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Fluid–structure interaction (FSI) numerical models are now widely used in predicting blood flow

transients. This is because of the importance of the interaction between the flowing blood and the
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deforming arterial wall to blood flow behaviour. Unfortunately, most of these FSI models lack rigorous

validation and, thus, cannot guarantee the accuracy of their predictions. This paper presents the

comprehensive validation of a two-way coupled FSI numerical model, developed to predict flow

transients in compliant conduits such as arteries. The model is validated using analytical solutions and

experiments conducted on polyurethane mock artery. Flow parameters such as pressure and axial stress

(and precursor) wave speeds, wall deformations and oscillating frequency, fluid velocity and Poisson

coupling effects, were used as the basis of this validation. Results show very good comparison between

numerical predictions, analytical solutions and experimental data. The agreement between the three

approaches is generally over 95%. The model also shows accurate prediction of Poisson coupling effects

in unsteady flows through flexible pipes, which up to this stage have only being predicted analytically.

Therefore, this numerical model can accurately predict flow transients in compliant vessels such as

arteries.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fluid–structure interaction (FSI) problems are of significant
importance and, with respect to modelling issues, are also very
challenging multi-physics problems. One example where FSI plays
an important role is in biomedical flow involving compliant blood
vessels (Yang et al., 2007; Bluestein et al., 2008; Kock et al., 2008),
heart valve (Nobili et al., 2008) and human airways (Kittisak and
Ramana, 2008).

Blood flow through a compliant artery requires appropriate
fluid–structure coupling in order to account for the interaction
between the flowing blood and the deforming arterial wall. Earlier
numerical models used to predict blood flow were based on rigid,
idealised (Steinman et al., 2000; Bertolotti et al., 2000) or patient
specific (Steinman et al., 2002; Myers et al., 2001), arterial
geometries, where this interaction was not taken into account.
Although much attention was given to the complex flow patterns
in arteries, the deformation of the arterial wall during each
contraction and expansion of the heart was ignored. In an attempt
to resolve this, some studies used time-varying geometries such
as the work of Zeng et al. (2003) and Pivkin et al. (2004). Many
recent studies now employ FSI approach to predict blood flow in
ll rights reserved.

yanta).
arteries (Yang et al., 2007; Bluestein et al., 2008; Kock et al., 2008;
Scotti et al., 2008). However, many of these FSI models lack
rigorous validation and, thus, cannot guarantee the accuracy of
their predictions.

This paper presents the validation of a FSI model developed to
predict flow transients in flexible conduits such as arteries
(Greenshields et al., 1999; Karac and Ivankovic, 2003). The model
was validated using analytical solutions and experiments con-
ducted on a straight polyurethane mock artery of inner diameter
d ¼ 10 mm, thickness b ¼ 0.5 mm and length l ¼ 900 mm. Flow
transients such as pressure, axial stress and precursor wave
speeds, mock artery deformations and oscillating frequency and
fluid velocity and Poisson coupling effects were used as the basis
of this validation. Numerical simulations are performed using
OpenFOAM, a 3D finite volume method C++ library (Wikki Ltd.,
www.wikki.co.uk). The mechanical properties of the mock artery
were based on measured values (Kanyanta and Ivankovic, 2009).
2. Experimental and numerical methods

The experimental set-up was as shown in Fig. 1. The inflow tank is used to

provide a pressure head and the solenoid valves (V1 and V2) control the flow

through the mock artery. Pulsatile/unsteady flow conditions are achieved by the

opening and closing of V1 or V2, which is controlled according to the user-defined

control function, taking the form of the desired pressure waveform (Kanyanta,

2009). The typical pressure waveforms obtained by this method are shown in

http://www.wikki.co.uk
http://www.wikki.co.uk
http://www.wikki.co.uk
http://www.wikki.co.uk
www.sciencedirect.com/science/journal/jbiomech
www.elsevier.com/locate/jbiomech
dx.doi.org/10.1016/j.jbiomech.2009.04.023
mailto:valentine.kanyanta@ucd.ie
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Fig. 1. Schematic of the experiment set-up for flow transients in a straight water-filled polyurethane mock artery.
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Fig. 2. Pressure and flow rates were measured using pressure transducers and a

TS420 transit-time Perivascular Flowmeter, respectively. Three methods were used

in determining pressure wave speed in the mock artery; foot-to-foot, differential

pressure and pressure–velocity (PU) loop method.

