
Extracting Propositional Rules from Feed-forward Neural Networks
— A New Decompositional Approach

Sebastian Baderand Steffen Hölldobler and Valentin Mayer-Eichberger
International Center for Computational Logic

Technische Universität Dresden, Germany

Abstract

In this paper, we present a new decomposi-
tional approach for the extraction of propositional
rules from feed-forward neural networks of binary
threshold units. After decomposing the network
into single units, we show how to extract rules de-
scribing a unit’s behavior. This is done using a suit-
able search tree which allows the pruning of the
search space. Furthermore, we present some ex-
perimental results, showing a good average runtime
behavior of the approach.

1 INTRODUCTION AND MOTIVATION
As the knowledge stored in a neural network is hidden in its
weight, humans have no direct access to it. The goal of rule
extraction is to obtain a human readable description of the
output units behavior with respect to the input units. This is
usually done using if-then rules describing under which con-
ditions the output units will be active. Throughout this paper,
we will use networks of bipolar binary threshold units and
show how to extract propositional if-then rules.

Rule extraction attempts can be divided into pedagogical
and decompositional approaches. The first conceives the net-
work as a black box, while the latter decomposes the network,
constructs intermediate rules and recomposes those. For a
general introduction into the field we refer to[Tickle et al.,
1998].

Example 1. Figure 1 and 2 show a simple network and the
results of a naive pedagogical extraction. All possible inputs
are presented to the network and the network is evaluated.
For each active output unit, a rule is constructed such that its
precondition matches the current input.

Obviously, the naive pedagogical approach presented in
Example 1 has an exponential complexity, as there are ex-
ponentially many different inputs, even for a single unit. In
this paper, we will present new algorithms which allow for an
efficient extraction. Even though, the problem itself is worst
case exponential, our algorithms show a good average-case
behavior. The approach presented here is closely related to
the work by Krishnan et al[Krishnanet al., 1999]. But we
use a modified search tree, that can be constructed as need
arises. Furthermore, we use a different set of pruning rules.

A

B

0

C

2

D

4

E

-4

F

G
4

H
-2

1.0

-2.0

5.0
2.0

1.0
1.0

-3.0

1.0

1.0

2.0

3.0
5.0

-3.0

2.0

Figure 1: A simple 3 layer feed-forward connectionist sys-
tem. Depicted are the thresholds of the nodes (inside the
circles) and the weights of the connections. The rectangular
nodes (A andB) serve as input units.

This paper is organized as follows: After reviewing some
preliminary notions in Section 2, we present our approach in
Section 3. This is followed by a presentation of some exper-
imental results in Section 4. Finally we draw some conclu-
sions and discuss further work in Section 5.

2 PRELIMINARIES
In this section we will briefly introduce some required nota-
tions from artificial neural networks and propositional rules
and programs. For a more detailed introduction we refer to
[Bishop, 1995; Rojas, 1996] and[Lloyd, 1988] respectively.

2.1 Artificial Neural Networks
A connectionist system (also called artificial neural network)
is a directed graph of simple computational units (see Fig-
ure 1). Every unit has an activation value which is prop-
agated along its weighted output connections to other units.
Some distinguished units serve as input units, whose activa-
tion will be set from outside. All other units compute their
activation based on the activation of their predecessor units
and the weights of the connection. In our case, we will deal
with so called bipolar binary threshold units only, i.e. units
whose activation is either+1 or −1. A unit will be active
(+1) if its current input exceeds its threshold, and inactive
otherwise. Some of the units serve as output units. In Fig-
ure 1, those are marked with little outgoing arrows (G and

A B G H
-1 -1 -1 +1
-1 +1 +1 +1
+1 -1 +1 +1
+1 +1 -1 +1

P1 ={ H ← Ā ∧ B̄.

G← Ā ∧B. H ← Ā ∧B.

G← A ∧ B̄. H ← A ∧ B̄.

H ← A ∧B.}

Figure 2: A naive pedagogical extraction of the network
shown in Figure 1. The table shows all possible inputs to-
gether with the corresponding outputs. The logic program
corresponds exactly to the 1’s of the output patterns.

