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Abstract

In this paper, we present a new decomposi-
tional approach for the extraction of propositional
rules from feed-forward neural networks of binary
threshold units. After decomposing the network
into single units, we show how to extract rules de-
scribing a unit’s behavior. This is done using a suit-
able search tree which allows the pruning of the
search space. Furthermore, we present some ex-
perimental results, showing a good average runtime
behavior of the approach.

Figure 1: A simple 3 layer feed-forward connectionist sys-
1 INTRODUCTION AND MOTIVATION tem. Depicted are the thresholds of the nodes (inside the
As the knowledge stored in a neural network is hidden in itscircles) and the weights of the connections. The rectangular
weight, humans have no direct access to it. The goal of rul@odes @ andB) serve as input units.
extraction is to obtain a human readable description of the
output units behavior with respect to the input units. Thisis  Thjs paper is organized as follows: After reviewing some
usually done using if-then rules describing under which conyeliminary notions in Section 2, we present our approach in
ditions the output units will be active. Throughout this paper,section 3. This is followed by a presentation of some exper-
we will use networks of bipolar binary threshold units andnental results in Section 4. Finally we draw some conclu-

show how to extract propositional if-then rules. sions and discuss further work in Section 5.
Rule extraction attempts can be divided into pedagogical

and decompositional approaches. The first conceives the net PRELIMINARIES

work as a black box, while the latter decomposes the network, i o ] ]
constructs intermediate rules and recomposes those. Forl@ this section we will briefly introduce some required nota-
general introduction into the field we refer ffdickle et al,  tions from artificial neural networks and propositional rules
1999. and programs. For a more detailed introduction we refer to

Bish 1 : Roj 1 LI 1 ively.
Example 1. Figure 1 and 2 show a simple network and the[ ishop, 1995; Rojas, 199@nd[Lioyd, 1984 respectively

results of a naive pedagogical extraction. All possible inputs2.1  Artificial Neural Networks

are presented to the network and the network is evaluat_eqe\ connectionist system (also called artificial neural network)

Sis a directed graph of simple computational units (see Fig-
ure 1). Every unit has an activation value which is prop-
Obviously, the naive pedagogical approach presented iagated along its weighted output connections to other units.
Example 1 has an exponential complexity, as there are eXsome distinguished units serve as input units, whose activa-
ponentially many different inputs, even for a single unit. Intion will be set from outside. All other units compute their
this paper, we will present new algorithms which allow for anactivation based on the activation of their predecessor units
efficient extraction. Even though, the problem itself is worstand the weights of the connection. In our case, we will deal
case exponential, our algorithms show a good average-caséth so called bipolar binary threshold units only, i.e. units
behavior. The approach presented here is closely related tehose activation is either1 or —1. A unit will be active
the work by Krishnan et dlKrishnanet al, 1999. But we  (+1) if its current input exceeds its threshold, and inactive
use a modified search tree, that can be constructed as neetherwise. Some of the units serve as output units. In Fig-
arises. Furthermore, we use a different set of pruning rules. ure 1, those are marked with little outgoing arrows &nd

precondition matches the current input.
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Figure 2: A naive pedagogical extraction of the network
shown in Figure 1. The table shows all possible inputs to-
gether with the corresponding outputs. The logic program
corresponds exactly to the 1's of the output patterns.

H). Throughout this paper, we will use, s to refer to the
weight of the connection from unit to unit B and assume
the weight to bé, if there is no such connection.

2.2 Propositional Rules and Logic Programs

In this paper we will show how to extract propositional if-then
rules from a neural network. These rules consist of a precon-

dition and a consequence. We will consider rules with atomic D D
consequences only, i.e. the consequence of a rule is a propo- ’ 3.0 " L ~30 H
sitional variable. Furthermore, we will restrict the precon- P 20 I 20

ditions to be conjunction of (possibly negated) propositional -
variables only. We will treat rules with empty preconditions _ ] . I _
as facts, i.e. the consequence is assumed to be true without Figure 4: From left to right?, Pg, Pj; andPy
any condition. As propositional logic programs are just sets

of those rules, we will use some notations customary in thg, .+ symhols. Theegative formP; is obtained by mul-
logic programming community, as exemplified in Example 2'tiplying all positive weights by-1 aﬁd negating the corre-

Example 2. Here is a simple propositional logic program, sponding inputs.
i.e. a set of propositional if-then rules, which will serve as a
running example. The intended meaning of the rules is give
on the right.

