∂qk
= 0 , 1 ≤ k ≤ n, (2)

where no summation over k is understood. However, such a condition is not intrinsic as it
requires to know a priori the coordinates (q,p) in order to be applied.

Recently, a new geometric approach to SoV has been developed, based on the bi–Hamiltonian
theory ([16], [17]) and on GL chains ([18]–[21]). It has succeeded in giving intrinsic and
constructive criteria of separability and has connected the classical theory of SoV with the
modern theory by Sklyanin [22]. The bi–Hamiltonian theory of SoV is formulated in phase
spaces represented by manifolds endowed with two geometric structures satisfying two suitable
compatibility conditions. Such structures are a symplectic form ω and a Nijenhuis (or hereditary)
operator N acting on the tangent bundle of M . For this reason such manifolds have been called
ωN manifolds. Whilst the symplectic form defines the algebra of Hamiltonian vector fields, the
Nijenhuis operator defines sets of distinguished coordinates that are separated coordinates for
a special class of Hamiltonian vector fields, those belonging to GL chains, so called as they are
extensions of classical Lenard chains, widely known in soliton literature [23], [24].

In this paper we extend a theorem given in [1] proving that, given a generic integrable system
on the cotangent bundle of the Euclidean plane, the existence of a GL chain ensures separation of
variables on a ωN manifold, in a set of coordinates more general than those of [1]. Moreover, we
will complete the study of an important physical model, namely the case I of the Smorodinsky–
Winternitz (SWI) system, constructing explicitly a new bi–Hamiltonian structure related to
elliptic separated coordinates in the plane.

The paper is organized as follows. In Section 2, the theory of bi–Hamiltonian manifolds is
briefly reviewed. In Section 3, the main geometrical object of our theory, i.e. the GL chains,
are introduced. The above mentioned general theorem on separation of variables for systems in
T ∗E2 is proposed. In Section 4, the previous theory is applied to the study of the general class
of integrable mechanical systems in the Euclidean plane, separable in elliptic coordinates. In
Section 5, a GL chain is constructed for the classical SWI system. Some discussions are drawn
in the final Section 6.
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2. Bi–Hamiltonian manifolds and ωN manifolds
Generally, a Poisson bracket (see, e.g., [25]) can be defined by a Poisson bi–vector field, i.e. a
skew–symmetric linear map P : T ∗M 7→ TM , eventually not invertible, such that

{F,G}P :=< dF, PdG >

with vanishing Schouten bracket

0 = [P, P ] (α, β) := LPβ(P )α+ P (iPαdβ) ∀α, β ∈ T ∗M, (3)

(L denotes the Lie derivative). In the special case of symplectic manifolds, P := (ω[)−1 is a
Poisson bi-vector. Generalizing (1) the vector field XG := P dG is said to be the Hamiltonian
vector field with Hamiltonian function G.

Bi–Hamiltonian manifolds were introduced by Magri [26] as models of phase space for soliton
equations.

Definition 1 A bi–Hamiltonian manifold (M,P0, P1) is a manifold M endowed with two
Poisson bi-vectors fields such that

0 = 2 [P0, P1] (α, β) := LP0β(P1)α+P1(iP0αdβ)+LP1β(P0)α+P0(iP1αdβ) ∀α, β ∈ T ∗M . (4)

Such a condition assures that the linear combination P1 − λP0 is a Poisson pencil, i.e. it is a
Poisson bi-vector for each λ ∈ C, and therefore the corresponding bracket {, }P1 − λ{, }P0 is a
pencil of Poisson bracket. Condition (4) is known as the compatibility condition between P0

and P1.
If one of the Poisson tensor, say P0, is invertible, and therefore its inverse is a symplectic

operator ω[ := P−10 , the bi–Hamiltonian manifold M turns out to be an ωN manifold (see [27]).
Indeed, the composed operator N := P1P

−1
0 , thanks to the compatibility condition between P0

and P1, is a Nijenhuis (or hereditary) operator compatible with the symplectic form ω, induced
by ω[ = P−10 .

Definition 2 A ωN manifold (M,ω,N) is a symplectic manifold endowed with an
endomorphism of the tangent bundle of M , N : TM 7→ TM which satisfies the following
conditions:

• its Nijenhuis torsion vanishes identically, i.e. ∀X,Y ∈ TM

[NX,NY ]−N([X,NY ] + [NX,Y ]) +N2[X,Y ]) = 0; (5)

• it is compatible with ω, i.e. the tensor P1 = N(ω[)−1 is again a Poisson tensor and is
compatible with P0 := (ω[)−1, according to Definition 1.