H). Throughout this paper, we will usewAB to refer to the
weight of the connection from unitA to unit B and assume
the weight to be0, if there is no such connection.

2.2 Propositional Rules and Logic Programs
In this paper we will show how to extract propositional if-then
rules from a neural network. These rules consist of a precon-
dition and a consequence. We will consider rules with atomic
consequences only, i.e. the consequence of a rule is a propo-
sitional variable. Furthermore, we will restrict the precon-
ditions to be conjunction of (possibly negated) propositional
variables only. We will treat rules with empty preconditions
as facts, i.e. the consequence is assumed to be true without
any condition. As propositional logic programs are just sets
of those rules, we will use some notations customary in the
logic programming community, as exemplified in Example 2.

Example 2. Here is a simple propositional logic program,
i.e. a set of propositional if-then rules, which will serve as a
running example. The intended meaning of the rules is given
on the right.

P2 ={G← Ā ∧B. % G is true, ifA is false andB is true

G← A ∧ B̄. % G is true, ifA is true andB is false

H.} % H is always true

3 THE COOP APPROACH
In this section, we will describe a new decompositional ap-
proach for the extraction of propositional rules from feed-
forward neural networks of bipolar binary threshold units.
First, we will show how to decompose a feed-forward net-
work and introduce the required notations. In Section 3.2,
we will show how to extract rules from a single perceptron.
Afterwards, those intermediate results are composed.

3.1 Decomposition
As mentioned above, we will decompose the network into
simple perceptrons, i.e. a single unit together with its incom-
ing connections. To simplify the notions below, we introduce
thepositiveandnegative formof a perceptron.

Definition 3 (Perceptron). A network consisting of a set of
input units connected to a single output unitA is called a
perceptron(denotedPA).

Definition 4 (Positive and negative form). The positive
formP+

A of a given perceptronPA is obtained by multiplying
all negative weights by−1 and negating the corresponding

C

D

E

F

G
4

1.0

2.0

3.0

5.0

D

F

H
-2

-3.0

2.0

Figure 3: Two simple perceptronsPG andPH

C

D

E

F

G
4

1.0

2.0

3.0

5.0

C̄

D̄

Ē

F̄

G
4

-1.0

-2.0

-3.0

-5.0

D̄

F

H
-2

3.0

2.0

D

F̄

H
-2

-3.0

-2.0

Figure 4: From left to right:P+
G , P−

G , P+
H andP−

H

input symbols. Thenegative formP−
A is obtained by mul-

tiplying all positive weights by−1 and negating the corre-
sponding inputs.

Example 5. Figure 3 depicts two simple perceptrons, which
can be seen as parts of the network shown in Figure 1. The
positive and negative forms are depicted in Figure 4. ForPG

we haveP+
G = PG, as there are no negative weights.

In the sequel, we will often need to clamp some of the input
unitsU of a given perceptron to be active. This will be done
by input patterns. The intended meaning is, that all units
occurring in an input patternI ⊆ U are considered to be
active while the states of the non-included input units is not
fixed. I.e. remaining units inU \I might be active or inactive.
Therefore, an input pattern defines an upper and lower bound
on the possible input of the perceptron.

Definition 6 (Input pattern). LetPA be a perceptron andU
be the set of input units. A subsetI ⊆ U is called aninput
pattern. The minimal and maximal input wrt. the input pattern
I are defined asimin(I) =

∑
i∈I wiA −

∑
u∈U\I |wuA| and

imax(I) =
∑

i∈I wiA +
∑

u∈U\I |wuA|, respectively.

Example 7. For P+
G from Figure 4 andI = {C,D} we have

imin(I) = 1.0 + 2.0 − 3.0 − 5.0 = −5.0 and imax(I) =
1.0 + 2.0 + 3.0 + 5.0 = 11.0.

Next, we will introducecoalitionsandoppositionsas spe-
cial types of input patterns. While coalitions can be seen as
conditions to make a perceptron active, opposition prevent a
perceptron from getting active. If some input patterns is a
coalition then the perceptron will be active, independent of
the state of all non-clamped input units. If it is an opposition,
the perceptron will always by inactive.

