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a b s t r a c t

1:1 replica of the 37 largest conduit arteries in the human systemic circulation. The parameters

required by the numerical algorithm were directly measured in the in vitro setup and no data fitting

was involved. The inclusion of wall visco-elasticity in the numerical model reduced the underdamped

high-frequency oscillations obtained using a purely elastic tube law, especially in peripheral vessels,

which was previously reported in this paper [Matthys et al., 2007. Pulse wave propagation in a model

human arterial network: Assessment of 1-D numerical simulations against in vitro measurements.

J. Biomech. 40, 3476–3486]. In comparison to the purely elastic model, visco-elasticity significantly

reduced the average relative root-mean-square errors between numerical and experimental waveforms

over the 70 locations measured in the in vitro model: from 3.0% to 2.5% ðpo0:012Þ for pressure and

from 15.7% to 10.8% ðpo0:002Þ for the flow rate. In the frequency domain, average relative errors

between numerical and experimental amplitudes from the 5th to the 20th harmonic decreased from

0.7% to 0.5% ðpo0:107Þ for pressure and from 7.0% to 3.3% ðpo10�6
Þ for the flow rate. These results

provide additional support for the use of 1-D reduced modelling to accurately simulate clinically

relevant problems at a reasonable computational cost.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Pressure and flow pulse waveforms carry information on the
functionality of the cardiovascular system and the morphology of
the arterial network, which can be valuable for the diagnosis and
treatment of disease. Modelling allows us to study the effect on
pulse waveforms of the physical properties of the system, such as
arterial geometry and distensibility, cardiac output, heart rate
and peripheral impedance to flow, and analyse the mechanisms
underlying clinically relevant changes (Stergiopulos et al., 1992;
Wang and Parker, 2004; Mynard and Nithiarasu, 2008; Liang et al.,
2009). In particular, it allows us to test clinical diagnostic techniques
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that are based on pulse wave analysis and disentangle their under-
lying mechanisms (Karamanoglu et al., 1994; Trachet et al., 2010;
Alastruey et al., 2006; Alastruey, 2011). These studies can be
extremely challenging in vivo for technical and physiological rea-
sons; e.g. some vessels are inaccessible, manipulation of the proper-
ties of interest can be dangerous or can elicit reflex compensation,
and several parameters of interest are not directly measurable.

We have previously shown the ability of the nonlinear 1-D
equations of pulse wave propagation in elastic vessels to capture
the main features of pressure and flow waveforms measured
in well-defined experimental 1:1 replicas of the larger conduit
arteries in the human systemic circulation (Segers et al., 1998;
Segers and Verdonck, 2000; Alastruey, 2006; Matthys et al., 2007).
Matthys et al. (2007) reported average relative root-mean-square
errors between numerical and experimental waveforms smaller
than 3.5% for pressure and 19% for the flow rate at 70 locations in
the tapered silicone network sketched in Fig. 1. Much of these
errors arose from relatively high-frequency oscillations in the
peripheral vessels predicted in the numerical model but not seen
in the experimental measurements. Wall viscosity was suggested

www.elsevier.com/locate/jbiomech
http://www.JBiomech.com
http://www.JBiomech.com
dx.doi.org/10.1016/j.jbiomech.2011.05.041
mailto:jordi.alastruey-arimon@imperial.ac.uk
mailto:ashraf.khir@brunel.ac.uk
mailto:koen.matthys@brunel.ac.uk
mailto:patrick.segers@ugent.be
mailto:s.sherwin@imperial.ac.uk
mailto:pascal.verdonck@ugent.be
mailto:k.parker@imperial.ac.uk
mailto:j.peiro@imperial.ac.uk
dx.doi.org/10.1016/j.jbiomech.2011.05.041


Fig. 1. (left) Planview schematic of the 1:1 hydraulic model of the 37 larger conduit arteries in the human systemic circulation. Arteries were simulated using silicone

tubes. 1: Pump (left heart); 2: catheter access; 3: aortic valve; 4: peripheral resistance tube; 5: stiff plastic tubing (veins); 6: venous overflow; 7: venous return conduit; 8:

buffering reservoir; 9: pulmonary veins. The arrows indicate the location of the results shown in Figs. 3 to 5. (right) Topology and reference labels of the arteries simulated,

whose properties are given in Table 1. (Modified from Matthys et al., 2007.)
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to play an important role in damping oscillations in the numerical
pulse waveforms, but this hypothesis could not be tested since a
purely elastic tube law was used in the 1-D model.

Recent works have shown the benefits of modelling the
arterial wall using a visco-elastic law. Bessems et al. (2008) tested
a visco-elastic 1-D formulation against in vitro data measured in
single tapered polyurethane vessels, showing that wall visco-
elasticity is necessary to accurately predict the propagation and
attenuation of pressure and flow waves. Reymond et al. (2009)
compared the predictions of a visco-elastic 1-D distributed model
of the human arterial tree with average pressure and flow
waveforms measured at several arterial locations in a group of
young subjects. Qualitative comparison of these waveforms
and quantitative comparison of systolic, diastolic and mean
pressure and flow indicated that the visco-elastic effects may be
significant, especially in peripheral branches. They argued that
energy losses and damping effects due to wall visco-elasticity are
of the same order of magnitude as wall friction in large and
medium size vessels. However, the parameters of their model
were not specific to each subject.