Foot-to-foot method involves measurement of either pressure or velocity

waveforms at two sites, which are a known distance Dx apart along the length of

the mock artery. In this case, pressure wave speed Cf is given by

Cf ¼
Dx

Dt
, (1)

where Dt is the time taken for the wave to travel from one measuring site to the

other.

In the differential pressure method, differential pressure between two sites,

along the length of the mock artery, and flow rate midway between the two sites,

are measured simultaneously. The pressure wave speed is then given by

Cf ¼
DPmax

rf Vmax
, (2)

where DPmax is the maximum differential pressure, Vmax is the maximum flow

velocity and rf is the fluid density.

The theoretical basis of the PU-loop method is the water hammer equation,

which for backward and forward travelling waves can be expressed as (Khir et al.,

2007)

dP� ¼ �rf Cf V�. (3)

Pressure and velocity (flow rate) are simultaneously measured at a given site

along the length of the mock artery. Plotting pressure and velocity over a cycle

gives the PU-loop. During the early part of the cycle where only forward travelling

waves are hypothesised to be present, the slope of the PU-loop should be linear,

and can be given by S0 ¼ dP+/dV+ ¼ rCf.

Fluid velocity was determined from the measured flow rate Q, assuming a

velocity profile given by Eq. (4), with n ¼ 7. This profile was arrived at after

comparing experimental and simulated flow waveforms for different velocity

profiles (Kanyanta, 2009). Although the flow in this case is laminar, there is

insufficient time for a parabolic velocity profile to develop during each cycle, as

can be shown by the Wormesley’s number a ¼ 13.7 (Eq. (5)). Pressure perturba-

tions were derived from the measured pressure waveforms. Axial stress wave

speed and mock artery oscillating frequency could not be determined experimen-

tally due to the current experimental limitations.

Vmax ¼
Q ðnþ 1Þð2nþ 1Þ

n22pR2
, (4)

a ¼ r

ffiffiffiffiffiffiffiffiffiffi
rfo
Z

s
; o ¼ 7:54 rad=s; Z ¼ 0:001 Ns=m2. (5)

Numerical studies were performed using a two-way FSI coupling scheme (Fig. 3)

implemented in OpenFOAM (Greenshields et al., 1999; Karac and Ivankovic, 2003).

Here, the fluid and solid parts of the solution domain form separate meshes, but

the interface boundary shares the same location in space. The solid and fluid

models are combined within a single code and information exchange, in terms of

tractions and displacements, takes place at the fluid–solid interface.

Since deformations are small, the solid domain was modelled as a linear elastic

solid, using the properties of polyurethane elastomer under wet-room tempera-
ture (Kanyanta and Ivankovic, 2009) i.e. Young’s modulus, E ¼ 5.3 MPa, density,

r ¼ 1000 kg/m2 and Poisson ratio, n ¼ 0.4995. The fluid domain was modelled as a

compressible Newtonian fluid with dynamic viscosity Z ¼ 0.001 Ns/m2, density

rf ¼ 998 kg/m3 and bulk modulus K ¼ 2.2 GPa (corresponding to the properties of

water at 20 1C).
3. Mathematical formulation

The behaviour of a continuum in Eulerian frame reference is
governed by the following equations:
�
 Mass balance, or continuity equation

@r
@t
þr � ðrVÞ ¼ 0 (6)
�
 Momentum balance, or Cauchy’s first law of motion (neglect-
ing body forces)

