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Abstract 

Here, we seek to determine how compliantly suspended loads could affect the dynamic 

stability of legged locomotion. We theoretically model the dynamic stability of a human carrying 

a load using a coupled spring-mass-damper model and an actuated spring-loaded inverted 

pendulum model, as these models have demonstrated the ability to correctly predict other aspects 

of locomotion with a load in prior work, such as body forces and energetic cost. We report that 

minimizing the load suspension natural frequency and damping ratio reduces the stability of the 

load mass but improves the whole-body stability of locomotion when compared to a rigidly 

attached load. These results imply that a highly-compliant load suspension could help stabilize 

legged locomotion during human, animal, or robot load carriage, but at the cost of a more 

awkward (less stable) load. 
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Introduction 

Humans, animals, and robots can benefit from compliantly suspending loads from their 

bodies, but little is known about how the stability of locomotion may be impacted in the process. 

The first documented use of a highly-compliant load suspension are humans carrying heavy 

loads with compliant bamboo carrying poles, which were initially adopted in Southeast Asia 

(Castillo et al., 2014; Kram, 1991; Potwar et al., 2014) (Figure 1a). More recently, various 

highly-compliant suspension systems have been developed to assist humans carrying heavy 

camera systems using the Steadicam® stabilizing arm (Ackerman and Seipel, 2015; Jurgens, 

1978) (Figure 1b), backpack loads (Foissac et al., 2009; Rome et al., 2006, 2005) (Figure 1c), 

and hand-held loads (Ackerman et al., 2015). Highly-compliant load suspensions are also useful 

to improve the locomotion efficiency of horses (de Cocq et al., 2013; Pfau et al., 2009) (Figure 

1d) and legged robots (Ackerman et al., 2012a, 2012b, Ackerman and Seipel, 2013, 2011a; 

Xingye et al., 2013) (Figure 1e). Recent work shows that the effective stiffness and damping of 

the load suspension should be minimized to reduce the peak forces acting on the body (Hoover 

and Meguid, 2011; Kram, 1991; Ren et al., 2005; Xingye et al., 2013) and the energetic cost of 

locomotion (Ackerman and Seipel, 2014, 2013; de Cocq et al., 2013; Foissac et al., 2009; Rome 

et al., 2006; Xingye et al., 2013). 

Though there are many established benefits of load carriage with a compliant suspension, 

there is little published work that investigate how the stability of locomotion is impacted by an 

elastically suspended load. It is important to consider the effect of load suspensions on the 

stability of locomotion because stability can affect one’s ability to carry heavy loads rapidly in 

complex environments, how it “feels” for a human to carry a load, and the control of legged 

robots. 

Our objective in this paper is to develop theoretical understanding of how a highly-

compliant load suspension could affect the dynamic stability of running, which is defined here as 

the decay of perturbations to the center-of-mass position and velocity over one cycle (Full et al., 

2002). We chose to focus on human running because prior work shows that a highly-compliant 

load suspension is most useful at higher stepping frequencies (Ackerman and Seipel, 2014; 

Hoover and Meguid, 2011; Kram, 1991; Rome et al., 2006). Stability is critically important 

during running due to the high dynamic speeds and forces involved. Further, running with heavy 
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loads is of a particular concern in the US military, where estimated soldier loads can be over 35 

kg (Knapik et al., 2004). 

We hypothesize that: 

1. The stability of a carried load during running will be decreased when the load is 

coupled to the main body via a highly-compliant suspension compared to running with a rigidly 

attached load of equal mass. This hypothesis is based on basic linear system theory, which shows 

that a highly-compliant and lightly-damped load mass will have a lower natural frequency and 

longer settling time than if it were stiffly/rigidly attached, so perturbations to the position and 

velocity of the suspended load will take longer to decay back to steady state. 

2. The stability of the main body mass will be increased (perhaps counter-to-intuition) 

when the load is coupled to the main body via a highly-compliant suspension compared to 

running with a rigidly attached load of equal mass. This hypothesis is informed by the authors’ 

earlier theoretical studies on this subject and prior experimental results. Preliminary analysis by 

the authors on a coupled-mass vertical hopper model (Ackerman and Seipel, 2012) demonstrated 

that the stability of the main body mass could be improved with a compliant suspension. Prior 

experimental work showed that a horse rider with a ‘compliant’ leg posture reduced the 

variability in the horse’s velocity compared to the horse trotting by itself (Peham et al., 2004). 