In short, the condition (5) can be rephrased by saying that the endomorphism N is a Nijenhuis
(or hereditary) operator. The adjoint linear map w.r.t. the natural pairing will be denoted by
NT : T ∗M 7→ T ∗M and will be defined by

< NTα,X >=< α,NX > .

The condition (5) on the operator N , introduced by Nijenhuis [28], has a relevant geometrical
meaning: it implies that the distributions of its eigenvectors are integrable according to the
Frobenius theorem. Consequently, under suitable completeness assumption to be introduced
below, one can select local coordinate charts, in which N takes a diagonal form. We suppose
that at each point x (or in a dense open subset) of M , the Nijenhuis tensor field N admits n
distinct eigenvalues λi(x) (i = 1. . . . , n) (maximally distinct). Since in a generic ωN manifold
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the eigenspaces of N are even–dimensional, belonging to the kernel of the skewsimmetric tensor
field P1 − λP0, from the above assumption it follows that N (and the adjoint tensor NT ) can
be put in diagonal form. Then we have the following result, proved in [29]. Let (M,ω,N) be a
maximally distinct ωN manifold. In a suitable open neighborhood of each point, there exist a
Darboux chart (q,p) for ω that, simultaneously, diagonalize NT

NTdqi = λidqi NTdpi = λidpi . (6)

As, in such a Darboux chart the Nijenhuis tensor N takes a diagonal form, the coordinates
(q,p) are said to be Darboux–Nijenhuis (DN) coordinates, and are just separation coordinates
in the bi–Hamiltonian theory of SoV. Hereafter, with an abuse of notation, we will identify an
operator P with its matrix in a suitable basis.

Remark 1 If the eigenvalues λi(x)(i = 1, . . . , n) of N are functionally independent, they can
be chosen as n coordinates of a DN chart. In [30], has been proved that the sets of conjugate
momenta, denoted as µi(x)(i = 1, . . . , n), can be computed by quadratures. Such special DN
coordinates (λ,µ) are referred to as sDN coordinates [17].

Remark 2 The condition (5) is sufficient but not necessary for the integrability of the
distribution of the eigenvalues of a generic operator N . In fact, Haantjes proved that the
necessary and sufficient condition for such an integrability is the vanishing of the Haantjes
tensor of N [31].

Remark 3 It can be easily verified that, given a DN chart (q,p), the separated canonical
transformations

q̃i = fi(qi) , p̃i =
pi
f ′i

, (7)

with fi a generic invertible smooth function of a single coordinate qi, preserve the property (6),
i.e.,

NTdq̃i = λidq̃i NTdp̃i = λidp̃i . (8)

From a geometrical point of view, we can say that coordinates (q̃, p̃) and (q,p), related by
transformations (7) are DN coordinates adapted to the same coordinate web [32].

3. Generalized Lenard chains
After having introduced the geometrical structures which define separation coordinates in the
bi–Hamiltonian theory of SoV, let us characterize the class of Hamiltonian functions which are
separable in DN coordinates. For the sake of concreteness, we will do this in the case of a 4–
dimensional manifold, extending the theorem proved in [1] in the special case of sDN coordinates
to generic DN coordinates.

Theorem 3 Let (M,ω,N) be a 4–dimensional maximally distinct ωN manifold and
(q1, q2, p1, p2) a DN local chart. Let H be a smooth function in M . The DN coordinates
(q1, q2, p1, p2) are separated variables for H if and only if there exist two smooth functions f
and g such that the one form

α = f dH + g NTdH (9)

is an exact one form, i.e., α is the differential of a function, say H2

α = dH2. (10)

In this case, the function H2 is an integral of motion in involution with H1 := H and the same
DN coordinates are separated variables for H2 as well.
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Proof. In the above–mentioned chart, N takes the diagonal form

N = λ1(
∂

∂q1
⊗ dq1 +

∂

∂p1
⊗ dp1) + λ2(

∂

∂q2
⊗ dq2 +

∂

∂p2
⊗ dp2) , (11)

being λ1 and λ2 the two double eigenvalues. Let us suppose that eqs. (9) and (10) are fulfilled.
Then, it follows that

∂H2
∂qk

= f ∂H1
∂qk

+ g λk
∂H1
∂qk

,

∂H2
∂pk

= f ∂H1
∂pk

+ g λk
∂H1
∂qk

.
k = 1, 2 (12)

Therefore

{H1, H2}|k =
∂H1

∂qk

∂H2

∂pk
− ∂H1

∂pk

∂H2

∂qk

(12)
= 0 , (13)

i.e. H1 and H2 are in separable involution according to Benenti’s theorem (see formulas (2)),
w.r.t. a DN chart. Consequently, H2 is an integral of motion for XH .