Definition 8 (Coalition). Let PA be a perceptron with
thresholdθ, I be some input pattern forPA and imin(I) be
the corresponding minimal input.I is called acoalition, if
imin(I) ≥ θ. A coalitionI is calledminimal, if none of its
subsetsI ′ ⊂ I is a coalition.

Definition 9 (Opposition). Let PA be a perceptron with
thresholdθ, I be some input pattern forPA and imax(I) be
the corresponding maximal input.I is called anopposition,
if imax(I) < θ. An oppositionI is calledminimal, if none of
its subsetI ′ ⊂ I is an opposition.

Example 10. For P+
G from Figure 4, we findI = {C,D,F}

to be a coalition, asimin(I) = 1.0 + 2.0 + 5.0 − 3.0 =
5.0 > 4.0. For P−

G , we findJ = {F̄} to be an opposition, as
imax(J) = 1.0 + 2.0 + 3.0− 5.0 = 1.0 < 4.0.

The set of coalitions and the set of oppositions can be used
to describe the behavior of a perceptron. Furthermore, it is
sufficient to consider the set of minimal coalitions and mini-
mal oppositions respectively, which are uniquely determined.
Those are the results of the extraction algorithm presented in
the next section.

3.2 Extracting Coalitions and Oppositions
Here, we will show how to construct the set of minimal coali-
tions for a given perceptron. To keep notions and algorithms
simple, we will first consider positive perceptrons only. At
the end of the section we will show how to extract the set of
minimal oppositions from a negative perceptron, and further-
more, how to apply the algorithms to arbitrary perceptrons.
Before presenting the algorithms, we will try to convey some
underlying intuitions. For positive perceptrons with inputs
from {−1,+1} only, we observe the following:

1. The empty input pattern (no unit needs to be active) gen-
erates the smallest minimal input.

2. The full input pattern (all inputs are active) generates the
biggest minimal input.

3. If an input pattern is a coalition, all supersets are coali-
tions as well.

Starting from the empty input pattern (observation 1), in-
put symbols are added according to their weights, such that
inputs with larger weights are added first. If all inputs are
added, but no coalition is found, we can conclude that there
is none (observation 2). As soon as a coalition is found, all
supersets are known to be coalitions as well (observation 3)
and the algorithm can continue with adding the next-smaller
input instead. Algorithm 1 constructs a search tree used to
guide the extraction. Each node of the tree represents the in-
put pattern containing all symbols on the path to the root.

Example 11. For the perceptronP+
G shown in Figure 3, we

havewCG = 1.0, wDG = 2.0, wEG = 3.0 andwFG = 5.0,
therefore, we determine the orderF � E � D � C. Apply-
ing Algorithm 1, we obtain the search tree shown in Figure 5
on the left. ForP+

H , we havewD̄G = 3.0 andwFG = 2.0,
therefore, we determine the order̄D � F and obtain the tree
shown in Figure 5 on the right.

As mentioned above, while looking for a coalition we will
generate input patterns by adding symbols according to their

Input : A positive perceptronP+
A .

Output : A coalition search tree suitable for Alg. 2.

Fix an order� on the input units such that: if1

wBA ≥ wCA thenB � C.
Create a root node (representing the empty pattern).2

Add a child labeledX for each input symbolX (sorted3

left to right descending wrt.�).
foreachnew child labeledY do4

add a new sub-child for every symbolZ with5

Y � Z (descending sorted wrt.�).

Algorithm 1 : Construction of the coalition search tree.

weights. This can be done by left-depth-first search using
the tree just constructed. The following two rules are used to
prune the tree and hence the search space:

1. If the minimal input of a node is above threshold, cut all
children.

2. If the minimal inputs of a node and all its descendants
are below the threshold, cut all right siblings.

Rule 1 reflects Observation 3 from above, because child
nodes represent supersets of the corresponding input pattern.
If a certain node and none of its children is a coalition, we
can cut all right-hand siblings, as their minimal inputs will
be even smaller. This follows from the order of the symbols
used while constructing the tree. The complete extraction of
the smallest set of minimal coalitions is given as Algorithm 2.