Further, the authors’ previously conducted preliminary experimental work with a legged robot 

carrying a suspended load over rough terrain which showed that the robot traveled over the 

terrain at a faster speed while experiencing fewer failures compared to carrying a rigidly attached 

load (Ackerman et al., 2012b), suggesting that the suspended load may have increased the 

robot’s locomotion stability. 

Our overall approach is to test our hypotheses using two well-established theoretical 

modeling frameworks for locomotion with different fidelity to check for a consensus of 

corroborating results and establish a theoretical framework that may also enable the design of 

future experiments. The established models we use here are i) a coupled body-load spring-mass-

damper model of vertical motion (Coupled SMD model) (Figure 2a) and ii) an actuated Spring-

Loaded Inverted Pendulum with a vertically-constrained suspended load mass model (SLIP-Load 

model) (Figure 2b). These models have been used effectively to answer other questions about 

human locomotion (Abraham et al., 2015; Ackerman and Seipel, 2016, 2014, 2013, 2012, 2011b, 

Potwar et al., 2014, 2013, Shen and Seipel, 2012, 2015a, 2015b; Xingye et al., 2013). 
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Methods 

Coupled SMD Model 

First, we analyze the linear two degree of freedom Coupled SMD model to determine 

how a load suspension affects the stability of the coupled load and body mass in the vertical 

direction (Figure 2a). This model has been used extensively in the study of coupled-oscillators 

(Den Hartog, 2007) and the vibration of a quarter-car suspension (Sharp and Crolla, 1987). The 

author’s previously used this model to study how the forces and energetics of human and robot 

walking are affected by a suspended load (Ackerman and Seipel, 2014, 2013, 2012, 2011b; 

Xingye et al., 2013). 

The Coupled SMD model is forced using a sinusoidal base excitation and represents the 

vertical dynamics of a human walking or running with a load (Ackerman and Seipel, 2014). The 

equations of motion for the Coupled SMD model forced with a base excitation L(t) with respect 

to static equilibrium are: 

 𝑀𝑌̈ + 𝑐(Ẏ − ẏ) + 𝑘(𝑦 − 𝑌) + C(Ẏ − L̇) + K(𝑌 − 𝐿) = 0, (1) 

 𝑚𝑦̈ + 𝑐(𝑦̇ − 𝑌̇) + 𝑘(𝑦 − 𝑌) = 0. (2) 

 𝐿(𝑡) = a ∗ sin(ωt), 𝐿̇(𝑡) = aω ∗ cos(ωt), (3) 

We used representative parameters to simulate human running (Table 1). 

The stability of this model is calculated by perturbing the initial conditions of the system 

(𝜕𝑌0, 𝜕𝑌̇0, 𝜕𝑦0, 𝜕𝑦̇0) with a magnitude of 0.01, estimating the partial derivatives using finite 

differences for the mapping from one period to the next, and calculating the eigenvalues of the 

resulting linearized Jacobian matrix. This method can quantify the relative growth or decay of 

perturbations to the state variables in a coupled system (Full et al., 2002). For the Coupled SMD 

model, the Jacobian is 

 𝐽 =

[
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. (4) 



 6 

The eigenvectors associated with the eigenvalues of the linearized Jacobian matrix show the 

relative correspondence between the eigenvalues and the state variables in a coupled system 

(Table 2). 

Once perturbed, this system will return to a limit cycle with period T: 

 𝑇 =
2𝜋

𝜔
. (5) 

Here we study the three variables associated with the suspended load: the load mass 

magnitude M, the load suspension natural frequency 𝜔𝑛, and the damping ratio 𝜁. The damping 

ratio is a dimensionless measure of damping which changes the effective stiffness and damped 

natural frequency of the system. The effective stiffness K of the load suspension can be defined 

by the natural frequency, damping ratio, and load mass, 

 𝐾 = 𝑀(
𝜔𝑛

√1 − 𝜁2
)

2

. (6) 

The load suspension damping coefficient C can be defined by the damping ratio, effective 

stiffness, and load mass, 

 𝐶 = 2𝜁√𝐾𝑀  . (7) 

 

SLIP-Load Model 

Second, we analyze the stability of the nonlinear SLIP-Load model (Potwar et al., 2014) 

(Figure 2b). This model provides a more realistic representation of the coupled fore-aft and 

vertical whole-body sagittal-plane dynamics of a human running with a load. 

The hip-actuated SLIP model (Shen and Seipel, 2012) is a highly-stable model which can 

describe the center-of-mass dynamics of human and animal running using realistic parameters. 

Unlike the traditional energy-conserving SLIP model (Blickhan, 1989; Blickhan and Full, 1993), 

the hip-actuated SLIP model inputs energy into the system by applying torque to the virtual leg 

about the hip and removes energy from the system through a damper acting along the virtual leg. 