Viceversa, let us suppose that (q1, q2, p1, p2) are separated variables for H1 and H2, i.e.
conditions (13) hold, and let us consider the equation

fdH1 + gNTdH1 = dH2 (14)

in the unknown functions f and g. In the local chart (q1, q2, p1, p2), eq. (14) takes the form

f + gλ1 =

∂H2
∂q1
∂H1
∂q1

, f + gλ2 =

∂H2
∂q2
∂H1
∂q2

, (15)

f + gλ1 =

∂H2
∂p1
∂H1
∂p1

, f + gλ2 =

∂H2
∂p2
∂H1
∂p2

. (16)

We observe that the first equations (15) and (16) coincide in virtue of the conditions (13), so
do the second equations (15) and (16). Thus the above system of four equations reduces to two
equations that admit the unique solution

f =
1

λ2 − λ1
(λ2

∂H2
∂q1
∂H1
∂q1

− λ1
∂H2
∂q2
∂H1
∂q2

), (17)

g =
1

λ2 − λ1
(−

∂H2
∂q1
∂H1
∂q1

+

∂H2
∂q2
∂H1
∂q2

). (18)

Then we will say that Hamiltonian functions related by eqs. (9) and (10) belong to a GL
chain generated by (ω,N,H) since, for (f = 0, g = 1), a GL chain reduces to a classical Lenard
chain.

Remark 4 We note that, if f = −(λ1 + λ2), g = 1, we get a Quasi–Bi–Hamiltonian (QBH)
chain of Pfaffian type generated by the function H [16, 33, 34, 35].

Remark 5 Let us observe that, in the proof of theorem 3, only the diagonal form of N has been
exploited, without any reference to its null torsion. This implies that theorem 3 holds under the
weaker assumption on N that its Haantjes tensor be null (see Rem. 2). Some results along this
novel line of research are in preparation.

Theorem 3 suggests the following procedure in order to classify Hamiltonian systems separable
in DN coordinates:
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(i) choose a Darboux chart (q1, q2, p1, p2) in a 4–dimensional symplectic manifold M ;

(ii) construct a ωN structure which has (q1, q2, p1, p2) as DN coordinates;

(iii) search for Hamiltonian function H and for functions f and g such that make the one form
(9) locally exact.

This procedure can be considered as an inverse problem, with respect to the direct approach
that starts from a given Hamiltonian and aims to find separation coordinates.

Let us observe that the above method provides the integral of motion H2 together with a set
of separated variables both for H and H2.

4. Bi–Hamiltonian geometry in T ∗E2: construction of GL chains
In [1], we have applied the procedure previously discussed, to the study of the bi–Hamiltonian
properties of systems defined in the cotangent bundle of the Euclidean plane, M = T ∗E2

Precisely, we have studied mechanical Hamiltonian functions

H = kinetic energy + potential energy

and we have recovered the most general form of the potential in the Euclidean plane, which
makes H separable in cartesian, polar and parabolic coordinates, considered as sDN coordinates
of the (ω,N) structure given by the standard symplectic form and by the linear Nijenhuis tensor
(11). Here, we recall the cartesian case for the sake of clarity, and complete the analysis of [1]
adding the case of elliptic coordinates.

Classical separation of variables in cartesian and elliptic coordinates
Let us consider the natural Hamiltonian function

H =
1

2

(
p2x + p2y

)
+ V (x, y), (19)

(x, y, px, py) being cartesian coordinates and conjugate momenta. According to the requirement
(11), we choose the linear Nijenhuis tensor Ncar : T (T ∗E2)→ T (T ∗E2)

Ncar = diag(x, y, x, y).

The one–form (9) reads

α = f (x, y, px, py) dH + g (x, y, px, py)N
TdH, (20)

and the closure condition dα = 0 provides a system of nonlinear PDEs for f , g and V reported
in formula (A1) of the Appendix of [1]. From such a system, we have deduced the differential
consequence:

Vxy = 0 , (21)

therefore recovering the known result that

V (x, y) = V1(x) + V2(y) (22)

is the most general potential that makes the Hamiltonian function (19) separable in cartesian
coordinates. Furthermore, observing that the functions

f =
x

x− y
, g = − 1

x− y
x 6= y ,
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fulfills the above mentioned system (A1), we get a GL chain generated by (ω,N,H). The second
integral of motion is given by a primitive function of the 1–form (20) which is just the energy
associated with the coordinate y

H2 =
p2y
2

+ V2(y). (23)