Input : A positive perceptronP+
A with thresholdθA.

Output : The set of minimal coalitions.

Construct the search tree forP+
A using Algorithm 1.1

Make the root node the current node.2

while there is a current nodedo3

Computeimin for the current node.4

if imin ≥ θA then5

Mark the current node as coalition and cut all6

children (Pruning rule 1).
else7

if the current node has no childthen8

while the parent of the current node is the9

direct predecessordo
Cut all unvisited siblings of the parent.10

Use parent as current node.11

Make the next unvisited node (left-depth-first) the12

current node.
if there is no unvisited nodethen stop.13

Return the set of coalitions corresponding to the14

marked nodes.
Algorithm 2 : Constructing minimal coalitions.

Example 12. For the perceptronsP+
G andP+

H shown in Fig-
ure 4, Algorithm 2 returnsCG = {{E,F}, {C,D,F}} and
CH = {{D̄}, {F}}.

· -11

F
-1

E
5
{F,E}

D

C

C

D
3

C
5
{F,D,C}

C
0

E
-5

D
-1

C
1

C

D

C

C

· -11

F
-1

E
5
{F,E}

D

C

C

D
3

C
5
{F,D,C}

C
0

E
-5

D
-1

C
1

C

D

C

C

(a) Search tree forPG

· -5

D̄
1
{D̄}

F

F
-1
{F}

· -5

D̄
1
{D̄}

F

F
-1
{F}

(b) Search tree
for PH

Figure 5: The search trees (a) for the extraction of the per-
ceptronsG (with θG = 4 andF � E � D � C); and (b)
for H (with θH = −2 andD̄ � F). (Minimal) coalitions
are marked with a gray background (and a thick border) and
unvisited nodes are shaded. Every node corresponds to the
input pattern containing all symbols on the path to the root,
as exemplified for the two minimal coalitions. The numbers
denote the corresponding minimal input. The triangular lines
show the path taken by Algorithm 2,

Even though the worst case complexity is exponential1, the
algorithm performs reasonably well, as demonstrated in Sec-
tion 4. This follows from the effectiveness of the pruning
rules, and as a consequence, from the fact that the search tree
does not need to be computed completely.

While using+1 and−1 as activation values and the posi-
tive form for the extraction of coalitions, we find that the ex-
traction of opposition is “dual” while working on the negative
form of the perceptron. Therefore, we will list the differences
only:

• For oppositions negative perceptrons are used as inputs.

• In Algorithm 1, the order must be reversed, i.e. ifwBA ≤
wCA thenB � C.

• In Algorithm 2, instead of computing the minimal in-
put, we would compute the maximal input and check
whether it is below the threshold.

Example 13. Applying the modified algorithm to the percep-
tronPD (i.e. unitD from Figure 1 with its incoming connec-
tions) yieldsOD = {{A}, {B̄}}.

We used the positive form of a perceptron to extract coali-
tions and the negative form to extract oppositions. For the
sequel we will understand a negated input symbol occurring
in some input pattern to clamp the corresponding input unit
as inactive. Note that thus an input pattern can be used for the

1Assume a perceptron withn equal weights and with a threshold
of 0. Then there arè n

dn/2e

´
coalitions.

Unit Minimal Coalitions Minimal Oppositions

C {{A}, {B}} {{Ā, B̄}}
D {{Ā, B}} {{A}, {B̄}}
E {{A, B̄}} {{Ā}, {B}}
F {∅} ∅
G {{E,F}, {C,D,F}} not needed
H {{D̄}, {F}} not needed

Table 1: Minimal coalitions and oppositions for the network
from Figure 1.

original perceptron as well as for the positive and negative
form. This allows us to apply the algorithms to arbitrary per-
ceptrons2. Table 1 shows all intermediate extraction results.

3.3 Composition of the Intermediate Results
In this section, we will show how to compose the intermediate
results to obtain a description of the output unit’s behavior
wrt. the input units.