Prior versions of this model have been used to study the effects of the virtual leg torque, 

stiffness, and damping on the energetic cost, stability, and peak forces of running (Abraham et 

al., 2015; Ackerman and Seipel, 2016; Shen and Seipel, 2015a, 2015b, 2012). 
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We modified this model by attaching a load mass to the body mass with a vertically-

constrained suspension (Figure 2b). The parameters of the SLIP-Load model were selected to 

approximate a human running with a load (Table 1). 

The equations of motion of the SLIP-Load model were derived via Newton’s method. As 

in prior work, the virtual leg, or spring-leg, is defined as the distance between the body center of 

mass and the foot center of pressure (Andrada et al., 2014; Blickhan, 1989; Blickhan and Full, 

1993; Daley et al., 2007; Farley et al., 1993; McMahon and Cheng, 1990; Shen and Seipel, 

2012). The angle θ of the virtual leg during the stance phase with respect to the horizontal axis is 

 θ = tan−1 (
x−xf

y
) +

π

2
. (8) 

The position xf is the foot center of pressure at the distal end of the virtual leg in contact 

with the ground during the stance phase. The position of the body center-of-mass is described by 

the coordinates x and y. The length of the virtual leg during the stance phase is 

 l = √((𝑥 − 𝑥f)2 + 𝑦2). (9) 

The force along the virtual leg, the force perpendicular to the virtual leg, and the 

suspension force acting on the body are 

 FL = k(lo − l) −
c

l
((x − f)ẋ + yẏ), (10) 

 FT =
τ

l
, (11) 

 FS = K(Y − y) + C(Ẏ − ẏ). (12) 

We assume a constant virtual leg torque as done in prior work with Actuated SLIP-based 

models (Abraham et al., 2015; Ackerman and Seipel, 2016; Potwar et al., 2014; Shen and Seipel, 

2015a, 2015b, 2012). Though this is not an accurate representation of the torque profile in an 

actual human leg, prior work has shown that this modeling framework is capable of making good 

stability, energetic, and force predictions for legged locomotion in general, including human 

locomotion. 

During running, the model has a distinct stance phase where the virtual leg is in contact 

with the ground and a flight phase where the virtual leg leaves the ground and the body 

undergoes projectile motion. The equations of motion during the stance phase of running with 

one virtual leg in contact with the ground are 

 ẍ =
FT sinθ−FL cosθ

m
, (13) 
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 ÿ =
FL sinθ+FT cosθ+FS

m
− g, (14) 

 Ÿ = −
FS

M
− g. (15) 

The model starts in the stance phase when the virtual leg just touches the ground at a 

given touchdown angle θ = β, which occurs when 

 y = lo sin β. (16) 

The initial conditions of the body mass starting from a touchdown event are vx0 and vy0, 

which are calculated from the body mass touchdown velocity vector magnitude 𝑣0 and angle 𝛿0, 

 vx0 = 𝑣o cos ∂0, (17) 

 vy0 = −𝑣o sin ∂0. (18) 

The initial conditions for the load mass starting from a touchdown event are the position 𝑌0 and 

velocity 𝑌̇0. 

The torque τ rotates the virtual leg while it is compressed during the stance phase, storing 

energy in the virtual leg in preparation for lifting off the ground and entering the flight phase. 

When the vertical forces in the spring and damper along the virtual leg become zero, the system 

achieves the lift off condition 

 FL sin θ + FT cos θ = 0. (19) 

The equations of motion during the flight phase are 

 ẍ = 0. (20) 

 ÿ =
FS

m
− g, (21) 

 Ÿ = −
FS

M
− g. (22) 

The model transitions back to the stance phase when the next virtual leg touches the ground 

again at the touchdown angle θ = β. 

A version of this model was introduced previously (Potwar et al., 2013), but this version 

was found to significantly change speed as the load suspension stiffness varied. Later, a 

continuous torque-based speed controller was added to maintain a specified running speed, and 

this model was found to predict the dynamic behavior of the human body while running with a 

highly-compliant pole suspension and a rigid load (Potwar et al., 2014). Here, we take a similar 

approach by discretely adjusting the constant virtual leg torque 𝜏 from stride-to-stride using a 
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numerical solver to achieve a specified average running speed. Controlling the average speed is 

important to make fair comparisons between the model results when the suspension parameters 

are varied and is akin to comparing a human running on a treadmill at a constant speed with 

different load configurations. 

