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Discrete element models have often been the primary tool in investigating and characterising the vis-
coelastic behaviour of soft tissues. However, studies have employed varied configurations of these
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models, based on the choice of the number of elements and the utilised formation, for different subject
tissues. This approach has yielded a diverse array of viscoelastic models in the literature, each seemingly
resulting in different descriptions of viscoelastic constitutive behaviour and/or stress-relaxation and
creep functions. Moreover, most studies do not apply a single discrete element model to characterise
both stress-relaxation and creep behaviours of tissues. The underlying assumption for this disparity is
the implicit perception that the viscoelasticity of soft tissues cannot be described by a universal beha-
viour or law, resulting in the lack of a unified approach in the literature based on discrete element
representations. This paper derives the constitutive equation for different viscoelastic models applicable
to soft tissues with two characteristic times. It demonstrates that all possible configurations exhibit a
unified and universal behaviour, captured by a single constitutive relationship between stress, strain and
time as: A B P Qσ σ σ ε ε+ ̇ + ¨ = ̇ + ¨. The ensuing stress-relaxation G(t) and creep J(t) functions are also unified

and universal, derived as G t c e c e
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respectively. Application of these relationships to experimental data is illustrated for various tissues
including the aortic valve, ligament and cerebral artery. The unified model presented in this paper may
be applied to all tissues with two characteristic times, obviating the need for employing varied config-
urations of discrete element models in preliminary investigation of the viscoelastic behaviour of soft
tissues.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Biological tissues are known to exhibit complex constitutive
behaviour, in which stress may depend on both strain and strain
rate, as well as strain history (Fung, 1993; Bischoff et al., 2004).
These characteristics suggest a behaviour that combines the
properties of elastic solids and viscous fluids, and therefore bio-
logical tissues are generally known to respond in a viscoelastic
manner to mechanical perturbations (Jamison et al., 1968). From a
biomechanics point of view, the difference between the viscoe-
lastic response of a tissue, and purely elastic or viscous responses,
lies essentially in the relationship between stress, strain and time.

To address such relationships in soft tissues, appropriate
models that describe a mathematical representation of the phe-
nomenon of viscoelasticity are required. While some studies
x: þ44 23 9284 2351.
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suggest that aspects of viscoelastic behaviour of tissues, such as
stress-relaxation and creep, may be initiated at the extracellular-
matrix level, e.g. by the viscous fluid-like behaviour and char-
acteristics of glycosaminoglycans (GAGs) (Ratcliffe and Mow, 1996;
Anssari-Benam et al., 2011a, 2011b) and fibre-sliding (Gupta et al.,
2010; Screen et al., 2013), rheological models have traditionally
been the popular choice to characterise the viscoelastic behaviour
and properties of soft tissues.

In general, rheological models correspond to either continuous
spectral, or discrete element, mathematical representations
(Jamison et al., 1968; Fung, 1993; Li and Xu, 2006). While the
physical demonstration of both models is manifested by config-
urations of a finite number of springs and dashpots, the corre-
sponding mathematical expressions are addressed differently.
Continuous spectral representations are obtained by solving an
integral equation for the relaxation spectrum, under the assump-
tion that the applied strain and the resulting stress response are
known (Jamison et al., 1968). Perhaps the most celebrated type of
icity: Applying discrete element models to soft tissues with two
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these models utilised in biomechanical studies is the quasi-linear
viscoelasticity (QLV) model, successfully applied to various tissues
ranging from cardiac muscles (Pinto and Patitucci, 1980) to liga-
ments (Woo et al., 1993) and tendons (Sarver et al., 2003). The
governing equations for discrete element models are derived
based on the local stress/strain/strain rate equations of the incor-
porated spring and dashpot elements, and how they are related to
each other and with the global stress–strain relationships (Jamison
et al., 1968). Examples of application of discrete element models to
soft tissues include characterisation of the rate effects (Anssari-
Benam et al., 2011a) and stress-relaxation and creep behaviour of
heart valves (Liao et al. 2007; Anssari-Benam et al., 2011b), ten-
dons (Hooley and Cohen, 1979) and arteries (Rehal et al., 2006).

