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Accurate determination of the fraction of a tissue’s volume occupied by cells is critical for studying tissue
development, pathology, and biomechanics. For example, homogenization methods that predict the func-
tion and responses of tissues based upon the properties of the tissue’s constituents require estimates of
cell volume fractions. A common way to estimate cellular volume fraction is to image cells in thin, planar

KeyWOTdS-’_ ) histologic sections, and then invoke either the Delesse or the Glagolev principle to estimate the volume
E_"T‘l’gemzanon theory fraction from the measured area fraction. The Delesse principle relies upon the observation that for ran-
istology

domly aligned, identical features, the expected value of the observed area fraction of a phase equals the
volume fraction of that phase, and the Glagolev principle relies on a similar observation for random
rather than planar sampling. These methods are rigorous for analysis of a polished, opaque rock sections
and for histologic sections that are thin compared to the characteristic length scale of the cells. However,
when histologic slices cannot be cut sufficiently thin, a bias will be introduced. Although this bias -
known as the Holmes effect in petrography - has been resolved for opaque spheres in a transparent
matrix, it has not been addressed for histologic sections presenting the opposite problem, namely trans-
parent cells in an opaque matrix. In this note, we present a scheme for correcting the bias in volume frac-
tion estimates for transparent components in a relatively opaque matrix.

© 2020 Elsevier Ltd. All rights reserved.

Quantitative stereology

1. Introduction as those at the attachment of tendon to bone, gradients

(Thomopoulos et al., 2006; Genin et al., 2009) are believed to be

The volume fractions of cells and extracellular matrix (ECM) in a
tissue are important parameters in quantitative biology and
biomechanics. For example, when considering electrical conduc-
tion or the mechanics of tissues, the volume fractions of con-
stituents are key metrics for relating the behavior of tissues to
the behaviors of their constituents (Milton, 2002; Saadat et al.,
2015; Soares and Sacks, 2016; Genin and Birman, 2009; Marquez
et al., 2005a,b; Wagenseil et al., 2003). The physical properties of
cells and ECM themselves also vary with volume fraction
(Marquez et al., 2006, 2010; Genin and Elson, 2014), and with
the local electro-mechanical environment (Nekouzadeh et al.,
2008; Lee et al., 2012; Thomopoulos et al., 2011; Genin et al,,
2011). In bimaterial attachments (Thomopoulos et al., 2012) such
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important to tissue function, including gradients in cell volume
fraction that vary over time (Thomopoulos et al., 2010). These dis-
tributions of cell volume fraction are determinants of the local
stress environment around cells, a factor so important that it
appears to be conserved across species at the attachment of tendon
to bone (Liu et al., 2014; Deymier-Black et al., 2015; Saadat et al.,
2016).

For all of these reasons, accurate estimation of cellular volume
fraction is critical. A challenge is that these estimates must often
be made using histologic sections (e.g., Fig. 1). Additionally, spatial
gradients of cell populations and staining are common in histology
(Fig. 2), making it challenging to simply search for perfectly sec-
tioned, archetypal cells. In the best of cases, volume fraction esti-
mation can be achieved using either the Delesse or the Glagolev
principle (Delesse, 1847; Haug, 1986; Mouton, 2002) over relevant
portions of an image, and estimates of volume fraction can be
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Fig. 1. (a) A 12 pm thick toluidine blue-stained tissue section containing murine chondrocytes. The image is shown with a minimum (b) or maximum (c) cell area threshold
(white areas) illustrating the potential under- or over-estimate of cell area fraction that could arise from interpreting this image. Scale bar: 50 pm.

Fig. 2. In many histology sections analogous to that in Fig. 1, gradients in (a) stain and (b) cell size exist, meaning that volume fraction estimation must proceed over
subsections of an image. In such cases, bias error estimation is especially important because the chances of finding a few archetypal cells with perfect slicing in each area is
lower. As in Fig. 1, a 12 um thick Toluidine blue-stained tissue section containing murine chondrocytes is shown. Scale bars: 100 pm.

made through sufficient sampling to avoid unbiased error
(Mouton, 2014). The Delesse principle relates the area of an object
found on a planar section to its volume fraction. The Glagolev prin-
ciple takes advantage of faster convergence to exact volume frac-
tions when random sampling is made over such planar sections.
The conditions for these to yield accurate estimates of volume frac-
tion are that the components be distributed homogeneously
throughout a tissue and that the plane of transection be represen-
tative of the whole tissue. However, this is seldom the case in bio-
logic systems. If one could examine all possible planes of
transection and compute the true mean intercepted areas for each
component within the containing volume, then the volume frac-
tion of the component would equal the quotient of the mean inter-
cepted areas of the component and the containing volume
(Mayhew and Cruz, 1973; Mayhew and Cruz Orive, 1974):

Ve E(A)
Vi B M

where E(.) represents the expected exact value, the subscript C rep-
resents the component of interest within the volume, the subscript
T represents the entire space sampled including that occupied by
the component of interest, and A denotes area and V denotes
volume.