The virtual leg damping removes energy from the system, so prescribing the virtual leg 

damping value requires the torque to be adjusted as described to add the appropriate amount of 

energy to the system. There are few prior experimental studies on the effective damping of the 

human leg, but one prior experiment estimates that the effective human leg damping during 

vertical body oscillation is 950 Ns/m (Zhang et al., 2000). For the SLIP-Load model, we 

estimated the virtual leg damping to be a constant 1200 Ns/m to maintain stability with large 

load mass variations (Table 1). 

The virtual leg stiffness is derived from an established dimensionless leg stiffness ratio 

(Ackerman and Seipel, 2016; Blickhan and Full, 1993; Shen and Seipel, 2015a, 2015b, 2012). 

Here we assume that the dimensionless virtual leg stiffness ratio is affected by the combined 

body and load mass (Table 1), which is based on recent work showing that the effective human 

leg stiffness increases almost linearly with added body mass (Silder et al., 2015). 

The same methodology outlined previously can be used to analyze the stability of this 

model. First, the initial conditions and the virtual leg torque are adjusted from touchdown to 

touchdown until a steady state limit cycle is achieved with an error less than 1E-9. Then, the 

initial conditions of the system (𝜕vx0, 𝜕vy0, 𝜕𝑌0, ∂Ẏ0) are perturbed with a magnitude of 0.01, the 

partial derivatives (𝜕vx, 𝜕vy, 𝜕𝑌, 𝜕𝑌̇) are estimated using finite differences for the mapping from 

one touchdown to the next, and the eigenvalues of the resulting linearized Jacobian matrix are 

calculated. For the SLIP-Load model, the Jacobian is 

 𝐽 =

[
 
 
 
 
 
 
 
𝜕vx

𝜕vx0

𝜕vx

𝜕vy0

𝜕vx

𝜕𝑌0

𝜕vx

𝜕𝑌̇0

𝜕vy

𝜕vx0

𝜕vy

𝜕vy0

𝜕vy

𝜕𝑌0

𝜕vy

𝜕𝑌̇0

𝜕𝑌

𝜕vx0

𝜕𝑌

𝜕vy0

𝜕𝑌

𝜕𝑌0

𝜕𝑌

𝜕𝑌̇0

𝜕𝑌̇

𝜕vx0

𝜕𝑌̇

𝜕vy0

𝜕𝑌̇

𝜕𝑌0

𝜕𝑌̇

𝜕𝑌̇0]
 
 
 
 
 
 
 

. (23) 
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Results 

Coupled SMD Model 

The Coupled SMD model (Figure 2a) shows that the stability of a load suspended with a 

highly-compliant and lightly-damped suspension (solid black topmost line) is significantly 

decreased compared to a rigidly attached load (dotted black bottommost line) (Figure 3a). These 

eigenvalue branches primarily correspond with the load state variables, which can be observed in 

the associated eigenvectors (Table 2). The other two eigenvalue branches primarily correspond to 

the body mass degrees of freedom (Table 2) and show that the stability of the body mass 

increases with a highly-compliant and lightly-damped load suspension relative to a rigidly 

attached load as the load mass increases (Figure 3a). 

The rigidly attached load case shows mixed eigenvectors corresponding to the body mass 

degrees of freedom (Table 2) because the load mass is tightly coupled to the body mass (Figure 

4). The highly compliant and lightly damped load suspension decouples the motion of the load 

mass from that of the body mass (Figure 4), reducing the interaction between the load and body 

mass degrees of freedom in the eigenvectors (Table 2). 

If the natural frequency (Figure 3c) or damping ratio (Figure 3e) of the load suspension 

increases, the stability of a suspended load (solid black line) improves but is still significantly 

less stable than a rigidly attached load (dotted black bottommost line). The relative stability 

improvement corresponding to the body mass degrees of freedom remains approximately the 

same with a suspended load compared to a rigidly attached load over a range of natural 

frequencies from 0.1-1.5 Hz (Figure 3c) and damping ratios between 0.1-0.5 (Figure 3e), 

showing that the result is robust over a typical load suspension parameter range. 

To visually observe the eigenvalue results, the time response of all state variables to 

perturbations in each state variable are shown in Figure 5. These perturbation responses confirm 

that the body mass degrees of freedom return to steady state faster with a suspended load 

compared to a rigidly attached load. The load mass degrees of freedom take significantly longer 

to return to steady state with a suspended load versus a rigidly attached load. 
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SLIP-Load Model 

The SLIP-Load model (Figure 3b) also shows that the stability of a load suspended with a 

highly-compliant and lightly-damped suspension (solid black topmost line) is significantly 

decreased compared to a rigidly attached load (dotted black bottommost line) (Figure 3b). These 

eigenvalue branches closely correlate with the load state variables, which can be seen in the 

eigenvectors (Table 2). 