The intended meaning of a set of coalitions likeCG =
{{E,F}, {C,D,F}} is, that ”E andF ”, or ”C, D andF ”
should be active in order to make neuronG active, this can be
represented as the propositional formula((E∧F)∨(C∧D∧
F)). We will refer to the propositional formula obtained from
a set of coalitionsCF aspf(CF). If there is no coalition for a
given perceptronPF , i.e. CF = ∅, we can conclude that there
is no input such thatF will be active, hencepf(CF) = false.
In contrast, forCF = {∅}, we can conclude thatF will always
be active, hencepf(CF) = true. Analogously, the intended
meaning of a set of oppositions likeOD = {{A}, {B̄}} is,
that wheneverA is active orB is inactive, the neuronD will
be inactive. This can be represented as(A ∨ B̄). Again, we
will refer to the corresponding formula aspf(OF).

Algorithm 3 takes a feed-forward network and one output
unit A and returns a propositional formula describingA’s be-
havior with respect to the network’s input units. It will create
and manipulate a propositional formulaF , which finally can
be rewritten as a logic program.

Input : A networkN and an output unitA.
Output : A formula describingA’s behavior.

InitializeF asF = pf(CA).1

while there occur symbols inF referring to non-input2

units ofN do
Pick one occurrence of a (possibly negated)3

non-input symbolB.
if B is negatedthen ReplaceB̄ with pf(OB) else4

ReplaceB with pf(CB).
ReturnF .5

Algorithm 3 : Extracting one unit of a given network

2As mentioned above, the positive and negative forms were in-
troduced to keep notions and algorithms simple. They will actually
never be constructed in a real implementation. Instead, the algo-
rithms could be modified by adding case distinctions.

Example 14. Applying Algorithm 3 to the network from Fig-
ure 1 we obtain3:

G = (E ∧ F) ∨ (C ∧D ∧ F)

= ((A ∧ B̄) ∧ true) ∨ ((A ∨B) ∧ (Ā ∧B) ∧ true)[
= (A ∧ B̄) ∨ (Ā ∧B)

]
H = (D̄ ∨ F)

= ((A ∨ B̄) ∨ true)[
= true

]
Note that the formulaeG = (A∧B̄)∨(Ā∧B) andH = true
could also be represented as programP2 from Example 2.

The non-determinism introduced in line 3 of Algorithm 3
is a don’t-care non-determinism, i.e. we are free to choose
any symbol without changing the result. But an “informed
heuristic” could speed up the extraction. In Example 14 we
applied the usual laws of propositional logic after applying
Algorithm 3. In fact, those rules can also be applied before,
i.e. directly after replacing a symbol with the corresponding
coalition or opposition.

Proposition 15. Algorithm 3 is sound and complete.

I.e. for a given feed-forward network and a given output
unit A, the algorithm always returns a correct formula de-
scribingA’s behavior wrt. to the network’s input units. The
proposition follows from the fact that the network contains no
cycles and from the correctness of the laws of propositional
logic.

4 DISCUSSION
In this section, we will briefly discuss some related work, the
extension of the approach to non-binary units and report on
some preliminary experimental results.

4.1 Related Work
As mentioned in the introduction, our approach is closely re-
lated to theCOMBOalgorithm introduced in[Krishnanet al.,
1999]. But, in contrast to that approach, the search tree can be
built incrementally. Each level of thecombination treescon-
structed for theCOMBO algorithm needs to be sorted wrt.
the minimal input. This involves the construction, evaluation
and sorting of possibly exponentially many nodes of the tree,
even though they might be cut of.