@rV

@t
þr � ðrVVÞ ¼ r � r; (7)

where r is the density, V is the velocity and r is the stress
tensor. The constitutive laws for a linear elastic (Hookean) solid
and Newtonian fluid are

�
 Stress–strain relation for a Hookean solid

r ¼ 2meþ ltrðeÞI (8)
�
 Stress–strain rate relation for a Newtonian fluid (Stokes’s law)

r ¼ 2Z_e� 2

3
Ztrð_eÞI� pI, (9)

where m and l are Lame’ coefficients, e ¼ 1/2[rU+(rU)T] is
the strain tensor, U is the displacement vector, I is the identity
tensor, Z is the dynamic viscosity, _e ¼ 1=2½rV þ ðrVÞT � is the
deformation rate and p is the hydrostatic pressure.

In the case of a linear elastic solid, the continuity equation need
not to be considered and since the deformations are sufficiently
small, the convection term r � (rVV) can be neglected and V
becomes qU/qt, and the analysis in the Eulerian and Lagrange
formulations are almost identical. A single equation can then be
derived for the structure (solid domain) in terms of U as in Eq. (10)

@

@t
r @U

@t

� �
¼ r � ½mrUþ mðrUÞT þ lItrðrUÞ�. (10)



ARTICLE IN PRESS

-3000

9000

7000

5000

3000

1000

-1000

Pr
es

su
re

 (
Pa

)

-0.1 0 0.2

Time (s)

0.30.1
-3000

-1000

1000

3000

5000

7000

1.5

Time (s)

Pr
es

su
re

 (
Pa

)

2.5 3.5 4.5

Fig. 2. Typical pressure waveform(s) generated experimentally: (a) pulsatile and (b) sudden valve (V2) opening.
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For the fluid flow, both the continuity equation and the
momentum balance must be satisfied and the convection term
cannot be ignored. The momentum balance, in terms of velocity V,
hence becomes

@ðrVÞ

@t
þr � ðrVVÞ ¼ r � Z rV þ ðrVÞT �

2

3
ItrðrVÞ

� �
�rp. (11)

The system of fluid equations is closed by relating pressure and
density of compressible liquids by bulk modulus K

K ¼ r @p

@r . (12)

For small values of r/r0 (low pressures), Eq. (12) can be
expressed via the well-known barotropic equation

r ¼ r0 þ cðp� p0Þ; where c ¼
r0

K
, (13)
and the subscript 0 represents reference values. The pressure
implicit with splitting of operators (PISO) algorithm is used to
solve the discretised pressure–velocity coupled equations.

Since FVM is based on numerical integration of the system of
equations over a computational domain, the time domain is
discretised into a finite number of time steps and the spatial
domain subdivided into a finite number of contiguous control
volumes or cells. Dependent variables and material properties are
stored at cell centroids. Numerical integration employs the mid-
point rule and linear interpolation of the dependent variables
between the cell centroids is assumed.
4. Numerical model validation

The numerical model was validated by comparing its predic-
tions of flow transients in a straight water-filled polyurethane
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mock artery to analytical solutions and experimental data. The
problem description is shown in Fig. 4. The problem is axi-
symmetric and therefore only required a solution domain in 2D.
Different mesh densities were tested until a converged solution
that is independent of mesh density (or size) was obtained (i.e.
800 cells along the pipe length, 40 cells across the fluid domain
and 3 cells across the solid domain). Wave propagation was
initiated at the left end of the pipe by applying a fixed step change
in pressure of p ¼ 7.5 kPa. Each analysis was run using a time step
to ensure Courant number o1. The left pipe wall boundary was
treated as a plane of symmetry and the outer wall had zero
traction boundary condition (Fig. 4). The fluid inlet boundary was
fixed pressure and zero velocity gradient while a convective
outflow boundary (Hasan et al., 2005) was applied at the fluid
outlet and right pipe wall boundary. Structure displacements were
START TIME STEP LOOP 