Let us introduce elliptic coordinates (ξ, η) in the plane

x =
ξη

4c
, y = ± 1

4c

√
(ξ2 − 4c2)(4c2 − η2), ξ ≥ 0 η ∈ R ,

where (±c, 0) are the foci of the confocal ellipses and hyperbolas given by ξ = const, η = const,
respectively. In such coordinates, the generic Hamiltonian function (19) reads

H = 2
(ξ2 − 4c2)p2ξ + (4c2 − η2)p2η

ξ2 − η2
+ V (ξ, η) , (24)

being (pξ, pη) conjugate momenta to (ξ, η). In order to get a QBH chain, thanks to the Rem. 3,
we can choose the quadratic Nijenhuis tensor

Nell = diag(ξ2, η2, ξ2, η2), (25)

with
α = f (ξ, η, pξ, pη) dH + g (ξ, η, pξ, pη)N

T
ell dH. (26)

The closure condition for α provides the system (40) of the Appendix. By combining such Eqs.
we get the consequence

Vξη + 2
ξVη − ηVξ
ξ2 − η2

= 0. (27)

The general solution of (27) is

V (ξ, η) =
V1(ξ) + V2(η)

ξ2 − η2
ξ 6= η (28)

which is the most general potential on E2 that makes (24) separable in elliptic coordinates.
Moreover, we deduce a particular solution of the system (40)

f = −(ξ2 + η2) , g = 1 , (29)

which enables us to construct, by means of the same procedure as in the cartesian case, the
following GL chain related to the elliptic coordinates

H1 :=
2

ξ2 − η2

(
(ξ2 − 4c2)p2ξ + (4c2 − η2)p2η + V1(ξ) + V2(η)

)
(30)

H2 :=
2

ξ2 − η2

(
η2(4c2 − ξ2)p2ξ + ξ2(η2 − 4c2)p2η − η2V1(ξ) + ξ2V2(η)

)
(31)

Remark 6 Let us note that, thanks to the choice (25), the above GL chain for elliptic
coordinates is indeed an example of the QBH chain defined in Rem. 4. In contrast, if one
choose a Nijenhuis tensor linear in the elliptic coordinates, one can verify that a genuine GL
chain generated by such a Nijenhuis tensor and H exists, but a QBH chain does not exist.

Remark 7 Choosing V1(ξ) = (b1 + b2)ξ and V2(η) = (b1 − b2)η in (28), one recovers the
classical Euler problem for the potential of two Coulomb centers, fixed at the foci. Thus, also
such a problem admits a QBH formulation in a (ω,N) manifold [36].
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5. Multi–separation of variables and superintegrable systems
In this Section, we use the bi–Hamiltonian structures constructed in the previous discussion
to construct potentials admitting more than a system of separation coordinates. In fact, it
can achieve that a Hamiltonian function belongs to GL chains generated by different and
incompatible bi–Hamiltonian structures. In this case, we get a Hamiltonian system separable
in different coordinates system or a multi–separable system together with additional integrals of
motion that, if they are independent, assures superintegrability of the model. Thus, we recover
in a natural way one of the Smorodinsky–Winternitz potentials in the plane, first discovered
in a quantum–mechanical context in [37], [38] and studied again in [39] and [40] from a group
theoretical point of view. These are the only potentials that are multi–separable in terms of
orthogonal coordinates in E2.

5.1. Cartesian and Elliptic coordinates
Let us search for the most general potential V (x, y) that admits SoV both in cartesian and in
elliptic coordinates. To this end, let us write down every equation in cartesian coordinates. Eq.
(27) is equivalent to

xy(Vxx − Vyy)− (x2 − y2 − c2)Vxy + 3yVx − 3xVy = 0. (32)

Thus, the potential has to satisfy the system of the two PDEs (21) and (32). By substituting
the solution (19) of the eq. (21) into eq. (32) we get the separated equations

V ′′1 +
3

x
V ′1 = V ′′2 +

3

y
V ′2 = 4a, (33)

where a is an arbitrary constant. Their general solution is

V1(x) =
1

2
ax2 +

c1
x2
, (34)

V2(y) =
1

2
ay2 +

c2
y2
. (35)

Thus, the general solution of the system (21) and (32) is

V (x, y) =
1

2
a(x2 + y2) +

c1
x2

+
c2
y2
, (36)

which is nothing but the SWI potential [38], sum of an isotropic elastic potential and an
anisotropic Rosochatius potential. The Hamiltonian system with the SWI potential inherits
the integral of motion (23) from SoV in cartesian coordinates

H
(car)=
2

p2y
2

+
a

2
y2 +

c2
y2
, (37)

together with the integral (31) from SoV in elliptic coordinates. The latter integral written
down in cartesian coordinates, reads

H
(ell)
2 = −2

(
c2p2x + (xpy − ypx)2 + ac2x2 + 2c1

y2 + c2

x2
+ 2c2

(
x

y

)2)
. (38)

A simple check shows that the Hamiltonian SWI, H
(car)
2 and H

(ell)
2 are independent.