4.2 Extension to Non-Binary Units
We are currently investigating the applicability of the COOP-
approach to non-binary units. A first approach, which was
taken in the experiments described below, employes bipolar
sigmoidal (tanh) units instead of binary ones. Consequently,
the network becomes trainable by standard learning meth-
ods, like back-propagation. After some iterations, all weights
were multiplied by2, yielding steeper activation functions.
We stopped the training process whenever the error made by

3Note, that several replacements were done in one line and paren-
theses were omitted if unnecessary. The last lines were obtained by
applying the usual laws of propositional logic.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 4 6 8 10 12 14 16 18 20

no

de
s

in
 th

e
tre

e

input symbols

total
visited

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4 6 8 10 12 14 16 18 20

vis

ite
d

/ #
 c

oa
liti

on
s

input symbols

coop
coop2

Figure 6: The plot on the left shows the total number of nodes
in the tree and the average number of visited nodes wrt. the
number of input symbols. The plot on the right shows the
ratio of visited nodes and found coalitions.

the network did not increase significantly after multiplying
the weights. In this case units behave like binary ones, i.e.
small activation values do not occur any more, only values
close to−1 and+1. Therefore, we can treat those units as
binary threshold units and apply our algorithms directly.

As a second approach, we try to adapt the following idea
from [d’Avila Garcezet al., 2001]. A unit is considered ac-
tive (inactive), whenever its activation value is above (below)
some thresholdamin (amax). For a givenamin, we can com-
pute a necessary minimal inputimin. For a given perceptron
with thresholdθ, we could now apply our algorithm, by us-
ing θ − imin as threshold and instead of using+1 and−1 as
activation vales, we useamin andamax. This allows to apply
the algorithms described above. We believe, that soundness
will be preserved, but whether this holds for completeness as
well will be investigated in the future.

4.3 Some Preliminary Experimental Results
To evaluate the average runtime behavior of the algorithm,
we generated random perceptrons for which we computed
the number of visited nodes wrt. the number of input sym-
bols. This, together with the total number of nodes in the
tree, is depicted in Figure 6 on the left.4 The plot shows that
only a small fraction of nodes is visited. Nevertheless, the
number of visited nodes seems to grow exponentially. This
is not surprising as the number of minimal coalitions grows
exponentially as well.

Furthermore, we computed the ratio of visited nodes and
coalitions found – again wrt. the number of input symbols.
The results are shown in Figure 6 on the right. This test indi-
cates, that the number of visited nodes wrt. found coalitions
seems to increase for a larger number of input symbols. For
the variant “coop2”, this ratio seems to stabilize around4, i.e.
the algorithm needs to visit 4 times as many nodes as it finds
coalitions. In this variant we used some more techniques to
improve the pruning rules, which are beyond the scope of this
paper. E.g., we cached the minimal input values necessary be-
fore entering a node in the tree. If this input is not reached,
the subtree can be pruned. Furthermore, we tried to identify
equivalent sub trees.

4Instead of measuring the time, we used the number of nodes,
because we used a very preliminary implementation in Prolog only.

4.4 The Monks Problem
The monks problems as described in[Thrunet al., 1991], are
learning problems where robots are described by the follow-
ing six attributes:

• head shapeis {round (a1), square(a2), octagon(a3)},
• body shapeis {round (b1), square(b2), octagon(b3)},
• is smilingis {yes(c1), no (c2)},
• holding is {sword(d1), balloon(d2), flag (d3)},
• colour is {red (e1), yellow(e2), green(e3), blue(e4)},
• has tieis {yes(f1), no (f2)}.

The following three classifications are to be learned:

1. head shape= body shapeor thecolour is red

2. exactly two of the six attributes take their first value

3. colour = greenand holding = sword, or thecolour 6=
blueandbody shape6= octagon

We used bipolar sigmoidal networks with 17 input units (la-
beleda1, . . . , f2) a single output unit (labeledcl) and either
1 (problem 1) or 2 (problem 2 and 3) hidden units. Further-
more, we allowed shortcut connections from the input to the
output layer. These architectures were chosen to minimize
the size of the networks. We used a single train-test set, con-
taining all available examples. After training the networks
and multiplying the weights as described above, we applied
the COOP algorithm to extract the single perceptrons. After-
wards, the results were composed as described above and fur-
ther refined using the integrity constraints resulting from the
encoding (i.e.,e1 ande2 can not be active simultaneously).
Finally, we obtained the following logic programs:

P1 ={cl← a1 ∧ b1.