While the application of discrete element models to soft tissues
have mainly been made within the context of linear viscoelasticity,
which would undoubtedly introduce approximations and simpli-
fications to the analysis (for example see Provenzano et al. (2002)
and Anssari-Benam (2014)), discrete element models have been
reported to provide good agreement with the experimental data.
The preliminary experiments in characterising the viscoelasticity
of soft tissues incorporate quasi-static loading regimes often in the
form of stress-relaxation and creep tests, as well as tensile loading
under various deformation rates. Discrete element viscoelastic
models facilitate the quantification of the respective stress-
relaxation and creep moduli, characteristic times, and the rate
effects, in a mathematically and conceptually easy way, by incor-
porating combination of spring and dashpot elements. Addition-
ally, different trends of experimental data may be fitted to these
models relatively easily, by altering the number of the elements in
the model or the model configuration. These attributes have made
discrete element viscoelastic models a popular choice in investi-
gating and characterising the viscoelasticity of soft tissues.

However, this apparent freedom in employing various element
numbers or configurations has rendered a diverse array of vis-
coelastic models in the literature, each seemingly resulting in
different descriptions of viscoelastic constitutive behaviour. This
diversity, in turn, has given rise to a perception that the con-
stitutive viscoelastic relationship between stress, strain and time
in soft tissues may not be universal when characterised using
discrete element models, but rather may depend on the employed
number and configuration of the elements. Such disparity has
made direct comparisons between the quantified viscoelastic
properties of different tissues highly problematic, as the differ-
ences in values may be partly attributed to the application of
‘different’ viscoelastic models. This problem becomes more pro-
nounced when comparing the reported viscoelastic properties of a
specific soft tissue, where different configurations have been
employed. For example, different relaxation times for aortic valve
tissue have been reported when characterised by QLV (Sauren
et al., 1983) which is a Kelvin-based model, Maxwell-type expo-
nential decay (Lee and Vesely, 1995) and Prony series (Anssari-
Benam et al., 2011b). A similar diversity of parametric values has
been identified in the literature for arteries, tendons and other soft
tissues.

Due care must therefore be observed in choosing adequate
number and appropriate configuration of elements that could
suitably describe the experimentally observed viscoelastic beha-
viour of soft tissues. Previous studies have established that two
characteristic time scales, referred to as “fast” and “slow” times or
“short-” and “long-” time memory, are sufficient to capture and
characterise the time-dependent behaviour of many soft tissues
(Fung, 1993; Pioletti and Rakotomanana, 2000; Banks et al., 2011).
The fast and slow characteristic times are the macroscopic time
scales that are required for a tissue to return to its equilibrium
state, after exposure to external mechanical perturbations. The fast
characteristic time implies that a short time is required for the
Please cite this article as: Anssari-Benam, A., et al., Unified viscoelast
characteristic times. Journal of Biomechanics (2015), http://dx.doi.or
tissue to retain the equilibrium state, while a slow characteristic
time reflects a long time-scale for the tissue to return to its original
reference. Soft tissues possess both short and long characteristic
time scales, presenting a fast initial recovery followed by a much
slower equilibrium kinematics, in stress-relaxation tests. In dis-
crete element modelling, this two-characteristic time behaviour
can be represented by two dashpots, the mechanical elements
introducing the time/rate effects, together with two spring ele-
ments, in an arrangement such that similar elements would not
form parallel or series configurations. In addition, most soft tissues
exhibit both stress-relaxation and creep behaviours when sub-
jected to the respective loading conditions. An appropriate vis-
coelastic model therefore must also be capable of characterising
both those behaviours under those conditions.

These critical axioms, however, have often been overlooked in
the discrete element models developed in the literature. Indeed,
literature suggests a variety of Kelvin-based, Maxwell-based, or
standard linear solid type discrete element models that have been
used for different tissues, or even for the same tissue, with various
element numbers, only suitable for characterising a particular
viscoelastic behaviour. For example, the standard linear solid
model while successful in addressing force-displacement rela-
tionships in some biological entities (e.g. axonal microtubules by
Shamloo et al. (2015)), can only render a single characteristic
relaxation time and as such may not be applicable to tissues with
two characteristic times. Similarly, Maxwell-based models can
only accurately characterise stress-relaxation, and Kelvin-based
models can only accurately characterise creep behaviour of soft
tissues. Studies have therefore often favoured the application of
one model to describe the stress-relaxation and a separate model
to describe the creep behaviour, even for the same tissue (Hooley
and Cohen, 1979; Thornton et al., 1997; Anssari-Benam et al.,
2011b). The biomechanics literature has therefore not adequately
addressed the important question of whether the viscoelasticity of
soft tissues with two characteristic times is a universal behaviour,
and has subsequently not provided a unified discrete element
model with single constitutive relationship between stress, strain
and time, or stress relaxation and creep functions applicable to all
such tissues.