Consequently, the potential (36) is maximally superintegrable. Finally, we can state that
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the SWI Hamiltonian function generates two GL chains, starting from the two incompatible
structures (ω,Ncar) and (ω,Nell), with the operatorNell (25) represented in cartesian coordinates
by the simple quadratic matrix

Nell ≡ 4


x2 xy 0 0
xy y2 + c2 0 0
0 xpy − ypx x2 xy

−(xpy − ypx) 0 xy y2 + c2

 . (39)

Indeed, it can be checked that the two Poisson tensors fields

Pcar := Ncar(ω
[)−1 , Pell := Nell(ω

[)−1

have non vanishing Schouten brackets, i.e.,

[Pcar, Pell] 6= 0 .

6. Future perspectives
In this work, we have illustrated the general bi–Hamiltonian setting for treating the geometry of
both integrable and superintegrable systems on the relevant physical example of the SWI system.
The present approach for the sake of concreteness has been formulated in the Euclidean plane.
However, there is no theoretical restriction in extending it to higher–dimensional cases. Also,
it seems interesting to include in the present analysis integrable and superintegrable systems
defined in curved spaces. It would be very interesting to derive a quantum formulation of the
present theory. Furthermore, its generalization to recursion operators with vanishing Haantjes
tensor is under investigation.

Appendix
We report the explicit expressions of the systems of differential equations quoted in Section 4.

4
(
η2 − 4 c2

) (
fpξ + gpξη

2
)

pη + 4
(
ξ2 − 4 c2

) (
fpη + gpηξ

2
)

pξ = 0, (40)

4
(
η2 − 4 c2

)(
ξ
(
fpη + gpηξ

2
)

(p2ξ − pη
2)−

(
ξ2 − η2

) (
gξη

2 + 2 gξ + fξ
)

pη

)
+

−
(
ξ2 − η2

)2 (
fpη + gpηξ

2
)
Vξ = 0 ,

4
(
ξ2 − 4 c2

) (
η
(
fpξ + gpξη

2
) (

pη
2 − pξ

2
)

+
(
ξ2 − η2

) (
gηξ

2 + 2 g η + fη
)
pξ

)
+

−
(
ξ2 − η2

)2 (
fpξ + gpξη

2
)
Vη = 0 ,

4 ξ
(
η2 − 4 c2

) (
fpξ + gpξξ

2
) (
pξ

2 − pη2
)

+ 4
(
ξ2 − 4 c2

) (
ξ2 − η2

) (
gξξ

2 + 2 gξ + fξ
)
pξ +

−
(
ξ2 − η2

)2 (
fpξ + gpξξ

2
)
Vξ = 0 ,

4 η
(
ξ2 − 4 c2

) (
fpη + gpηη

2
)

(pη
2 − p2ξ)− 4

(
η2 − 4 c2

) (
ξ − η2

) (
gηη

2 + 2 gη + fη
)

pη +

−
(
ξ2 − η2

)2 (
fpη + gpηη

2
)
Vη = 0 ,

4

(
2 ξ η

(
8 c2 − η2 − ξ2

)
g + ξ

(
4 c2 − η2

) (
fη + ξ2gη

)
+ η

(
4 c2 − ξ2

) (
fξ + η2gξ

)) (
pη

2 − pξ2
)

+

−
(
ξ2 − η2

)2 (
fη + ξ2gη

)
(Vξ − Vη) + g

(
ξ2 − η2

)3
Vη,ξ = 0 .
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Università degli Studi) pp 1–27
[22] Sklyanin E K 1995 Prog. Theor. Phys. Suppl. 118 35–60
[23] Magri F 1980 Lect. Notes Phys vol 120, ed M Boiti et al (Berlin: Springer–Verlag) pp 233–63
[24] Praught J and Smirnov R G 2005 SIGMA 1 005
[25] Vaisman I 1994 Lectures on the geometry of Poisson Manifolds (Progress in Mathematics vol 118) (Basel:

Birkhauser Verlag)
[26] Magri F 1978 J. Math. Phys. 19 1156–62
[27] Magri F and Morosi C 1984 Characterization of Integrable Systems through the Theory of Poisson–Nijenhuis

Manifolds (Quaderno S vol 19) (Milan: Università degli Studi)
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