The other eigenvalue branches (blue and red lines) primarily correspond to the body mass 

degrees of freedom, though there is significant mixing between the body mass and the load mass 

degrees of freedom with the rigidly attached load because the load mass is tightly coupled to the 

body mass (Figure 4) (Table 2). The blue eigenvalue branches show that the stability of the body 

mass increases with a highly-compliant and lightly-damped load suspension relative to a rigidly 

attached load as the load mass increases, and the more stable red eigenvalue branches do not 

show a significant difference between a suspended load and a rigid load (Figure 3b). 

If the natural frequency (Figure 3d) or damping ratio (Figure 3f) of the load suspension 

increases, the stability of a suspended load (solid black line) improves, but the load is still 

significantly less stable than a rigidly attached load (dotted black bottommost line). The blue 

eigenvalue branches corresponding to the body mass degrees of freedom with the suspended load 

show a further stability improvement relative to the rigidly attachment load with increasing load 

suspension natural frequencies from 0.1-1.5 Hz (Figure 3d) and damping ratios from 0.1-0.5 

(Figure 3f), but the red eigenvalues branches still do not show significant differences between the 

suspended and rigidly attachment loads. These trends indicate that the stability result is robust 

over a typical load suspension parameter range for the nonlinear SLIP-Load model. 

The time response of all state variables to perturbations in each state variable are shown 

in Figure 6. These dynamic perturbation responses agree with the overall results of the stability 

analysis, showing that the body mass degrees of freedom generally return to steady state faster 

with a suspended load compared to a rigidly attached load. The suspended load mass degrees of 

freedom take much longer to return to steady state compared to the rigidly attached load, 

showing that the suspended load is less stable than the rigid load. 

We also tried different torque models (see supplement) which show that the overall 

conclusions from the SLIP-Load model are relatively insensitive to the chosen torque model. 
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Discussion 

Reduced Suspended Load Mass Stability  

Both models show that the suspended load is significantly less stable than the rigidly 

attached load (Figure 3), confirming the first hypothesis. 

If the stability of the load mass is reduced with a highly-compliant suspension, the load 

carrier may perceive that they have less control over the motion of the load and that the load 

feels more awkward to carry compared to a stiffly/rigidly attached load. The authors’ have 

experienced this feeling themselves and heard comments about an awkward feeling from 

participants during an experiment testing a hand-held load suspension (Ackerman et al., 2015). 

In another experimental study, participants carrying a load with a compliant bamboo pole 

reported that “balancing the pole was difficult and uncomfortable” (Castillo et al., 2014). The 

awkward feeling noted by the subjects in these studies could have been caused by asymmetric 

loading, insufficient habituation, or the challenge of balancing a long pole on their shoulder 

(Potwar et al., 2014), but we expect that part of this awkward feeling is a result of the reduced 

stability of a compliant load. The reduction in the stability of the load mass may be particularly 

noticeable when the user initiates locomotion from rest, the user comes to a stop, or the load 

physically interacts with the environment. Under these circumstances, the load will be perturbed 

from its equilibrium position or limit cycle, and it will take longer for the load to return to steady 

state without active input from the user. 

This potentially awkward feeling could be improved by increasing the natural frequency 

or the damping ratio of the suspension to reduce oscillations and damp perturbations more 

quickly (Figure 3c-f). However, increasing the suspension stiffness and damping to increase the 

stability of the load mass represents a design tradeoff because the peak force reduction 

(Ackerman and Seipel, 2011b; Foissac et al., 2009; Hoover and Meguid, 2011; Kram, 1991; 

Rome et al., 2006, 2005) and potential energetic benefits (Ackerman and Seipel, 2014, 2013, 

2011a, Rome et al., 2006, 2005; Xingye et al., 2013) offered by a load suspension could be 

compromised if the suspension stiffness or damping is too high. 

Training and experience may be helpful for a user to become acclimated to carrying a 

suspended load. For example, Steadicam® operators carry heavy camera rigs with a lightly-

damped and highly-compliant stabilizing arm suspension for hours at a time after sufficient 
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training and experience (Jurgens, 1978). Steadicam® operators likely adapt their gait in response 

to or to compensate for the less stable load suspension. They also have some direct control over 

the load motion by manipulating a control arm attached to the camera sled gimbal, which could 

help to actively damp perturbations or to give the user a feeling of control through tactile 

feedback. Users of bamboo carrying poles also appear to hold the suspended load or pole to help 

stabilize the load (Balogun, 1986; Castillo et al., 2014; Datta and Ramanathan, 1971; Kenntner, 

1969; Kram, 1991; Potwar et al., 2014). 