In this paper, the constitutive equation for discrete element
viscoelastic models applicable to soft tissues with two character-
istic times, i.e. four-element representations, are derived and
presented. It is shown that all possible configurations of these
models exhibit a universal behaviour, with the following unified
relationship between stress, strain and time:
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where σ denotes stress, ε is strain, G(t) and J(t) are the resulting
stress relaxation and creep functions, respectively, and A, B, P and
Q are constants determined from elastic and viscous damping
moduli of the elements in the model, as will be shown in the next
section. Our analysis concludes that different four-element vis-
coelastic models applicable to soft tissues with two characteristic
times, all lead to a universal response, characterised by a single
mathematical representation given in Eq. (1), with single universal
stress-relaxation and creep functions. Application of these func-
tions to experimental data obtained from stress-relaxation and
creep tests reported in the literature for a range of different types
of tissues including aortic valve, ligament and cerebral artery is
also presented.
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Fig. 1. Discrete element representation of independent viscoelastic models with two characteristic times, constraining two dashpots and springs.

A. Anssari-Benam et al. / Journal of Biomechanics ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
2. Independent discrete element viscoelastic models with two
characteristic times

The possible five independent discrete element viscoelastic
models containing two dashpots and springs, and exhibiting two
characteristic times, are shown in Fig. 1. All other combinations of
springs and dashpots may either not result in two characteristic
times, or may form elements in parallel or series which may
reduce to one of the five considered discrete model arrangements
presented. It can be shown how the unified viscoelastic relation-
ship in Eq. (1a) mathematically describes the constitutive beha-
viour between stress, strain and time for all of these models,
characterising a universal viscoelastic behaviour.

In general, the following steps may be applied to each model to
derive the unified equation (Eq. (1a)) from the local stress/strain
relationships. An ‘element’ is defined as a basic spring or dashpot
component, while a ‘segment’ is defined as a combination of those
elements either in parallel or series. Accordingly, the local rela-
tionships between the stress/strain of the elements and/or the
segments are hence expressed. Then the first and second deriva-
tives of those stress/strain relationships are obtained, and are
combined together to formulate a second-order differential
equation between the global stress and strain. The coefficients of
the derivatives are adjusted to retrieve the unified relationship
given in Eq. (1a).

The above described approach is detailed in the following for
the model shown in Fig. 1a. In this model
Please cite this article as: Anssari-Benam, A., et al., Unified viscoelast
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Note that subscripts S and D denote the parameter of interest
related to spring and dashpot elements, respectively.
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Fig. 2. Discrete element representation of a viscoelastic model consisting of two
Kelvin elements in series.
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Summing Eqs. (5) and (6)
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Eq. (12) is the constitutive relationship between stress, strain
and time for this viscoelastic model. It immediately follows that

Eq. (12) is reminiscent of Eq. (1a), with A
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The constitutive equation between stress, strain and time for
the remaining four model representations shown in Fig. 1(b)–(e) is
also governed by the universal relationship given in Eq. (1a),
derived and presented in Appendix A for the interested reader.

It must be noted that a model consisting of two Kelvin ele-
ments in series, as shown in Fig. 2, would not represent a
relaxation behaviour with two characteristic decay times, as the
governing equation of this model is: A R P Qσ σ ε ε ε+ ̇ = + ̇ + ¨. Thus,
this model may not be deemed suitable for application to soft
tissues with two characteristic times, and has therefore not been
included in our analysis.
3. Universal stress-relaxation and creep functions

Both stress-relaxation and creep functions are derived from the
universal constitutive relationship between stress, strain and time
governing all of the above models, A B P Qσ σ σ ε ε+ ̇ + ¨ = ̇ + ¨, by
applying the appropriate boundary conditions. The phenomenon
of stress relaxation incurs while the strain is kept constant,
therefore A B0 0ε ε σ σ σ̇ = ¨ = ⇒ + ̇ + ¨ = . Solving this second order
differential equation for stress gives the relaxation function G(t) as

G t c e c e 13r t r t
1 0 11 2σ( ) = + ( − ) ( )

where c1 is a constant, 0σ is the initial stress prior to relaxation,

r1 and r2 are: r A A B
B1,2

4
2

2
= − ± − , and are related to relaxation times

as:
r1,2

1

1,2
τ = − .