Several works (Armentano et al., 1995a,b; Craiem et al., 2005;
Čanić et al., 2006) have used Voigt-type visco-elastic models to
simulate the visco-elastic behaviour of human and animal
arteries, and improve the agreement between measured and
simulated pulse waveforms. These models feature hysteresis
(different stress–strain relationship for loading and unloading)
and creep (continuous extension at constant load).

The aim of this work is to study the role of visco-elasticity
in explaining the discrepancies of the results presented in
Matthys et al. (2007). We will use a nonlinear, time-domain 1-D
formulation that simulates the arterial wall as a Voigt-type
visco-elastic material. Except for the shape of the velocity profile,
the parameters required by the numerical algorithm will be
directly measured in the in vitro setup and no data fitting will
be involved. We will, therefore, provide an assessment of non-
linear visco-elastic 1-D modelling by comparison against in vitro

measurements in a well-defined arterial network with tapered
vessels. The notation and SI units of the quantities used in this
paper are given in Table 1.
2. Methods

2.1. Visco-elastic 1-D formulation

Conservation of mass and momentum applied to a 1-D impermeable and

deformable tubular control volume of incompressible and Newtonian fluid flowing

with a constant axisymmetric velocity profile yields (Sherwin et al., 2003)
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where x is the axial coordinate along the vessel, t the time, Aðx,tÞ the cross-

sectional area of the lumen, Uðx,tÞ the average axial velocity, Pðx,tÞ the average

internal pressure over the cross-section, and f ¼�22mpU (Alastruey, 2006) the

friction force per unit length. The constant density and viscosity of the 65–35%

water–glycerol mixture used to mimic blood were r¼ 1050 kg m�3 and

m¼ 2:5 mPa s, respectively.

We have modelled the silicone used to make the experimental arteries as a

Voigt-type material; i.e. its tensile stresses t and strains E are related through

(Fung, 1993)

t¼ EEþjdE
dt

, ð2Þ

where E is the Young’s modulus and j the viscosity of silicone. Assuming the

in vitro arterial walls to be thin, isotropic, homogeneous and incompressible, and

to deform axisymmetrically, each circular cross-section independently of the

others, t can be related to the internal pressure P and E to the change of radius

of the vessel wall Z¼ r�r0 using Laplace’s law (Olufsen et al., 2000)

t¼ rðP�PextÞ

h
, E¼ 1

1�s2

Z
r0

, ð3Þ

where r¼
ffiffiffiffiffiffiffiffiffi
A=p

p
, h(x) is the wall thickness, s¼ 0:5 the Poisson’s ratio and r0ðxÞ the

luminal radius at P ¼ Pext; Pext being the constant external pressure (Matthys et al.,

2007). Combining Eqs. (2) and (3) and assuming that 1=r can be approximated by

1=r0 yields
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Expressing Z as a function of A¼ pr2 and A0 ¼pðr0Þ
2, yields the visco-elastic tube

law
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Table 1
Notation and SI units.

A (m2) Luminal cross-sectional area

A0 (m2) Initial luminal cross-sectional area

c0 ðm s�1Þ Initial pulse wave speed

E (Pa) Young’s modulus of silicone

EP (%) Relative pressure error over one cardiac cycle

E
P

(%) Relative mean pressure error

EbP (%) Relative error of the amplitude of the pressure

harmonics over one cardiac cycle

EQ (%) Relative flow rate error over one cardiac cycle

E
Q

(%) Relative mean flow rate error

EbQ (%) Relative error of the amplitude of the flow harmonics

over one cardiac cycle

F (N) Load in the uniaxial extension test

Fmax (N) Maximum load in the uniaxial extension test

f ðN m�1Þ Friction force per unit length of vessel

freq (Hz) Wave frequency

h (m) Vessel wall thickness

Je (m) Jacobian of the elemental mapping from Ost

Lp Legendre polynomial of order p used for the expansion

of the numerical solution

N Total number of samples in one cardiac cycle

Nel Number of elemental regions Oe in the numerical mesh

of an arterial segment

P (Pa) Average internal pressure over the luminal cross-

section

Pe (Pa) Elastic component of pressure

Pext (Pa) External (or extramural) pressurebP (Pa) Amplitude of the pressure harmonic