Example 5. Figure 3 depicts two simple perceptrons, which
Can be seen as parts of the network shown in Figure 1. The
positive and negative forms are depicted in Figure 4. Par

P,={G— AANB. %Gistrue, ifAisfalse andBistrue ~ We haveP; = P, as there are no negative weights.

G — ANB. %Gistrue, if Ais true andB is false In the sequel, we will often need to clamp some of the input
H.} % H is always true unitsU of a given perceptron to be active. This will be done
by input patterns The intended meaning is, that all units
occurring in an input patteri C U are considered to be
3 THE COOP APPROACH active while the states of the non-included input units is not
In this section, we will describe a new decompositional apixed. I.e. remaining units it \ I might be active or inactive.
proach for the extraction of propositional rules from feed-Therefore, an input pattern defines an upper and lower bound
forward neural networks of bipolar binary threshold units.on the possible input of the perceptron.
First, we will show how to decompose a feed-forward net-
work and introduce the required notations. In Section 3.2
we will show how to extract rules from a single perceptron.
Afterwards, those intermediate results are composed.

Definition 6 (Input pattern). LetP4 be a perceptron an&’
be the set of input units. A subsgetC U is called aninput
pattern The minimal and maximal input wrt. the input pattern
I are defined asyin(I) = >_,c; wia — X, s [Wual and

3.1 Decomposition imax(1) = D1 Wia + Y ,cp 1 [Wual, respectively.
As mentioned above_, we Will decqmpose the _net_wo_rk i”tOExampIe 7. For Pg from Figure 4 andl = {C, D} we have
simple perceptrons, i.e. a single unit together with its incom-; m(l) = 1.0420—3.0—50 = —5.0 and ipmax(]) =

ing connections. To simplify the notions below, we introduce; 'y 9.0 + 3.0 + 5.0 — 11.0.
the positiveandnegative forrmof a perceptron.

- L Next, we will introducecoalitionsandoppositionsas spe-
Definition 3 (Perceptron). A network consisting of a set of bp P

. . . . cial types of input patterns. While coalitions can be seen as
input units connected to a single output uditis called & .,nqitions to make a perceptron active, opposition prevent a
perceptror(denoted? ). perceptron from getting active. If some input patterns is a
Definition 4 (Positive and negative form). The positive  coalition then the perceptron will be active, independent of
form P of a given perceptrofP 4 is obtained by multiplying  the state of all non-clamped input units. If it is an opposition,

all negative weights by-1 and negating the corresponding the perceptron will always by inactive.



Definition 8 (Coalition). Let P4 be a perceptron with
thresholdé, I be some input pattern foP4 and i, (1) be
the corresponding minimal input! is called acoalition, if
imin(I) > 6. A coalitionI is called minimal, if none of its | 1 Fix an order~ on the input units such that: if
subsetd’ C I is a coalition. ICUBA > wea ther:jB (> C. _— )
. " ; 2 Create a root node (representing the empty pattern
51?22#&?39?](t())epggrsr:goirr?p'utL E;thélrnb%Pi Z%C?j:z?) vt\)/gh 3 Add a child labeledX for each input symbak (sorted

; : . : I left to right descending wrt-).
the corresponding maximal inpulf. is called anopposition .
if imax(I) < 6. An opposition/ is calledminimal, if none of 4 foreachnew child labeled” do

Input: A positive perceptro® .
Output: A coalition search tree suitable for Alg. 2.

; / ; i 5 add a new sub-child for every symh@lwith

its subsetl’ C [ is an oppos!tlon. _ L Y » Z (descending sorted wit.),

Example 10. For P/; from Figure 4, we find = {C, D, F'} i _ _

to be a coalition, asi,i,(I) = 1.0 + 2.0 + 5.0 — 3.0 = Algorithm 1: Construction of the coalition search tree.