Solve fluid 
Momentum equation (V)
Pressure (p) 
Velocity correction (V)

Solve structure 
Transfer wall fluid traction to structure 
Momentum equation (U)

If fluid boundary is movable (moving mesh) 
{

Displace the fluid mesh boundary with structure boundary displacement U
Recalculate volumes and surface areas for new fluid mesh 
Equate fluid boundary velocity (V) to structure boundary velocity ( tU )

}
else
{

Equate fluid boundary velocity (V) to structure boundary velocity ( tU )
}

END OF TIME STEP 

converge

converge

PISO

Fig. 3. Implicit solution scheme for fluid–structure interaction (Greenshields et al.,

1999).

Outside wall

Axi-symmetry
planes

Axi-symmetry
planes

Fig. 4. Axi-symmetry
solved using the incomplete-Cholesky conjugate gradient (ICCG)
method to a tolerance of 10�8. The incomplete-Cholesky
biconjugate gradient (BICCG) method was used for fluid velocity
V and pressure p due to the asymmetric nature of the coefficient
matrix of the system of discretised equations. V and p were solved
to tolerances of 10�5 and 10�6, respectively.

4.1. Analytical solutions

In a straight unconstrained section of a pipe, the analytical
solution of pressure wave speed Cf is given by (Wylie and Streeter,
1993)

Cf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

rf

1þ
ðdþ 2bÞ2

bðdþ bÞ
� 2ð1� nÞ

 !
K

E

" #�1
vuut . (14)

Propagating pressure waves are due to both the compressibility
of the fluid and the compliance of the structure (pipe). When K is
far greater than E, Eq. (14) reduces to

C�f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rf

dþ 2bð Þ
2

b dþ bð Þ
� 2 1� nð Þ

 !�1
vuut . (15)

In this case, the pressure wave speed is solely due to the
stiffness of the pipe. This is generally the case for health arteries.
However, this may not be the case for diseased arteries where E

can be ten times higher than in health arteries (Ivankovic et al.,
2002). Fig. 5 shows the variation of Cf/C*f with fluid
compressibility for E ¼ 5.3 MPa. It is clear that Cf and C*f differ
significantly for KoKs, solid bulk modulus (Ks ¼ E/
[3(1�2n)] ¼ 1.77 GPa). Therefore, fluid incompressibility
assumption can only be used if the bulk modulus of the fluid is
equal to or higher than that of the structure (pipe). For the current
study, both compressible and incompressible fluid models yielded
similar results (Appendix 1).

Eq. (14) only accounts for the change in pipe area, and assumes
axial stress to be fixed over the entire pipe length. This results in
an overestimation in Cf. A better solution is obtained by applying a
Symmetry plane

Solid FSI boundary
(inner wall)

Fluid FSI boundary
(inner wall)

solution domain.
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factor j that accounts for the axial stress waves in the
pipe wall

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 1þ

E

K

b

d

� �
1�

Krf

Ers

� �� ��1
s

. (16)

The corrected analytical solution for pressure wave speed then
becomes

~Cf ¼ jCf . (17)

The stress wave (precursor wave) speed for an infinitely long
plate is given by

Cs ¼

ffiffiffiffiffi
E

rs

s
, (18)

and for a thin plate by

~Cs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

rsð1� n2Þ

s
. (19)

The relationship between pressure and velocity under unsteady,
unidirectional flow is governed by the water hammer equation

Vx ¼
Dp

rf Cf
, (20)

where Dp is the pressure difference across the wavefront and Vx is
the axial flow velocity.

Three coupling mechanisms exist in FSI: Poisson coupling,
friction coupling and junction coupling. Poisson coupling is
associated with hoop stress perturbations produced by fluid
pressure transients that results in axial stress perturbations
through Poisson ratio coefficient. Friction coupling is created by
shear stress transients acting on the pipe wall and junction
coupling results from the reactions of unbalanced pressure forces
and changes in liquid momentum at specific points along the pipe
such as bends, tees, valves, etc. Only Poisson coupling effects are
discussed in this paper since the work involves flow transients in a
straight pipe and friction coupling effects are assumed negligible.