P Order of the polynomial space of the expansion bases

used for the numerical solution

Q ðm3 s�1Þ Volume flow ratebQ ðm3 s�1Þ Amplitude of the flow harmonic

Q Order of the Gauss-Lobatto-Legendre quadrature used

in the numerical solution

Rp ðPa s m�3Þ Peripheral resistance of a terminal vessel

r (m) Luminal radius

r0 (m) Initial luminal radius

t (s) Time

tini (s) Initial time in a load–unload cycle of the uniaxial

extension test

tend (s) Final time in a load–unload cycle of the uniaxial

extension test

U ðm s�1Þ Average axial velocity over the luminal cross-section

x (m) Axial coordinate along the vessel

xe
l (m) Axial coordinate of the lower point of the elemental

region Oe

xe
u (m) Axial coordinate of the upper point of the elemental

region Oe

b (Pa m) Parameter related to the elastic tone of silicone

G (Pa s m) Parameter related to the viscosity of silicone

Dt (s) Time step of the numerical simulation

E Tensile strain of silicone

Eini Initial tensile strain in a load–unload cycle of the

uniaxial extension test

Eend Final tensile strain in a load–unload cycle of the

uniaxial extension test

Z (m) Change of radius of the vessel wall

m (Pa s) Viscosity of the water–glycerol mixture

x Non-dimensional coordinate of the domain Ost

r ðkg m�3Þ Density of the water–glycerol mixture

s Poisson’s ratio of silicone

t (Pa) Tensile stress of silicone

j (Pa s) Viscosity of silicone

c (m) Extension in the uniaxial extension test

cmax (m) Maximum extension in the uniaxial extension test

O Arterial domain of the spatial discretisation

Oe Elemental region in O
Ost Reference (or standard) domain of the spatial

discretisation
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The parameters bðxÞ and GðxÞ are related to the elastic and visco-elastic properties

of the arterial wall, respectively. It is important to remark that Eq. (5) can also be

derived from a generalised string model (Quarteroni et al., 2000; Formaggia et al.,

2003).
2.2. Numerical solution

Eqs. (1) and (5) were solved in the 37 arterial segments of the hydraulic model

in Fig. 1 using a discontinuous Galerkin scheme with a spectral/hp spatial

discretisation. This is a convenient scheme for high-order discretisation of

convection-dominated flows (Cockburn and Shu, 1998), such as arterial flows. It

allows us to propagate waves of different frequencies without suffering from

excessive dispersion and diffusion errors.

Eqs. (1) and (5) can be written in the following conservative form:
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p
Þ being the elastic component of pressure. The flux F was

separated into an elastic ðFeÞ and a viscous ðFvÞ term, and the mass conservation

@A=@t¼�@ðAUÞ=@x was applied to change the time derivative to a spatial

derivative in the viscous term of Eq. (5).

The discrete form of this conservative law in a domain O discretised into a

mesh of Nel elemental non-overlapping regions Oe ¼ ½xl
e ,xu

e �, such that xu
e ¼ xl

eþ1 for

e¼ 1, . . . ,Nel�1, and
SNel

e ¼ 1 Oe ¼O is given by (Karniadakis and Sherwin, 2005;

Alastruey, 2006)
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for all wd in Vd, where ðu,vÞO ¼
R
Ouv dx is the standard L2

ðOÞ inner product, Ud and

wd denote the approximation of U and test functions w, respectively, in the finite

space Vd of piecewise polynomial vector functions (they may be discontinuous

across inter-element boundaries), and Fu
¼ Fu

e þFu
v is the approximation of the flux

at the interface.

The term Fu
e was treated through the solution of a Riemann problem as

described by Alastruey (2006). The term Fu
v requires a different treatment. Various

ways of dealing with this term were analysed by Zienkiewicz et al. (2003) and the

references therein. Here, Fu
v at the inter-element boundaries was approximated as

Fu
v jxu

e
¼ Fu

v jxl
eþ 1
¼ 1

2ðFvjxu
e
þFvjxl

eþ 1
Þ, e¼ 1, . . . ,Nel�1,

with Fu
v jxl

1
¼ Fvjxl

1
at the inlet of the domain and Fu

v jxu
Nel

¼ Fvjxu
Nel

at the outlet, so that

Fu
v�FvðU

d
Þ ¼ 0 at both boundaries.

The expansion bases were selected to be a polynomial space of order P and the

solution was expanded on each region Oe in terms of Legendre polynomials LpðxÞ;
i.e.

Ud
jOe
ðxeðxÞ,tÞ ¼

XP
p ¼ 0

LpðxÞbUp

e , ð7Þ

where bUp

e ðtÞ are the expansion coefficients. Legendre polynomials are particularly

convenient because the basis is orthogonal with respect to the L2
ðOeÞ inner

product. Following standard finite element techniques, the following elemental

affine mapping was introduced:

xeðxÞ ¼ xl
e

ð1�xÞ
2
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2

,

with x in the reference element Ost ¼ f�1rxr1g.

The choice of discontinuous discrete solution and test functions allows us to

decouple the problem on each element, the only link coming through the

boundary fluxes. Substitution of (7) into (6) and letting wd
jOe
¼Ud
jOe

, yields 2P
equations to be solved for each Oe , e¼ 1, . . . ,Nel ,
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and Je ¼
1
2ðx

u
e�xl

eÞ is the Jacobian of the elemental mapping from Ost . For every Oe ,

Ud
jOe

was evaluated at Gauss–Lobatto–Legendre quadrature points of order Q to

evaluate the integrals ð@Fi=@x,LpÞOe
and ðSi ,LpÞOe

. All spatial derivatives were

calculated using collocation differentiation at the quadrature points (Karniadakis

and Sherwin, 2005).
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Arterial segments were divided into non-overlapping elements with a 2 cm

length, when possible, and a polynomial and quadrature order of 3. Elements or

segments shorter than 1.5 cm were given a polynomial and quadrature order of 2.