5.0 > 4.0. For P, we findJ = {F} to be an opposition, as

tmax(J) =1.04+2.0+30-50=10 <4.0. weights. This can be done by left-depth-first search using

The set of coalitions_and the set of oppositions can be U_S(_?ﬂhe tree just constructed. The following two rules are used to
to describe the behavior of a perceptron. Furthermore, it igryne the tree and hence the search space:

sufficient to consider the set of minimal coalitions and mini- o ] ]
mal oppositions respectively, which are uniquely determined. 1. If the minimalinput of & node is above threshold, cut all
Those are the results of the extraction algorithm presented in ~ children.

the next section. 2. If the minimal inputs of a node and all its descendants

3.2 Extracting Coalitions and Oppositions are below the threshold, cut all right siblings.

Here, we will show how to construct the set of minimal coali- RUle 1 reflects Observation 3 from above, because child

tions for a given perceptron. To keep notions and algorithmﬁOdes represegt supdersets offt_he Cﬁ_rlzjespo_nding inlpl.ﬂ pattern.
simple, we will first consider positive perceptrons only. At'T & certa||r|1 r)oh ehand n(.)bnl.e orfts ¢ r: ren IS a ‘|39a Ition, V\Ille
the end of the section we will show how to extract the set of¢@n cut all right-hand siblings, as their minimal inputs wi

minimal oppositions from a negative perceptron, and further—be even smaller. This follows from the order of the symbols

more, how to apply the algorithms to arbitrary perceptrons.used while constructing the tree. The complete extraction of

Before presenting the algorithms, we will try to convey somethe smallest set of minimal coalitions is given as Algorithm 2.

underlying intuitions. For positive perceptrons with inputs
from {—1,+1} only, we observe the following: Input: A positive perceptroP | with thresholdd 4.
1. The empty input pattern (no unit needs to be active) genr  Output: The set of minimal coalitions.

erates the smallest m|n|rT1aI Input. . 1 Construct the search tree B using Algorithm 1.
2. The full input pattern (all inputs are active) generates the » Make the root node the current node.

biggest minimal input. 3 while there is a current noddo
3. If an input pattern is a coalition, all supersets are coali{ 4 Computeir,, for the current node.
tions as well. 5 if imin > 04 then N
Starting from the empty input pattern (observation 1), in- ° CMh%g(réme(g%ﬁzt nra?: la)s coalition and cut all
put symbols are added according to their weights, such that7 else 9 '
inputs with larger weights are added first. If all inputs are 8 if the current node has no chiltien
added, but no coalition is found, we can conclude that there o while the parent of the current node is the
is none (observation 2). As soon as a coalition is found, al direct predecessaio
supersets are known to be coalitions as well (observation E)lo Cut all unvisited siblings of the parent
and the algorithm can continue with adding the next-smaller L ‘
: . ; 11 Use parent as current node.
input instead. Algorithm 1 constructs a search tree used tp

guide the extraction. Each node of the tree represents the in-

L 12 Make the next unvisited node (left-depth-first) the
put pattern containing all symbols on the path to the root. current node.

Example 11. For the perceptrori'?ér shown in Figure 3, we |3 if there is no unvisited nodéen stop.
havewcg = 1.0,wpg = 2.0, wgg = 3.0 andwrg = 5.0,
therefore, we determine the ordér> E = D > C. Apply-
ing Algorithm 1, we obtain the search tree shown in Figure 5
on the left. ForP};, we havewp = 3.0 andwpg = 2.0,
therefore, we determine the ordér ~ F and obtain the tree
shown in Figure 5 on the right. Example 12. For the perceptron®;, andP;; shown in Fig-

As mentioned above, while looking for a coalition we will ure 4, Algorithm 2 return€¢ = {{E, F'},{C, D, F'}} and
generate input patterns by adding symbols according to thet®y = {{D}, {F'}}.

14 Return the set of coalitions corresponding to the
marked nodes.
Algorithm 2: Constructing minimal coalitions.




] Unit \ Minimal Coalitions \ Minimal Oppositions

C | ({AL{B}} {{A, B}}

D | {{4,B}} {A},{B}}
E {{A, B}} {4}, {B}}
F {0} 0

G {{E,F},{C,D,F}} | notneeded
H {{D}, {F}} not needed

® (a) Search tree faP

Table 1: Minimal coalitions and oppositions for the network
from Figure 1.