Creep occurs while stress is kept constant at an arbitrary level
0σ , therefore P Q0 0σ σ ε ε σ̇ = ¨ = ⇒ ̇ + ¨ = . Solving this equation for
strain results in the creep function J(t) in the form
Please cite this article as: Anssari-Benam, A., et al., Unified viscoelast
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where c2 is a constant, 0ε is the initial strain prior to creep, r is:
r P Q/= − ( ), and is related to retardation time as: r1/τ = − ( ).

Eqs. (13) and (14) describe the universal stress-relaxation and
creep behaviour of viscoelastic tissues with two characteristic
times. It is worth noting that the unified constitutive viscoelastic
behaviour accommodates both stress-relaxation and creep, pre-
cluding the need to adopt separate models to characterise each
behaviour.

In order to corroborate the application of these functions in
characterising the time-dependant behaviour of soft tissues, G(t)
and J(t) were fitted to the experimental stress-relaxation and creep
data of a range of soft tissue specimens including aortic valve,
ligament and cerebral artery, reported in the literature. The
experimental details of sample preparation and test protocols have
been described in the respective studies. In brief, sample speci-
mens of porcine aortic valve (Anssari-Benam et al., 2011b), rabbit
medial collateral ligament (Thornton et al., 1997, 2001) and human
middle cerebral artery (Li et al., 2013) were subjected to uniaxial
stress relaxation and creep tests using universal mechanical test-
ing machines, over the periods ranging from 5 min to 2 h. Repre-
sentative examples were considered for stress relaxation at con-
stant strain levels of 6% of the failure strain, 5% and 25.2% for the
aortic valve, ligament and cerebral artery specimens, respectively.
Representative creep samples were selected at constant stress
levels of 5% of the failure stress, 14 MPa and 18.7 kPa for the aortic
icity: Applying discrete element models to soft tissues with two
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Fig. 3. Experimental data versus functions in Eqs. (13) and (14) for stress-relaxation and creep behaviour of representative aortic valve, ligament and cerebral artery. Stress
relaxation at: (a) 6%ε = of the failure strain of porcine aortic valve in circumferential direction; (b) ε = 5% of the rabbit medial collateral ligament; and (c) 25.2%ε = for
human middle cerebral artery. Creep at: (d) 5%σ = of the failure stress of porcine aortic valve in circumferential direction; (e) 14σ = MPa for rabbit medial collateral
ligament; and (f) 18.7σ = kPa for human middle cerebral artery. Hollow circles represent the experimental data, and continuous lines show the model trends. Experimental
data were collated from Anssari-Benam et al. (2011b) for aortic valve, Thornton et al. (1997, 2001) for rabbit medial collateral ligament, and Li et al. (2013) for human middle
cerebral artery.

Table 1
Stress-relaxation and creep parameters characterised by fitting G(t) and J(t) functions to the experimental data (Fig. 3). Numerical values are presented as Mean7SD.

Stress relaxation
c1 [MPa] r1 [s�1] r2 [s�1]

Porcine aortic valve 0.018870.0004 �0.088470.0008 �2.44�10�471.03�10�5

Rabbit medial collateral ligament 3.184070.1410 �0.025070.0040 �1.57�10�476.96�10-5

Human middle cerebral artery 0.003070.00006 0.003170.00008 �6.59�10�471.36�10-6

Creep
c2 [dimensionless] r [s�1] P [MPa s]

Porcine aortic valve 0.082570.0001 �0.044070.0200 4.40�10478.32�103

Rabbit medial collateral ligament 0.055070.0004 �0.024570.0192 4.90�10679.70�105

Human middle cerebral artery 0.266470.0007 �0.001970.0009 2.47�10474.51�103
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valve, ligament and cerebral artery specimens, respectively. This
range was chosen to accommodate the viscoelastic behaviour of a
diverse range of soft tissues under both low and high levels of
stress/strain, over an inclusive period of time.