Zero pressures and velocities were considered as initial conditions.

The discretisation in time was performed by a second-order Adams–Bashforth

scheme. The time step was Dt¼ 100 ms for the elastic case and Dt ¼ 20 ms for the

visco-elastic case, since the convection Dt scales like the square of the polynomial

order P, whereas the diffusion Dt scales like twice the square of P (Karniadakis

and Sherwin, 2005). Although Dt had to be reduced in the visco-elastic model, it is

still practical to use an explicit scheme because of the small P used and the fact

that wave speeds are much larger than flow velocities.

Visco-elasticity was neglected at the boundary conditions of the network and

the junctions, which were implemented as described in Matthys et al. (2007,

Section 2.2.3) for both the purely elastic and visco-elastic models.
2.3. Numerical parameters from in vitro data

Table 2 shows the geometry, elasticity and boundary conditions required by

the elastic and visco-elastic formulations, which were measured in the silicone

network without any parameter fitting, as we detailed in Matthys et al. (2007).

Most of the arterial segments were linearly tapered and their wall thickness

decreased toward distal locations. Their Young’s modulus was approximately

constant (1.2 MPa), since they were made of the same silicone material. We

assumed Pext ¼ 0 since the experimental setup was not submerged in water.

Here we estimated j (which was not measured in Matthys et al., 2007) from an

uniaxial extension test in a sample of the same silicone material used in the

experimental setup. Fig. 2 (top) shows the extension c and measured load F used

in the test, which were normalised by their corresponding maximum values Fmax and

cmax . The test was carried out using a tensometer and 1 kN load cell (Instron 5542,

High Wycombe, UK), loading and unloading at a rate of 20 mm min�1 to a maximum

extension of 1 mm. Three consecutive loading and unloading cycles were followed by
Table 2

Data of the 37 silicone vessels in the in vitro model (Fig. 1). rin
0 -rout

0 : initial luminal radi

at the inlet and the outlet; G: wall viscosity parameter; Rp: peripheral resistance calcu

terminal branch. Single numbers indicate vessels with a constant cross-section. The in

Arterial segment Length (mm) 72.0% rin
0 -rout

0 (mm) 73.5%

1. Ascending aorta 36 14:40-13:00

2. Innominate 28 11:00-7:29

3. R. carotid 145 5:37-3:86

4. R. subclavian I 218 4:36-3:34

5. R. subclavian II 165 3:34-2:78

6. R. radial 235 2.07

7. R. ulnar 177 2.10

8. Aortic arch I 21 13:00-12:50

9. L. carotid 178 5:58-3:73

10. Aortic arch II 29 12:50-11:80

11. L. subclavian I 227 4:42-3:39

12. L. subclavian II 175 3:39-2:84

13. L. radial 245 2.07

14. L. ulnar 191 2.07

15. Thoracic aorta I 56 11:80-11:00

16. Intercostals 195 4:12-3:22

17. Thoracic aorta II 72 11:00-9:26

18. Celiac I 38 3.97

19. Celiac II 13 4.31

20. Splenic 191 1.83

21. Gastric 198 1.92

22. Hepatic 186 3:31-2:89

23. Abdominal aorta I 62 9:26-8:01

24. L. renal 120 2.59

25. Abdominal aorta II 7 7.90

26. R. renal 118 2.55

27. Abdominal aorta III 104 7:80-5:88

28. R. iliac-femoral I 205 3:9-3:38

29. R. iliac-femoral II 216 3:38-2:31

30. R. iliac-femoral III 206 2:31-2:10

31. L. iliac-femoral I 201 4:02-3:34

32. L. iliac-femoral II 195 3:34-2:26

33. L. iliac-femoral III 207 2:26-2:12

34. R. anterior tibial 163 1.55

35. R. posterior tibial 151 1.53

36. L. posterior tibial 149 1.58

37. L. anterior tibial 126 1.55
30 s at zero extension, loading to maximum extension which was held for 60 s before

the final unloading to zero extension.

A cubic spline was fitted to F(t) and cðtÞ, separating loading and unloading.

Stresses tðtÞ were calculated as the ratio of F and the cross-sectional area of the

sample, and strains EðtÞ as the ratio of cðtÞ and the initial sample length. Fig. 2

(bottom) shows the Fc�loop for the first loading–unloading cycle (only the first

cycle is shown for clarity; the following cycles were similar with no evidence of

conditioning). We calculated j as

j¼
R Eend

Eini
t dER tend

tini

dE
dt

� �2

dt

, ð9Þ

which follows from integrating both sides of Eq. (2) over one load–unload cycle

and using
R Eend

Eini
EE dE¼ 0. The limits of the integrals are the initial (tini, Eini) and final

(tend, Eend) time and strain in a load–unload cycle, with Eini ¼ Eend . We obtained

j¼ 3:070:3 kPa s.