—5
} D} {1F} original perceptron as well as for the positive and negative

form. This allows us to apply the algorithms to arbitrary per-

® ceptrond. Table 1 shows all intermediate extraction results.
b) Search tree .. .
§02 Py 3.3 Composition of the Intermediate Results

In this section, we will show how to compose the intermediate

. . resul in ription of th nit’ havior
Figure 5: The search trees (a) for the extraction of the per—esu ts to obtain a description of the output unit's behavio

- s wrt. the input units.
ceptronsz (with f = 4 and " - £ = D = C); and (b) The intended meaning of a set of coalitions like =

for H (with 0 = —2 andD = F). (Minimal) coalitions E.F) {C.D.F\\is. that "E and F”. or "C.. D and F”
are marked with a gray background (and a thick border) an Eloﬁld %éaétivé in}zrd,er to make neurGractive, this can be
_unV|S|ted nodes are _shaded. Every node corresponds to ﬂPSpresented as the propositional form{(l& A )V (C' A D A
Input patt?.]rf' g?miwmt%va" Sy r_nbolls onl_tt_he pa%_hhto the tr)OOt’F)). We will refer to the propositional formula obtained from
as exemplitied for the two minimal coalitions. 1Ne NUMDErS, ¢oy o coalition€r aspf(Cr). If there is no coalition for a
denote the corresponding minimal input. The triangular “nesgiven perceptrofPy, i.e.Cy — 0, we can conclude that there
show the path taken by Algorithm 2, is no input such thaf” will be active, hencef(Cr) = false.

In contrast, foCr = {0}, we can conclude thdt will always

Even though the worst case complexity is exponehttae  be active, hencef(Cr) = true. Analogously, the intended
algorithm performs reasonably well, as demonstrated in Sedheaning of a set of oppositions likep = {{A}, {B}} is,
tion 4. This follows from the effectiveness of the pruning that whenever is active orB is inactive, the neuro will
rules, and as a consequence, from the fact that the search trl@@ inactive. This can be represented 4sv 3). Again, we
does not need to be computed completely. will refer to the corresponding formula ag(Or).

While using+1 and—1 as activation values and the posi- Algorithm 3 takes a feed-forward network and one output
tive form for the extraction of coalitions, we find that the ex- Unit A and returns a propositional formula describidig be-
traction of opposition is “dual” while working on the negative havior with respect to the network’s input units. It will create

form of the perceptron. Therefore, we will list the differencesand manipulate a propositional formua which finally can
only: be rewritten as a logic program.

e For oppositions negative perceptrons are used as inputs

. - Input: A network N and an output unit.

e In Algorithm 1, the order must be reversed, i.aevif 4 < Output: A formula describingd’s behavior.
wea thenB = C. .

. . . . . 1 Initialize F asF = pf(Ca).

* In Algorithm 2, instead of computing the minimal in- | , \yhjle there occur symbols ifF referring to non-input
put, we would compute the maximal input and check|  nits of N do

whether itis below the threshold. 3 | Pick one occurrence of a (possibly negated)
Example 13. Applying the modified algorithm to the percep- non-input symbol3. B
tron Pp, (i.e. unit D from Figure 1 with its incoming connec- | 4 | if B is negatedhen ReplaceB with pf(Op) else
tions) yieldsOp = {{4}, {B}}. ReplaceB with pf(Cp).

We used the positive form of a perceptron to extract coalit 5 Returnz.
tions and the negative form to extract oppositions. For the Algorithm 3: Extracting one unit of a given network
sequel we will understand a negated input symbol occurring
in some input pattern to clamp the corresponding input unit
as inactive. Note that thus an input pattern can be used for the 2As mentioned above, the positive and negative forms were in-
- troduced to keep notions and algorithms simple. They will actually
1Assume a perceptron withequal weights and with a threshold never be constructed in a real implementation. Instead, the algo-
of 0. Then there aré“f;ﬂ) coalitions. rithms could be modified by adding case distinctions.




Example 14. Applying Algorithm 3 to the network from Fig-  *** [ s5a — 10
ure 1 we obtaif: 00000

G=(EAF)V(CADAF)
= ((AAB) Atrue) V ((AV B) A (A A B) Atrue)
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H=(DVF) 2 o 2 koo
= ((AV B) V true)
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Figure 6: The plot on the left shows the total number of nodes
[ = true] in the tree and the average number of visited nodes wrt. the

Note that the formula&’ = (AAB)V (AAB) andH = true number Qf_ input symbols. The plot_(_)n the right shows the
could also be represented as progrdm from Example 2. ratio of visited nodes and found coalitions.

