会议论文详细信息
3rd International Workshop on Neural-Symbolic Learning and Reasoning
Extracting Propositional Rules from Feed-forward Neural Networks — A New Decompositional Approach
Sebastian Bader ; Steffen Hölldobler ; Valentin Mayer-Eichberger
Others  :  http://CEUR-WS.org/Vol-230/04-bader.pdf
PID  :  12510
来源: CEUR
PDF
【 摘 要 】

In this paper, we present a new decompositional approach for the extraction of propositional rules from feed-forward neural networks of binary threshold units. After decomposing the network into single units, we show how to extract rules describing a unit's behavior. This is done using a suitable search tree which allows the pruning of the search space. Furthermore, we present some experimental results, showing a good average runtime behavior of the approach.

【 预 览 】
附件列表
Files Size Format View
Extracting Propositional Rules from Feed-forward Neural Networks — A New Decompositional Approach 114KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:17次