2.4. Error calculations

To assess the accuracy of the numerical predictions of pressure P and volume

flow rate Q¼AU, the following relative errors were calculated at each measuring

site,
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E
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¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmeanðPexpÞ�meanðPÞÞ2

q
meanðPexpÞ

, E
Q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðmeanðQ expÞ�meanðQ ÞÞ2

q
meanðQ expÞ

, ð10Þ

where N is the total number of samples in one cardiac cycle, the subscript i

indicates the sampling point (the sampling rate was 1 kHz), the superscript exp
i at the inlet and the outlet; h: average wall thickness; cin
0 -cout

0 : initial wave speed

lated from mean pressure and flow rate measurements close to the outlet of each

terval of confidence of the geometrical measurements is indicated in the heading.

h (mm) 72.5% cin
0 -cout

0 (m s�1) G (Pa s m) Rp ðGPa s m�3)

0.51 5:21-5:49 1.82 –

0.35 4:89-6:01 1.23 –

0.28 6:35-7:49 1.01 2.67

0.27 6:87-7:84 0.96 –

0.16 6:00-6:58 0.56 –

0.15 7.43 0.53 3.92

0.21 8.81 0.76 3.24

0.50 5:41-5:52 1.77 –

0.31 6:55-8:00 1.11 3.11

0.41 4:98-5:12 1.44 –

0.22 6:21-7:10 0.79 –

0.17 6:26-6:84 0.62 –

0.21 8.84 0.75 3.74

0.16 7.77 0.58 3.77

0.43 5:29-5:48 1.53 –

0.27 7:07-7:99 0.96 2.59

0.34 4:84-5:26 1.19 –

0.20 6.20 0.71 –

1.25 14.90 4.43 –

0.13 7.24 0.45 3.54

0.11 6.73 0.40 4.24

0.21 6:95-7:44 0.74 3.75

0.33 5:19-5:59 1.16 –

0.19 7.39 0.66 3.46

0.35 5.83 1.25 –

0.16 6.95 0.57 3.45

0.30 5:41-6:24 1.06 –

0.21 6:47-6:94 0.76 –

0.15 5:89-7:13 0.55 –

0.20 8:04-8:44 0.69 –

0.20 6:19-6:79 0.72 –

0.16 6:11-7:44 0.58 –

0.13 6:67-6:89 0.47 –

0.15 8.47 0.52 5.16

0.12 7.73 0.43 5.65

0.11 7.23 0.38 4.59

0.10 7.01 0.35 3.16
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indicates experimental data, the operator maxð�Þ calculates the maximum value

within i¼ 1, . . . ,N, and meanð�Þ calculates the mean value within i¼ 1, . . . ,N. In the

frequency domain, we calculated

EbP ¼ 1

M

XM
j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbPexp

j �
bPjÞ

2
q

bP exp

1

, EbQ ¼ 1

M

XM
j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbQ exp

j �
bQ jÞ

2
q

bQ exp

1

, ð11Þ

where M is the total number of harmonics and bPj and bQ j are the amplitudes of the

pressure and flow jth harmonic, respectively.
3. Results

Fig. 3 compares the ensemble averaged experimental wave-
forms at four locations with the numerical predictions obtained
using both the elastic and the visco-elastic 1-D formulations.
As in the purely elastic study, we matched the onset of the
experimental and numerical systolic ejections. These comparisons
are representative of the results obtained at other measurement
sites and show the ability of visco-elasticity to reduce the
high-frequency oscillations produced by the elastic formulation,
especially in peripheral vessels.

Wall visco-elasticity reduces relative errors for pressure
and the flow rate in the time domain for all the 70 measurement
sites. Table 3 shows these errors for both the (original)
purely elastic and the (new) visco-elastic formulations in the
midpoint of the arterial segments, and Table 4 shows average
relative errors over all 70 measuring sites, and over all the sites in
the aorta and the vessels of the first, second and third generation
of bifurcations.

For both formulations, relative errors are larger for the flow
rate than for pressure. If visco-elasticity is modelled, the averaged
pressure EP and flow EQ errors over all measuring sites are signifi-
cantly decreased (from 3.0% to 2.5% and from 15.7% to 10.8%,
respectively). Variations in j of 70:3 kPa s (the standard deviation
of the measured j) leads to non-significant changes in the previous
errors of less than 0.05% for pressure and 0.2% for the flow rate.
Changes in the errors for mean pressures EP and flow rates E

Q
are

not significant if visco-elasticity is modelled (Table 4).
In the frequency domain, the visco-elastic formulation pro-

duces greater decreases in the relative errors of the amplitudes
from the 5th to the 20th pressure EbP and flow EbQ harmonics than

for the first five harmonics (Tables 3 and 4). Fig. 4 compares the
amplitudes of the first 20 experimental flow harmonics in the
midpoint of a vessel of the first generation of bifurcations, with
the numerical predictions obtained using the elastic and the
visco-elastic formulations. The latter captures these amplitudes
better, especially with the increasing frequency. Similar results
were obtained at the other locations studied.