The non-determinism introduced in line 3 of Algorithm 3 e network did not increase significantly after multiplying

is a don’t-care non-determinism, i.e. we are free to choos%hhe weights. In this case units behave like binary ones. i e
any symbol without changing the result. But an “informed gnis. y ' e
heuristic” could speed up the extraction. In Example 14 WesmaII activation values do not occur any more, only values

: L . . Close to—1 and+1. Therefore, we can treat those units as
applied the usual laws of propositional logic after applying, . : ' ; -
Algorithm 3. In fact, those rules can also be applied beforeblnary threshold units and apply our algorithms directly.

. . X : . ' As a second approach, we try to adapt the following idea
i.e. directly after replacing a symbol with the corresponding S o X
coalition or opposition. from [d’Avila Garcezet al., 2001. A unit is considered ac-

o ) ) tive (inactive), whenever its activation value is above (below)
Proposition 15. Algorithm 3 is sound and complete. some threshold i, (amax). FOr a givena,;,, we can com-

l.e. for a given feed-forward network and a given outputPute a necessary minimal inpiit;,. For a given perceptron
unit A, the algorithm always returns a correct formula de-With thresholdd, we could now apply our algorithm, by us-
scribing A’s behavior wrt. to the network’s input units. The N 6 — imin as threshold and instead of using and—1 as
proposition follows from the fact that the network contains noactivation vales, we Us€,i, andamax. This allows to apply

cycles and from the correctness of the laws of propositionaih€ algorithms described above. We believe, that soundness
logic. will be preserved, but whether this holds for completeness as

well will be investigated in the future.

4 DISCUSSION 4.3 Some Preliminary Experimental Results

In this section, we will briefly discuss some related work, theTq evaluate the average runtime behavior of the algorithm,
extension of the approach to non-binary units and report ofye generated random perceptrons for which we computed
some preliminary experimental results. the number of visited nodes wrt. the number of input sym-
41 Related Work bols. This, together with the total number of nodes in the
: elate or tree, is depicted in Figure 6 on the |&fThe plot shows that

As mentioned in the introduction, our approach is closely reonly a small fraction of nodes is visited. Nevertheless, the
lated to theCOMBOalgorithm introduced ifiKrishnanetal,  number of visited nodes seems to grow exponentially. This
199d. But, in contrast to that approach, the search tree can big not surprising as the number of minimal coalitions grows
built incrementally. Each level of theombination treeson-  exponentially as well.

structed for theCOMBO algorithm needs to be sorted wrt.  Furthermore, we computed the ratio of visited nodes and
the minimal input. This involves the construction, evaluationcoalitions found — again wrt. the number of input symbols.
and sorting of possibly exponentially many nodes of the treeThe results are shown in Figure 6 on the right. This test indi-

even though they might be cut of. cates, that the number of visited nodes wrt. found coalitions
) ) ) seems to increase for a larger number of input symbols. For
4.2 Extension to Non-Binary Units the variant “coop2”, this ratio seems to stabilize arodnide.

We are currently investigating the applicability of the COOP-the algorithm needs to visit 4 times as many nodes as it finds
approach to non-binary units. A first approach, which wascoalitions. In this variant we used some more techniques to
taken in the experiments described below, employes bipolamprove the pruning rules, which are beyond the scope of this
sigmoidal ¢anh) units instead of binary ones. Consequently, paper. E.g., we cached the minimal input values necessary be-
the network becomes trainable by standard learning metHore entering a node in the tree. If this input is not reached,
ods, like back-propagation. After some iterations, all weightghe subtree can be pruned. Furthermore, we tried to identify
were multiplied by2, yielding steeper activation functions. equivalent sub trees.

We stopped the training process whenever the error made by

3Note, that several replacements were doneinonelineandparen-__
theses were omitted if unnecessary. The last lines were obtained by “Instead of measuring the time, we used the number of nodes,
applying the usual laws of propositional logic. because we used a very preliminary implementation in Prolog only.



4.4 The Monks Problem complete, i.e. every rule extracted from the network is cor-

The monks problems as describedTinrunet al, 1991, are  'ect and all contained rules are extracted. Even though our

learning problems where robots are described by the followtunning example is a 3 layered feedforward network, the ap-
ing six attributes: proach is not limited to layered architectures, but rather to