Fig. 3 shows how G(t) and J(t) functions described the respec-
tive stress-relaxation and creep behaviours. The fitting procedure
was performed by Curve Fitting Toolbox™ in MATLABs, using
Levenberg–Marquardt algorithm, reporting R2 values in excess of
0.98. Fitting parameters are listed in Table 1. The results highlight
the derived unified model provides a very good fit to the experi-
ments data, capturing both stress-relaxation and creep behaviours
of the subject tissues.
4. Concluding remarks

The time-dependent behaviour of soft tissues can be char-
acterised by two characteristic time scales, known as ‘fast’ and
‘slow’ times, or ‘short-’ and ‘long-’ time memory scales. Char-
acterising this behaviour incorporates two dashpots, together with
two spring elements, in discrete element representation models of
viscoelasticity. A unified and universal relationship between stress,
strain and time, governing the constitutive behaviour of such
models was derived and presented. Our analysis indicates that the
universal viscoelastic behaviour of tissues with two characteristic
times is independent of the chosen configurations and arrange-
ments of spring and dashpot elements. This may therefore obviate
the need to employ different models to characterise the viscoe-
lastic behaviour of different soft tissues.

Using this constitutive relationship (Eq. (1a)), stress-relaxation
and creep functions were derived and presented (Eqs. (13) and
(14)). The universal viscoelastic behaviour of four-element discrete
models is therefore capable of capturing and characterising both
stress-relaxation and creep. To corroborate the application of these
functions to experimental data, the derived model was fitted to
data collated from stress-relaxation and creep tests of aortic valve,
ligament and cerebral artery specimens, showing an acceptable
agreement between the model and experiment. It must be noted
that other experimental procedures such as dynamic mechanical
tests may also be used in characterising viscoelastic behaviour of
tissues. However, those tests are most useful in determining the
storage and loss moduli, and the phase lag between stress and
strain in frequency domains. Such analysis may therefore not be
directly relevant to characterising the stress relaxation and creep
behaviours of soft tissues, or the characteristic times, and was not
considered in this study.

One of the main advantages of deriving this unified constitutive
equation is that it will allow comparisons of the characterised
viscoelastic parameters between different tissues, and facilitate
establishing universal values of viscoelastic parameters for a soft
tissue. Model parameters A, B, P and Q can be quantified from
relevant experimental data and be directly compared between
different tissues. Furthermore, relationships between model con-
stants ( Ei and iη ) and material parameters, such as relaxation
times, may be established. Thus, differences between the values of
material parameters of different tissues can now be interpreted
based on the differences in known model constants. In view of the
present analysis, the application of the presented model in this
paper is recommended in preliminary investigations of the time-
dependant behaviour of soft tissues with two-characteristic times.
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Appendix A

For the model in Fig. 1b

⎧
⎨⎪
⎩⎪

a
b
c A1

S D S D

S S D

S D

1 1 2 2

1 2 2

1 1

σ σ σ σ σ
ε ε ε ε
ε ε

= + = = ( )
= + + ( )

= ( ) ( )

From Eq. (A1a) it follows that

⎧
⎨⎪

⎩⎪
E

E

a
b
c A2

S

S D

D

2 2

1 1 1 1

2 2

σ ε
σ ε η ε
σ η ε

= ( )
= + ̇ ( )
= ̇ ( ) ( )

Differentiating Eq. (A1b) with respect to time, and using (A2a)
and (A2c)

E A3
S1

2 2
ε ε σ σ

η
̇ = ̇ + ̇ +

( )

Differentiating the above equation with respect to time

E A4
S1

2 2
ε ε σ σ

η
¨ = ¨ + ¨ + ̇

( )

Multiplying Eq. (A3) by E1 and Eq. (A4) by 1η , and adding the
resulting relationships

E E
E
E E

E
A5

S S1 1 1 1 1 1
1

2

1

2

1

2

1

2
ε η ε ε η ε σ

η
σ

η
σ

η
η

σ̇ + ¨ = ̇ + ¨ + ̇ + ¨ + + ̇
( )

Now, taking the time derivative from Eq. (A2b) and re-arran-
ging it

E A6S D1 1 1 1ε σ η ε̇ = ̇ − ¨ ( )

Substituting Eq. (A6) into (A5)

⎛
⎝⎜

⎞
⎠⎟

E E
E E

E1
A7

1

2

1

2

1

2

1

2
1 1η

σ
η
η

σ
η

σ ε η ε+ + + ̇ + ¨ = ̇ + ¨
( )

which can be re-written as

⎛
⎝⎜

⎞
⎠⎟E E E E E A8

1 2

1

2

2

1 2

1 2
2

1 2

1
σ

η η η
σ

η η
σ η ε

η η
ε+

+
+ ̇ + ¨ = ̇ + ¨

( )