The A–P curves obtained using the visco-elastic model present
an area of hysteresis that is much smaller than the area obtained
from in vivo measurements (Armentano et al., 1995a,b; Valdez-
Jasso et al., in press), as Fig. 5 shows in an aortic location. The
numerical formulation predicts an increase in this area with the
increasing wall viscosity j (Fig. 5).
4. Discussion

We have shown that simulation of wall visco-elasticity
decreases the relative root-mean-square errors of numerical
pressure and flow predictions in the aorta and all the generations
of bifurcations of the silicone model, in both the frequency and
time domains.

According to our frequency–domain analysis, the damping
effect due to visco-elasticity is more significant from the 5th flow
harmonic (Table 4). This leads to a decrease in the high-frequency
oscillations of the purely elastic model and supports the hypoth-
esis suggested in Matthys et al. (2007) that visco-elasticity has a
more significant effect on damping oscillations predicted by the
purely elastic formulation (with higher amplitudes than those
observed in vivo) than energy losses at junctions and peripheral
compliances in the overflow reservoirs. The damping effect in
the visco-elastic model is greater in distal vessels, which is in
agreement with the increase in the viscous term of the tube law
(5) with the decreasing cross-sectional area toward distal loca-
tions. The minor reductions in the relative errors of mean
pressure and flow rate when visco-elasticity was modelled
suggest that the effect of visco-elasticity on mean pressures and
flow rates is secondary.

The relative errors of flow rate predictions were larger than
corresponding pressure predictions, which is consistent with
the larger uncertainty of the experimental flow measurements
compared with the experimental pressure measurements dis-
cussed in Matthys et al. (2007). Additional uncertainties were
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introduced by changes in the boundary conditions of the experi-
mental setup every time the pressure and flow transducers were
repositioned. Indeed, significantly different errors were obtained
between measured and predicted mean flow rates E

Q
at several
locations within the same vessel (e.g. Segments 31–33 in Table 3).
The uncertainties in the measurement of the visco-elastic mod-
ulus were relatively small and did not introduce large errors in
the numerical results. However, the uniaxial extension tests



Table 3
Relative errors (in %) of the numerical pulse waveforms calculated using Eqs. (10) and (11) in the midpoint of the arterial segments in Fig. 1. Errors in the frequency domain

(Eq. (11)) were calculated for the first five pressure (EbP I) and flow (EbQ I) harmonics ðj¼ 1, . . . ,5Þ, and from the 5th to the 20th pressure (EbP II) and flow (EbQ II) harmonics

ðj¼ 5, . . . ,20Þ. They are expressed relative to the amplitude of the first experimental pressure or flow harmonic. All errors are given as a pair of numbers: the first

corresponds to the purely elastic formulation (elas) and the second to the visco-elastic formulation (visc).

Arterial segmenta EP (%) EQ (%) E
P

(%) E
Q

(%) EbP I (%) 1–5 harm. EbQ I (%) 1–5 harm. EbP II (%) 5–20 harm. EbQ II (%) 5–20 harm.