cycle-free networks.
For the extraction algorithm of a single perceptron (Sec-

head shapés {round(a,), square(az), octagon(as)},

e body shapés {round (b,), square(bs), octagon(bs)}, tion 3.2) we will further investigate, whether ideas underly-
o is smilingis {yes(c1), no(c2)}, ing the “M-of-N" approach by Towel and Shavlifowell and
. Shavlik, 1993 can help to speed up the system. Furthermore,
e holdingis {sword(d), balloon(ds), flag (ds)}, we will try to develop some dedicated “informed heuristics”,
e colouris {red (ey), yellow(ez), green(es), blue(e4)}, as mentioned in Section 3.3, to guide the extraction on the
i level of whole networks. Another candidate for further im-
has t , . , : . X :
* has I?IS {ves(f1) no.(-fg)} provement is the caching of intermediate results while com-
The following three classifications are to be learned: posing the coalitions and oppositions.
1. head shape body shaper thecolouris red First experiments, presented in Section 4, indicate that

our approach shows a good average-complexity, but a de-
) tailed analysis needs to be done in the future. Furthermore,
3. colour = greenand holding = sword or thecolour # e would like to evaluate our algorithm and compare it to
blueandbody shape# octagon other approaches using benchmark problems, like the Monks-
We used bipolar sigmoidal networks with 17 input units (la- problem or problems from molecular biology as described in
beleda,, . .., f) a single output unit (labeled) and either  [d’Avila Garcezet al, 2001.
1 (problem 1) or 2 (problem 2 and 3) hidden units. Further"Acknowledgments

more, we allowed shortcut connections from the input to thEXVe would like to thank two anonvmous referees for their
output layer. These architectures were chosen to minimiz tnony . ;
aluable comments on a preliminary version of this paper.

the size of the networks. We used a single train-test set, conx . .
taining all available examples. After training the networksiézggztr'gﬁ F%ii%gﬁoiu(%)gg)ed by the GK334 of the German

and multiplying the weights as described above, we applie

the COOP algorithm to extract the single perceptrons. After-

wards, the results were composed as described above and flﬁ-eferenceS

ther refined using the integrity constraints resulting from thelBishop, 199% Christopher M. BishopNeural Networks for

encoding (i.e.g; andes can not be active simultaneously). Pattern RecognitionOxford University Press, 1995.

Finally, we obtained the following logic programs: [d’Avila Garcezet al, 200] Artur S. d'Avila Garcez,
Py ={cl < a1 A b;. Krysia Broda, and Dov M. Gabbay. Symbolic knowl-

edge extraction from trained neural networks: A sound
approachArtificial Intelligence 125:155-207, 2001.

[Krishnanet al, 1999 R. Krishnan, G. Sivakumar, and
cl —er.} B B P. Bhattacharya. A search technique for rule extrac-
Po={cl—ai AbyANaGANdiAEt N fr tion from trained neural networks.Non-Linear Anal.
d—a Ay At AdyAe A f 20(3):273-280, 1999. - -
11 clauses more [Lloyd, 19_88 John W. Lloyd. Foundations of Logic Pro-
R ~ gramming Springer, Berlin, 1988.
d—ahbnandine [Rojas, 1996 Raul RojasNeural NetworksSpringer, 1996.

2. exactly two of the six attributes take their first value

cl +— ag A bs.
cl — a3 A bs.

che—aAbiAe NdiNer A fi} [Thrunetal, 1991 S. Thrunet al. The MONK's prob-
Py={cl < di Nes lems: A performance comparison of different learning al-
cl < b3 Aéy} gorithms. Technical Report CMU-CS-91-197, Carnegie

] ) o Mellon University, Computer Science Department, Pitts-
The programs describe the required classifications. E.g. purgh, PA, 1991.

programP, encodeshead shape body shapday /A by or [Tickle et al, 1999 Alan. B. Tickle, Robert Andrews

as A by Or ag A b3) or thecolouris red (e;). This shows, that : : . .
the COOP-approach is able to extract meaningful rules from a Mostefa G_ole.a, a_nd J_oachlm Diederich. T_he truth V_V'”
come to light: directions and challenges in extracting

trained neural network, even though this is just a preliminary the knowledge embedded within mined artificial neu-

experiment on some artificial domain, ral networks. IEEE Transactions on Neural Networks,
5 CONCLUSIONS 9(6).1057—106?, 1998.

. "y [Towell and Shavlik, 1998 Geoffrey G. Towell and Jude W.
In this paper, we presented a new decompositional approach gpajik. Extracting refined rules from knowledge-based

to extract propositional if-then rules from a feed-forward net- 4 ral networksMachine Learning13:71-101, 1993
work of binary threshold units. Our approach is sound and ' ' '