Horse jockeys are another example of a highly-compliant load suspension because they 

actively suspended their body from a galloping horse via a ‘compliant’ leg posture (de Cocq et 

al., 2013). While racing, a jockey is working near their maximal heart rate to actively maintain 

their ‘compliant’ leg posture (Pfau et al., 2009), which may be caused in part by increased 

muscular effort to stabilize their own motion. 

 

Increased Body Mass Stability 

Both models show that the stability of the body mass is increased with a suspended load 

mass (Figure 3), confirming the second hypothesis. The differences in the stability of the body 

mass appear to be caused by the coupled dynamic interactions between the body and load mass. 

The motion of the highly-compliant and lightly-damped load suspension is decoupled from that 

of the body mass (Figure 4), which reduces the dynamic interaction between the load mass and 

the body mass (Table 2). With a stiffly/rigidly attached load, the load mass is tightly coupled to 

the body mass such that perturbations to the load mass can significantly affect the motion of the 

body mass, which may increase the magnitude of the eigenvalues corresponding to the body 

mass state variables as the load mass magnitude increases (Figure 3a-b). 

Prior work shows that an experienced rider utilizing a compliant leg posture (de Cocq et 

al., 2013) reduces the variability in the horizontal and vertical velocity of their horse compared to 

the horse alone (Peham et al., 2004). While this phenomenon may be largely explained by the 

communication between a skilled rider and their horse, the SLIP-Load model shows that the 

eigenvalues corresponding to the vx and vy state variables are reduced with a highly-compliant 

load when compared with a rigidly attached load or with no load and may provide a partial 

explanation for this experimental result. 
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Similarly, highly-compliant load suspensions may be useful to help stabilize the motion 

of legged robots, which currently struggle to stabilize themselves during locomotion. A highly-

compliant load suspension that supports external loads or a portion of the inherent robot mass 

could improve the stability of the robot while reducing the energetic cost of locomotion 

(Ackerman et al., 2012a, 2012b, Ackerman and Seipel, 2013, 2011a; Xingye et al., 2013). This 

effect may be particularly helpful over challenging rugged terrain because less active control 

effort may be required to compensate for environmental perturbations. The authors’ prior 

experimental work with a legged robot carrying a suspended load over a rough terrain obstacle 

course showed that the robot traveled over the terrain more quickly while consuming less power 

and experiencing fewer failures compared to carrying a rigidly attached load (Ackerman et al., 

2012b), suggesting that the suspended load may have increased the robot’s locomotion stability 

compared to a rigid load. 

Limited experimental evidence exists regarding the stability of the body during 

locomotion with a load suspension, and future experimental perturbation studies are needed to 

validate whether the stability of the body is improved with a suspended load compared to a 

rigidly attached load. However, both the well-established linear Coupled SMD and nonlinear 

SLIP-Load model of locomotion with a load yield similar corroborating results and appear to 

explain the available evidence, which results in a strong theoretical hypothesis that could be 

tested in future experimental work. 
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Figures, Tables, and Captions 

Figure 1 – Various load suspensions have been studied in prior work, including a compliant pole 

suspension (Castillo et al., 2014; Kram, 1991; Potwar et al., 2014) (a, image from Wikipedia 

commons), the Steadicam® camera suspension system (Ackerman and Seipel, 2015; Jurgens, 

1978) (b, image reproduced from Ackerman and Seipel, 2015), a backpack suspension (Foissac 

et al., 2009; Rome et al., 2006, 2005) (c, image adapted from Foissac et al. 2009), the modern 

horse jockey riding style (Pfau et al., 2009) (d, image reproduced from Pfau et al 2009), and a 

robot suspension (Ackerman and Seipel, 2013) (e, image reproduced from Ackerman and Seipel, 

2013). 

Figure 2 – a) A two degree-of-freedom vertically-constrained spring-mass-damper (Coupled 

SMD) model can be used to simulate the dynamics of the body mass and the load mass in the 

vertical direction as a coupled system during human walking or running. b) The SLIP-Load 

model of running with a vertically-constrained load suspension represents the coupled interaction 

between the body and the load during human running. The load suspension is assumed to be 

vertically constrained because it is typically intended to reduce the effective gravitational load on 

the body. 