elas visc elas visc elas visc elas visc elas visc elas visc elas visc elas visc

1. Ascending aorta 1.0 0.7 0.0 0.0 0.6 0.5 0.0 0.0 0.5 0.4 0.0 0.0 0.2 0.1 0.0 0.0

2. Innominate 2.7 2.5 10.7 9.0 2.7 2.7 12.6 12.5 0.9 0.9 6.4 6.3 0.2 0.2 5.8 2.9

3. R. carotid 1.9 1.7 19.9 5.5 0.7 0.8 0.5 0.0 0.8 0.8 5.1 5.1 0.5 0.2 15.7 3.1

4. R. subclavian I 2.9 2.6 27.3 22.5 2.9 2.9 14.9 14.5 1.7 1.6 30.2 29.6 0.4 0.3 4.3 2.7

5. R. subclavian II 2.5 2.3 14.0 10.8 3.2 3.2 11.8 11.7 0.8 0.8 21.9 21.1 0.3 0.3 9.2 5.8

6. R. radial 2.2 1.4 11.0 7.2 1.5 1.4 7.1 7.0 1.6 1.5 7.6 7.2 0.2 0.1 4.1 2.6

7. R. ulnar 2.3 1.2 8.2 4.7 1.3 1.2 4.5 4.3 1.3 1.2 3.8 3.3 0.5 0.3 2.3 1.6

8. Aortic arch I 2.0 1.7 7.0 6.1 0.1 0.1 2.5 2.4 0.8 0.7 8.4 8.3 0.2 0.1 1.9 1.2

9. L. carotid 2.6 2.5 12.2 5.9 2.5 2.4 3.0 3.0 0.8 0.8 6.9 6.3 0.4 0.3 13.8 4.5

10. Aortic arch II 1.5 1.2 10.6 9.5 0.3 0.2 8.8 8.4 0.5 0.4 15.0 14.7 0.1 0.1 3.3 2.9

11. L. subclavian I 2.9 2.7 7.8 6.6 3.5 3.5 5.5 5.4 0.8 0.8 21.5 19.5 0.3 0.2 6.4 3.8

12. L. subclavian II 2.6 2.4 12.5 11.7 3.8 3.8 7.4 7.4 1.4 1.4 12.8 12.3 0.5 0.4 5.4 3.8

13. L. radial 2.7 2.4 9.1 7.8 2.9 2.9 6.2 6.2 1.7 1.7 2.8 2.7 0.3 0.3 3.9 2.4

14. L. ulnar 2.7 2.4 11.1 10.3 3.1 3.1 11.4 11.4 1.6 1.6 3.9 3.8 0.3 0.3 3.5 2.8

15. Thoracic aorta I 1.1 0.9 11.3 10.9 0.1 0.1 19.2 19.2 0.7 0.6 15.7 15.3 0.1 0.1 4.8 3.0

16. Intercostals 2.1 1.9 15.1 7.3 2.9 2.9 4.3 4.2 0.9 0.9 3.8 3.4 0.5 0.3 9.0 4.3

17. Thoracic aorta II 1.9 1.6 19.4 18.8 1.9 1.9 1.0 1.0 0.5 0.4 39.3 38.7 0.2 0.1 8.1 5.7

18. Celiac I 3.8 3.3 13.7 8.1 2.7 2.6 2.2 2.1 1.1 1.0 7.0 6.2 0.3 0.2 10.6 6.5

20. Splenic 3.1 1.9 7.8 5.2 1.9 1.9 8.6 8.5 1.8 1.6 3.7 3.6 0.6 0.3 3.1 1.4

21. Gastric 2.8 1.7 15.2 10.0 1.7 1.7 6.3 6.2 1.4 1.1 4.6 4.5 0.7 0.2 8.8 2.2

22. Hepatic 2.3 1.6 12.9 6.8 2.6 2.5 0.7 0.5 0.7 0.7 4.5 4.5 0.3 0.2 10.0 5.2

23. Abdominal aorta I 2.0 1.6 18.7 16.4 1.9 1.9 9.7 9.7 0.8 0.7 29.6 28.7 0.3 0.2 7.9 4.8

24. L. renal 3.0 2.9 11.9 5.6 2.4 2.3 5.1 4.9 1.0 1.0 4.2 4.1 0.6 0.3 6.6 2.7

26. R. renal 2.9 2.7 12.0 5.5 2.8 2.8 3.5 3.4 0.8 0.8 4.3 3.9 0.3 0.2 6.4 2.5

27. Abdominal aorta III 2.7 2.4 20.8 18.2 2.7 2.6 3.0 3.0 1.2 1.1 35.7 34.4 0.3 0.2 6.1 3.4

28. R. iliac-femoral I 3.0 2.7 35.3 30.5 3.2 3.1 10.6 10.7 0.8 0.8 19.1 18.6 0.5 0.4 17.4 7.7

29. R. iliac-femoral II 1.9 1.6 20.6 16.3 1.5 1.4 11.9 11.8 5.4 5.4 36.9 33.7 4.2 4.0 12.0 7.5

30. R. iliac-femoral III 2.0 1.7 13.9 11.3 1.1 1.1 12.5 12.5 1.5 1.5 13.4 10.0 0.6 0.4 7.6 3.2

31. L. iliac-femoral I 5.5 4.1 26.3 23.2 3.5 3.5 35.4 34.1 2.2 2.2 30.5 27.7 0.9 0.7 11.1 7.6

32. L. iliac-femoral II 5.5 5.1 21.5 21.4 2.9 2.8 12.4 12.4 5.2 5.2 28.4 26.3 1.2 0.9 8.0 4.9

33. L. iliac-femoral III 4.7 4.0 11.2 9.1 3.5 3.4 7.8 7.8 1.2 1.2 9.5 7.7 0.8 0.6 7.0 2.9

34. R. anterior tibial 5.6 4.7 11.9 9.1 2.4 2.3 8.3 8.3 4.8 4.5 4.6 3.7 1.6 1.1 5.2 3.7

35. R. posterior tibial 3.0 2.3 8.2 6.7 3.1 3.0 7.7 7.7 1.8 1.7 5.5 5.3 1.4 1.1 3.7 2.3

36. L. posterior tibial 5.9 4.6 11.4 10.3 2.0 2.0 8.0 8.0 5.4 5.4 6.2 6.0 1.5 1.3 4.3 2.4

a We did not take in vitro measurements at the celiac II (Segment 19), abdominal aorta II (Segment 25) and left anterior tibial (Segment 37).

Table 4
Average relative errors (in %) of the numerical pulse waveforms over all 70 measuring sites, and over all the sites in the aorta and the vessels of the first, second and third

generation of bifurcations. Single errors were calculated as described in Table 2. The standard deviation is given for each error. The probability p of the two-sample t-test is

given for the average errors over all 70 measuring sites assuming equal variances.