Eq. (A8) is the constitutive relationship between stress, strain
and time for this model. It is evident that this equation has the

same form as Eq. (1a), with A
E E

1 2

1

2

2( )= +η η η+ , B E E/1 2 1 2η η= ( ), P 2η=

and Q E/1 2 1η η= ( ).
For the model shown in Fig. 1c

⎧
⎨
⎪⎪

⎩
⎪⎪

a
b
c
d A9

D S

S D

D D S

D S

1 1

2 2

1 2 1

2 2

σ σ σ
σ σ σ
ε ε ε ε
ε ε

= = ( )
= + ( )
= + + ( )

= ( ) ( )

Eq. (A9) is similar to the governing equation of model shown in
Fig. 1b (see Eq. (A1)). Using the same steps described in §2, i.e.
differentiating Eq. (A9c) with respect to time and multiplying it by
E2; multiplying the second time derivative of Eq. (A9c) by 2η , and
adding the resulting two equations, one arrives at:

⎛
⎝⎜

⎞
⎠⎟E E E E E A10

1 2

2

1

1

1 2

1 2
1

1 2

2
σ

η η η
σ

η η
σ η ε

η η
ε+

+
+ ̇ + ¨ = ̇ + ¨

( )

Eq. (A10) is the constitutive equation describing the relation-
ship between stress, strain and time for this model. This equation

is the same as Eq. (1a), with A
E E

1 2

2

1

1( )= +η η η+ , B
E E
1 2

1 2
= η η , P 1η= and

Q
E
1 2

2
= η η .
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g/10.1016/j.jbiomech.2015.07.015i

http://dx.doi.org/10.1016/j.jbiomech.2015.07.015
http://dx.doi.org/10.1016/j.jbiomech.2015.07.015
http://dx.doi.org/10.1016/j.jbiomech.2015.07.015


A. Anssari-Benam et al. / Journal of Biomechanics ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
For the model presented in Fig. 1d

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

a
b
c
d
e A11

S

S D D
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1 2 2

1 2 2

σ σ
σ σ σ
σ σ
ε ε ε ε
ε ε ε

= ( )
= + ( )
= ( )

= + + ( )
= + ( ) ( )

One can note that Eq. (A11) is similar in format to the governing
equations of the model presented in Fig. 1a, described by Eq. (2).
Using the same approach, i.e. eliminating the local strains and
their corresponding stresses by taking the first and second time
derivative of Eq. (A11a) by substituting (A11b) and (A11c), multi-
plying each with 1η and E1, and adding the resulting equations one
arrives at

⎛
⎝⎜

⎞
⎠⎟E E E E E A12

1 2

1

2

2

1 2

1 2
1 2

1 2

1
σ

η η η
σ

η η
σ η η ε

η η
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+
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( )

Eq. (A12) is the constitutive equation of this model, and is

similar to Eq. (1a) with A
E E

1 2

1

2

2( )= +η η η+ , B
E E
1 2

1 2
= η η , P 1 2η η= + and

Q
E
1 2

1
= η η .

Finally, for the model shown in Fig. 1e which constitutes of two
Maxwell elements in parallel:

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

a
b
c
d
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From Eq. (A13d) and (A13e) it follows that

⎧⎨⎩ A14
S D
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2 2{ε ε ε
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and from Eq. (A13b) and (A13c)
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Substituting Eq. (A15) into (A14)
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S S

1

1
1 1

2
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From Eq. (A13a)

E E
E
E A17S S S

S
1 1 2 2 1

2 2

1
σ ε ε ε σ ε= + ⇒ = −
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Substituting for S1ε from Eq. (A17) into (A16a)
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S S2
1

2 1
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σ
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and substituting Eq. (A18) into (A16b)
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Now, rearranging Eq. (A18) for S2ε

E E E E E
1

A20S S2
1

1
2

2
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Substituting Eq. (A20) into (A16b)

E E
E E

E
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1 2 1 2
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1
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ε

η η
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η η
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+
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−

−
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Differentiating Eq. (A19) with respect to time, and equating it
with Eq. (A21), results in

⎛
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E E
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η η
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+
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¨
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Eq. (A22) is the constitutive equation for this viscoelastic model
(Fig. 1e), describing the relationship between stress, strain and
time in this model. It immediately follows that Eq. (A22) is the

same as Eq. (1a), with A E E
E E

1 2 2 1

1 2( )= η η+ , B
E E
1 2

1 2( )= η η , P 1 2η η= + and

Q E E
E E

1 1 2 2 1 2

1 2( )= η η η η+ .
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