The relationships between axial stress perturbations (Dr)
caused by pressure transients and vice-versa, are given by
(Wiggert and Tijsseling, 2001; Tijsseling et al., 2006)

Dr ¼ �GsDp and Dp ¼ �GfDr; (21)
where Gf and Gs are the fluid and solid coupling factors,
respectively, given by

Gf ¼ �2n
rf

rs

Cs

~Cf

 !2

� 1

2
4

3
5
�1

and Gs ¼ 2nR

b

~Cs

Cf

 !2

� 1

2
4

3
5
�1

, (22)

and R is the pipe radius. ~Cf and ~Cs are the modified pressure and
axial stress wave speeds, given by Eqs. (17) and (19), respectively.

Eq. (21) shows the importance of FSI. Flow transients also
include the pipe’s natural oscillating frequency, which is discussed
under Section 5.1.1.
5. Results

5.1. Numerical model validation

5.1.1. Pressure wave speed, deformations and oscillating frequency

Numerical model predicts pressure wave propagation along
the mock artery as presented in Fig. 6(a). Fig. 6(b–d) shows the
experimentally determined pressure wave speed using the foot-
to-foot, differential pressure and PU-loop methods, respectively.
The analytical solution of Cf is determined by Eq. (17), and is equal
to 13.31 m/s, while the average experimental value is 13.14 m/s.
The simulated value (Fig. 6(a)) is 13.25 m/s, which is 0.4% lower
and 0.8% higher than the analytical solution and experimental
value, respectively. Fig. 7 shows the comparison between the
simulated and analytical solutions of Cf over a wide range of E

values.
The other important feature of wave propagation is radial wall

deformation shown in Fig. 8(a), with radial displacement of
0.076 mm, which is close to the analytical value approximated by
(d+b)2p/4Eb ¼ 0.078 mm. The results also show noticeable
oscillations in the wall deformations ahead of the wavefront
(Fig. 8(a)). The averaged simulated wavelength for the first
oscillation, for t ¼ 4.8 ms, is E0.073 m. Using Eq. (19), the
estimated natural frequency becomes 1084 Hz. The analytical
solution for the pipe’s natural frequency is given by (Tijsseling et
al., 2006)

f ¼
1

2pr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E

rs þ aðR=bÞrf

s
. (23)

The coefficient a determines the added fluid mass Mf and is
given by (Tijsseling et al., 2006)

a ¼

1

2
for Mf ; ‘‘A’’ ¼ the total mass of the fluid

1

3
for Mf ; ‘‘B’’ ¼

2

3
of the total mass of the fluid

1

4
for Mf ; ‘‘C’’ ¼

1

2
of the total mass of the fluid

8>>>>>><
>>>>>>:

. (24)

Therefore, the analytical solutions for the frequency are 947
1112, and 1237 Hz for Mf ¼ A, B and C respectively. Compared to
the simulated frequency, these values are, respectively, 17%, 2%
lower and 9% higher. The values obtained with Mf ¼ B and Mf ¼ C

are closer to the numerical value than for Mf ¼ A. This indicates
that only a fraction of the total mass of the fluid contributes to
radial deformation. Alternative solutions B and C are based on a
linear distribution of radial flow velocity and the validity of this
assumption is confirmed by the simulation results presented in
Fig. 9(b).