Arterial segments EP (%) EQ (%) E
P

(%) E
Q

(%) EbP I (%) 1–5 harm. EbQ I (%) 1–5 harm. EbP II (%) 5–20 harm. EbQ II (%) 5–20 harm.

elas visc elas visc elas visc elas visc elas visc elas visc elas visc elas visc

All 3.0 2.5 15.7 10.8 2.8 2.8 7.1 7.0 1.6 1.5 13.4 12.4 0.7 0.5 7.0 3.3

71:0 71:0 75:6 75:5 70:8 70:8 76:0 75:9 71:3 71:2 711:5 710:1 70:6 70:5 73:6 71:7

po0:012 po0:002 po0:414 po0:458 po0:339 po0:231 po0:107 po10�6

Aorta 1.7 1.5 13.6 11.4 1.3 1.3 4.9 4.9 0.7 0.6 20.5 20.0 0.3 0.2 4.5 3.0

70:5 70:5 76:9 76:5 70:8 70:8 76:0 75:8 70:2 70:2 713:5 712:1 70:1 70:0 72:6 71:3

1st generation 3.5 3.2 18.8 13.1 3.0 3.0 9.7 9.7 1.7 1.7 14.4 13.1 0.9 0.7 9.3 4.7

71:2 71:0 77:6 76:9 70:6 70:6 77:5 77:2 71:2 71:2 711:1 79:3 70:9 70:8 73:1 71:8

2nd generation 3.5 3.0 15.8 11.0 3.0 3.0 6.9 6.9 2.1 2.0 9.7 8.6 0.8 0.6 6.6 3.2

71:4 71:2 75:8 74:9 70:7 70:7 74:6 74:6 71:4 71:4 79:2 77:2 70:5 70:4 73:8 71:1

3rd generation 2.3 1.1 11.3 6.6 1.6 1.5 6.8 6.7 1.5 1.2 5.1 4.5 0.5 0.2 4.6 1.9

70:5 70:5 73:1 72:2 70:3 70:3 71:6 71:6 70:2 70:2 71:7 71:6 70:2 70:1 72:7 70:4
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were carried out at a slower speed (about 6 s for a load–unload
cycle) than the experimental inflow imposed by the pump (70
beats per minute). This difference may be responsible for some
of the errors observed in the visco-elastic pressure and flow
predictions.
Another limitation of this study is the use of a linear model to
describe the dynamics of the vessel walls (Eq. (2)) that does not
account for the stress relaxation observed in the uniaxial tests
(Fig. 2, top). Models accounting for stress relaxation (Bessems
et al., 2008; Devault et al., 2008; Valdez-Jasso et al., 2009), and
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the nonlinear behaviour of the wall (Reymond et al., 2009;
Valdez-Jasso et al., in press) have been proposed, but their
applicability to patient-specific 1-D modelling is more challen-
ging, since more parameters must be estimated than in the Voigt
model. We believe that a linear constitutive model is a reasonable
approach, since wall deformations are small under normal phy-
siological conditions. According to the 1-D visco-elastic results,
changes in the diameter of the ascending aorta over the cardiac
cycle are less than 6.5% of its mean diameter. These changes
decrease toward distal locations.

Although the areas of hysteresis produced by the visco-elastic
formulation (Fig. 5) are smaller than those observed in vivo, they
are in agreement with the corresponding areas measured experi-
mentally (Fig. 2, bottom). We could not assess the accuracy of the
diameter waveforms predicted by the 1-D model, since we did not
measure them experimentally. However, the area of hysteresis
increases if a greater wall visco-elasticity j¼ 24 kPa s is used.
This is a more physiological value according to data in Armentano
et al. (1995b) and Gariepy et al. (1993) for the carotid and femoral
arteries of normotensive men.
Using an anatomically realistic model of the arterial network,
we have shown that wall viscosities about an order of magnitude
smaller than those measured in the human play a significant role
in shaping the high-frequency components of the pressure and
flow waveforms, especially in the periphery. This result supports
the qualitative observations by Reymond et al. (2009) in the
human and our previous conclusion that energy losses at bifurca-
tions have a secondary effect on the blood flow in large arteries
compared to visco-elasticity (Matthys et al., 2007).

We have provided further evidence to support the conclusions
given in the previous works (Segers et al., 1998; Segers and Verdonck,
2000; Olufsen et al., 2000; Alastruey, 2006; Matthys et al., 2007;
Steele et al., 2007; Bessems et al., 2008; Reymond et al., 2009) about
the ability of the 1-D formulation to capture the main features of
pressure and flow wave propagation in large arteries (and hence the
use of this mathematical model to simulate clinically relevant
problems), if accurate measurements of the parameters of the model
are provided. The 1-D formulation is computationally inexpensive
(it takes the order of minutes to solve one cardiac cycle for a whole
body model) and, hence, offers a good balance between accuracy and
computational cost when a global assessment of pressure wave
propagation in the cardiovascular system is required.
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methods. Int. J. Numer. Methods Eng. 58, 1119–1148.

dx.doi.org/10.1007/s10439-010-0236-7

	Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro...
	Introduction
	Methods
	Visco-elastic 1-D formulation
	Numerical solution
	Numerical parameters from in vitro data
	Error calculations

	Results
	Discussion
	Conflict of interest statement
	Acknowledgements
	References