Figure 3 – The four eigenvalues branches of the Coupled SMD and SLIP-Load model are shown 

with a suspended load (solid lines) and an effectively rigid load attachment (dashed lines) for 

increasing load mass ratio M/m (a, suspended load: ωn = 0.5 Hz, ξ = 0.1; b, rigidly attached load: 

ωn = 10 Hz, ξ = 0.5), suspension natural frequency ωn (c, suspended load: M = 25 kg, ξ = 0.1; d, 

rigidly attached load: M = 25 kg, ωn = 10 Hz, ξ = 0.5), and suspension damping ratio ξ (e, 

suspended load: M = 25 kg, ωn = 0.5 Hz; f, rigidly attached load: M = 25 kg, ωn = 10 Hz, ξ = 0.5) 

values. The other model parameters are shown in (Table 1). In all cases, the topmost solid black 

eigenvalue branches and bottommost dashed black eigenvalue are complex conjugate pairs 

which show that a suspended load is significantly less stable than a rigidly-attached load. The 

blue eigenvalue branches primarily correspond to the body mass state variables and show that the 

stability of the body mass increases with a suspended load compared to a rigidly attached load. 

The red eigenvalue branches do not show significant differences. 
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Figure 4 – The Coupled SMD and SLIP-Load model show the same basic dynamic behavior 

with a suspended load and a rigidly attached load. The motion of the suspended load is highly 

decoupled from the motion of the body mass, while the motion of the rigidly attached load is 

tightly coupled to the motion of the body mass. 

Figure 5 – This plot shows the proportion of perturbation remaining for the Coupled SMD 

model over multiple cycles for each state variable (columns,  ,  ̇,  ,  ̇) after individual state 

variables are perturbed (rows,   ,   ̇,   ,   ̇) with a representative suspended load (solid line, 

ωn = 0.5 Hz, ξ = 0.1, M = 25 kg) and rigidly attached load (dashed line, ωn = 10 Hz, ξ = 0.5, M = 

25 kg). The perturbation responses corresponding to the body mass ( ,  ̇     ,   ̇) show that the 

body mass degrees of freedom return to steady state faster with a suspended load than with a 

rigidly attached load. The differences between the convergence rates are relatively small because 

the magnitudes of the eigenvalues are relatively small (very stable) for the linear Coupled SMD 

model, but the stability differences can still be readily observed. The other perturbation 

responses show that the load mass degrees of freedom take significantly longer to return to 

steady state with a suspended load versus a rigidly attached load. The oscillatory behavior seen 

in many of the perturbation responses are a result of the differences between the natural 

frequency of the highly-compliant load suspension (ωn = 0.5 Hz) and the higher overall system 

forcing frequency (ω = 3 Hz), which governs the cycle period. 

Figure 6 – This plot shows the proportion of perturbation remaining for the SLIP-Load model 

over multiple cycles for each state variable (columns,   ,   ,  ,  ̇) after individual state 

variables are perturbed (rows,    ,    ,   ,   ̇) with a representative suspended load (solid 

line, ωn = 0.5 Hz, ξ = 0.1, M = 25 kg) and rigidly attached load (dashed line, ωn = 10 Hz, ξ = 0.5, 

M = 25 kg). The perturbation responses corresponding to the body mass state variables (  ,

        ,    ) and other perturbation responses show that the body mass state variable return to 

steady state faster with a suspended load than with rigidly attached load. The convergence rates 

are much slower for the SLIP-Load model than the Coupled SMD model because the magnitudes 

of the eigenvalues are larger for the SLIP-Load model. The perturbation responses closely 

associated with the load mass state variables ( ,  ̇     ,   ̇) show that the load mass degrees of 

freedom take significantly longer to return to steady state with a suspended load versus a rigidly 

attached load. The oscillatory behavior seen in many of the perturbation responses are a result of 
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the differences between the natural frequency of the highly-compliant load suspension (ωn = 0.5 

Hz) and the faster locomotion cycle period defined by one touchdown to the next touchdown. 
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Table 1 – The parameters used to approximate human running in this study were based on prior 

work and chosen such that the model was stable over the parameter range with fore-aft dynamics 

that resemble human running. Many of the effective human parameters may change in practice 

while running with a load mass, such as the virtual leg stiffness, damping, landing angle, and 

torque. However, since it is currently not known how these effective parameters may change 

while running with increasing load mass, they are fixed for the purposes of this study. We varied 

the load mass up to 35 kg, or 50% of the assumed 70 kg body mass. It would be difficult for the 

average person to run at 3 m/s with a 35 kg load, but this situation is conceivable for soldiers 

(Epstein et al., 1987; Knapik et al., 2004). 