cl← a2 ∧ b2.

cl← a3 ∧ b3.

cl← e1.}
P2 ={cl← a1 ∧ b1 ∧ c̄1 ∧ d̄1 ∧ ē1 ∧ f̄1

cl← a1 ∧ b̄1 ∧ c1 ∧ d̄1 ∧ ē1 ∧ f̄1

. . . 11 clauses more

cl← ā1 ∧ b̄1 ∧ c̄1 ∧ d1 ∧ ē1 ∧ f1

cl← ā1 ∧ b̄1 ∧ c̄1 ∧ d̄1 ∧ e1 ∧ f1}
P3 ={cl← d1 ∧ e3

cl← b̄3 ∧ ē4}

The programs describe the required classifications. E.g.
programP1 encodes:head shape= body shape(a1 ∧ b1 or
a2 ∧ b2 or a3 ∧ b3) or thecolour is red (e1). This shows, that
the COOP-approach is able to extract meaningful rules from a
trained neural network, even though this is just a preliminary
experiment on some artificial domain.

5 CONCLUSIONS
In this paper, we presented a new decompositional approach
to extract propositional if-then rules from a feed-forward net-
work of binary threshold units. Our approach is sound and

complete, i.e. every rule extracted from the network is cor-
rect and all contained rules are extracted. Even though our
running example is a 3 layered feedforward network, the ap-
proach is not limited to layered architectures, but rather to
cycle-free networks.

For the extraction algorithm of a single perceptron (Sec-
tion 3.2) we will further investigate, whether ideas underly-
ing the “M-of-N” approach by Towel and Shavlik[Towell and
Shavlik, 1993] can help to speed up the system. Furthermore,
we will try to develop some dedicated “informed heuristics”,
as mentioned in Section 3.3, to guide the extraction on the
level of whole networks. Another candidate for further im-
provement is the caching of intermediate results while com-
posing the coalitions and oppositions.

First experiments, presented in Section 4, indicate that
our approach shows a good average-complexity, but a de-
tailed analysis needs to be done in the future. Furthermore,
we would like to evaluate our algorithm and compare it to
other approaches using benchmark problems, like the Monks-
problem or problems from molecular biology as described in
[d’Avila Garcezet al., 2001].

Acknowledgments
We would like to thank two anonymous referees for their
valuable comments on a preliminary version of this paper.
Sebastian Bader is supported by the GK334 of the German
Research Foundation (DFG).

References
[Bishop, 1995] Christopher M. Bishop.Neural Networks for

Pattern Recognition. Oxford University Press, 1995.

[d’Avila Garcezet al., 2001] Artur S. d’Avila Garcez,
Krysia Broda, and Dov M. Gabbay. Symbolic knowl-
edge extraction from trained neural networks: A sound
approach.Artificial Intelligence, 125:155–207, 2001.

[Krishnanet al., 1999] R. Krishnan, G. Sivakumar, and
P. Bhattacharya. A search technique for rule extrac-
tion from trained neural networks.Non-Linear Anal.,
20(3):273–280, 1999.

[Lloyd, 1988] John W. Lloyd. Foundations of Logic Pro-
gramming. Springer, Berlin, 1988.

[Rojas, 1996] Raul Rojas.Neural Networks. Springer, 1996.

[Thrunet al., 1991] S. Thrun et al. The MONK’s prob-
lems: A performance comparison of different learning al-
gorithms. Technical Report CMU-CS-91-197, Carnegie
Mellon University, Computer Science Department, Pitts-
burgh, PA, 1991.

[Tickle et al., 1998] Alan. B. Tickle, Robert Andrews,
Mostefa Golea, and Joachim Diederich. The truth will
come to light: directions and challenges in extracting
the knowledge embedded within mined artificial neu-
ral networks. IEEE Transactions on Neural Networks,,
9(6):1057–1068, 1998.

[Towell and Shavlik, 1993] Geoffrey G. Towell and Jude W.
Shavlik. Extracting refined rules from knowledge-based
neural networks.Machine Learning, 13:71–101, 1993.