The frequency decreases as the wavefront advances and the
deformation of the pipe approach steady state (Fig. 8(b)). The
analytical solution is for the instant when the local deformation in
the pipe is maximum (i.e. t ¼ 4.8 ms), assuming no pipe end
effects.
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5.1.2. Fluid particle velocity

Fig. 9(a) presents numerical and analytical predictions of fluid
particle flow speed Vx along the pipe centreline, showing good
comparison between the two approaches over the entire length of
the pipe. The experimental value of Vx was 0.46 m/s, which is
about 8% lower than the analytical and simulated values of
approximately 0.5 m/s.
5.1.3. Poisson coupling effects

Stress waves in the pipe wall (Fig. 10(b)) are caused by the
sudden changes in fluid pressure (Fig. 6(a)). These waves in turn
produce pressure perturbations Dp, also known as precursor
waves, as shown in Fig. 10(a). Similarly, pressure transients (Fig.
10(a)) produce axial stress perturbations Ds shown in Fig. 10(b).
The magnitude of Dp and Ds is about 14.3% and 13.4% of the
primary pressure waves (Fig. 10(a)) and axial stress waves
(Fig. 10(b)), respectively. Numerical and analytical values of Dp

are 1070 and 1050 Pa, and for Ds are �2350 and �2250 Pa,
respectively. The experimentally determined magnitude of Dp,
corresponding to a change in pressure of 7.5 kPa, is 1200 Pa
(Kanyanta, 2009), making the numerical value of Dp 2% higher and
12% lower than the analytical solution and experimental value,
respectively, and that of Ds 4% higher than its analytical solution.
The numerical value of the axial stress wave speed (Fig. 10(b) i.e.
Cs ¼ Dx/Dt) is 86.25 m/s and its analytical solution is 84 m/s.
6. Discussion and conclusion

In order to accurately predict blood flow transients, FSI models
employed need to be adequately validated. In the current work,
experimental data and analytical solutions were employed in
order to validate the FSI model for accurate prediction of flow in
flexible conduits such as arteries. The results show very good
comparison between numerical prediction, analytical solutions
and experimental data. The agreement between the three
approaches is over 95%, except for the pressure perturbations
and axial fluid velocity whose experimental values are 12% higher
and 8% lower than the numerical values, respectively. This is
thought to be largely due to experimental error. Poisson coupling
effects are seen to be an essential and significant component of
the flow transient behaviour. Pressure and axial stress perturba-
tions are close to 15% of their respective primary waves.
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Since the velocity profile could not be determined experimen-
tally due to the inability to use particle imaging velocimetry
technique on a non-transparent mock artery, it was assumed
based on the comparison between the measured and simulated
flow waveforms (flow rates) for different velocity profiles.

Water and blood are usually modelled as incompressible fluids
for simplicity. However, when the bulk modulus of the structure
(e.g. arterial wall) is comparable to or greater than the fluid (water
or blood) bulk modulus, incompressibility assumption cannot be
used in predicting pressure wave speed (Fig. 5). An example would
be in diseased arteries (Ivankovic et al., 2002) where artery bulk
modulus can be comparable blood bulk modulus. For the current
study incompressibility assumption yielded approximately iden-
tical results to the compressible fluid model (Appendix 1).
However, this is not the case in general and thus, fluid
compressibility is preferred in the current model as this would
be valid under all possible combinations of Ks and Kf.

The analytical solutions used in this analysis are for an
infinitely long pipe with no wave reflections from the pipe ends.
This does not affect the comparison of the analytical solutions
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with the simulated and experimental data. Flow transients in the
mock artery were measured at 0.3 m from the inlet side, which is
sufficient to minimise the effect of the constrained (cramped)
ends. In the numerical model, a convective outlet boundary is
applied at the pipe outlet side, for both the fluid and solid domain
in order to avoid the reflection of the axial stress and precursor
waves from the pipe outlet. These waves naturally dissipate in the
experimental model due to the free outflow surface.

The comparison between the numerical predictions, experi-
mental data and analytical solutions shows that this numerical
model can accurately predict flow transients in compliant vessels
such as arteries. However, since additional flow features such as
flow recirculation, present in flow through branched arterial
networks are absent in straight compliant vessels, it may be
necessary to validate the model for flow through branched pipes.
Future work will clarify this.
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