Parameter Name  Value 

 

Shared Model Parameters 

 

M Load Mass  1-35 kg 

ωn Damped Natural Frequency 
 0.1-1.5 Hz (suspended) 

10 Hz (rigid) 

𝜁 Damping Ratio 
 0.1-0.5 (suspended) 

0.5 (rigid) 

k Virtual Leg Stiffness 

 𝑘 =
(m+M)     

  
   (Blickhan and 

Full, 1993; Shen and Seipel, 

2015b; Silder et al., 2015) 

Krel 
Dimensionless Virtual Leg 

Stiffness 

 20 (Blickhan and Full, 1993; 

Shen and Seipel, 2015b) 

l0 

Virtual Leg Length from the 

Human Body Center of Mass to 

the Foot Center of Pressure 

 

1 m (Geyer et al., 2006) 

c Virtual Leg Damping 

 1200 Ns/m, increased from 950 

Ns/m (Zhang et al., 2000) for 

improved system stability with 

large load mass variations 

m Human Mass  70 kg 

 

Coupled SMD Model-Specific Parameters 

 

ω Forcing frequency  3 Hz 

A Forcing amplitude  0.0254 m 

 

SLIP-Load Model-Specific Parameters 

 

β Virtual Leg Landing Angle beta  65
o
 (Shen and Seipel, 2012) 

  Virtual Leg Torque  Variable 

vt Target Running Speed  3 m/s 

g Gravity  9.81 m/s
2
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Table 2 – The eigenvectors associated with each eigenvalue for a representative case (M = 

25 kg) provide a means of quantifying the coupled interactions between the state variables of 

the Coupled SMD and SLIP-Load model. The bold values indicate eigenvector components 

with a magnitude above 0.05 to highlight the most significant components. Both models 

show the same overall behavior for the suspended load and rigid load, though the eigenvalues 

and eigenvector components vary. For the suspended load, the eigenvectors for both models 

show that the body mass state variables (   and   ) and the load mass state variables ( 𝟎 and 

 ̇𝟎) are effectively decoupled from one another. There is not a significant dynamic interaction 

between the body and the load because the highly-compliant and lightly-damped suspension 

effectively decouples the motion of the load from that of the body. The eigenvectors for the 

rigidly attached load mass show a significant interaction between the stability of the body 

mass state variables    and    and the load velocity  ̇𝟎. This coupled interaction between the 

load mass and the body mass is caused by the very stiff and highly-damped load attachment 

and may explain why the eigenvalues corresponding to the body mass are larger for the rigid 

load than for the suspended load. 

 

Coupled SMD Model 

 

Suspended Load M = 25 kg 𝜁 = 0.1 ωn = 0.5 Hz 
 

  
Eigenvalue 0.055 0.055 0.901 0.901 

State Parameter Eigenvector 

𝑦 0.061 0.061 0.004 0.004 

𝑦̇ 0.997 0.997 0.013 0.013 

𝑌 0.002 0.002 0.304 0.304 

𝑌̇ 0.038 0.038 0.953 0.953 

     
Rigid Load M = 25 kg 𝜁 = 0.5 ωn = 10 Hz 

 

  
Eigenvalue 0.125 0.125 4.4E-06 2.0E-07 

State Parameter Eigenvector 

𝑦 0.050 0.050 0.016 0.026 

𝑦̇ 0.695 0.695 0.145 0.643 

𝑌 0.051 0.051 0.034 0.060 

𝑌̇ 0.716 0.716 0.989 0.763 
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SLIP-Load Model 

 

  s  n    Loa  M = 25 kg 𝜁 = 0.1 ωn = 0.5 Hz 
 

  
Eigenvalue 0.779 0.064 0.915 0.915 

State Parameter Eigenvector 

𝑣x 0.988 0.959 0.036 0.036 

𝑣y 0.154 0.279 0.013 0.013 

𝑌0 0.001 0.001 0.305 0.305 

𝑌̇0 0.009 0.047 0.952 0.952 

     
Rigid Load M = 25 kg 𝜁 = 0.5 ωn = 10 Hz 

 

  
Eigenvalue 0.936 0.068 3.3E-04 4.1E-08 

State Parameter Eigenvector 

𝑣x 0.977 0.567 0.111 0.433 

𝑣y 0.141 0.196 0.104 0.077 

𝑌0 1.1E-06 1.5E-06 6.1E-05 0.043 

𝑌̇0 0.160 0.800 0.988 0.897 
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Fig 2 
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Fig.4 
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Fig. 5 
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Fig. 6 

 