In practice, estimates must be made from a finite number of
planes of transection, and one must test against unbiased error
in estimates of E(Ac) and E(Ar) through rigorous and randomized

sampling procedures. If these conditions are met, the volume frac-
tion can be estimated from the mean area of the component and
containing volume (Mayhew and Cruz Orive, 1974):

VC EC
(2

As the sampling size increases, the estimate accuracy improves.
If the area of the containing volume Ar is constant, the volume frac-
tion of any component contained within its volume can be esti-
mated from the mean of the area fraction, Ac:

Ve_p(%) <A> G)
Vr Ar Ar

For cases of non-constant intercepted area Ar, Eqs. (1)-(3) are
approximations.

In addition to these sources of unbiased error, there exist
sources of biased error for analysis of images of partially transpar-
ent sections of finite thickness. This is especially true when the sec-
tion thickness is comparable to the representative dimension of
the measured components. The Holmes effect in petrography is
one example of how bias arises from the failure to observe true
areas of inclusions within a volume due to the finite thickness of
slices (Weibel et al., 1966; Mouton, 2002): the apparent area Ac
of an opaque component contained within a slice of an otherwise
transparent volume will always be that of the component’s maxi-

(2)
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mum cross-section within the slice rather than the true area at the
predetermined plane of transection. Thus, the sampling of the opa-
que component area Ac will be biased, leading to overestimation of
volume fraction. Chayes (Chayes, 1956) derived a correction for the
Holmes effect for the case of opaque spherical particles of constant
radius R:

EA) 4R
E(A,) 4R+3t (4)

where the lower case subscript t represents true area and the sub-
script a represents the apparent area. t is the thickness of thin
section.

In histology, depending on the staining method chosen, the con-
verse scenario may occur. For example, in the case of a toluidine
blue stained chondrocyte-containing tissue (Fig. 1), transparent
cells are contained within an opaque matrix. The apparent area
of cellular component observed will be that of its minimum cross
section in the thin section, and the relative area and hence volume
fraction of the component will generally be underestimated.

Although the correction for the Holmes effect is well estab-
lished, there has not been a treatment of this converse scenario
of which we are aware. We therefore developed a quantitative esti-
mate of degree of volume fraction underestimation when the
transparent components of interest are spherical or ellipsoidal in
shape. We tested it against data for which the matrix was not com-
pletely opaque and for which bounds on volume fraction could be
estimated by image thresholding.

2. Theory
2.1. Spherical components

Consider an idealized tissue with spherical cells of radius R sit-
uated in a cubic lattice of spacing a so that each sphere resides at
the center of a cubic unit cell of edge length a (Fig. 3). The true
mean intercepted area for the spherical component is:

E(ho) =1 /Z(R2 ~A%)da= ;17721? (5)

Then,

EAc) 4nR
B AC) =35 (6)

is the true volume fraction of the spherical component, as the
Delesse principle states. A represents the z coordinate of each plane
of transection.

Now consider the case where the thickness for each plane of
transection is t, and assume the top layer is the true observed area
to be measured (Fig. 3b). There are three critical positions at which
the measured area fraction of component at the top of the slice is
larger than or equal to the bottom of slice. These critical sets of sec-
tioning planes are displayed as dashed lines in Fig. 4. For each
example, the area of the cell measured at the bottom of the slice
is smaller than that measured at the top of the slice. If the matrix
is opaque, the projected area measured will be the minimum area
within the slice, introducing bias into the measurement of Ac. To
quantify this, we investigate the case a/2 > R +t, so that the top
layer of the planes of transection will intercept all the possible
planes within the sphere.

If t < 2R, the measured area for every plane of transection will
be underestimated by:

EAc) -a = ff,f,tn{RZ —(A+ t)z] dA+ [ n[(Rz A+ t)z)

(R - a%)]da = (R - 53) g

where the superscript * denotes the area difference between the
smaller bottom layer and larger top layer and A represents the z
coordinate of the lower plane of the section of thickness t.

Thus, the fraction by which the mean intercepted area is under-
estimated is a function of t and R. The under-estimation of the true
volume fraction of the cells can thus be written:

V™ VC> E(Ac)
k= (o) /(5] = 8
(vr) / (vT EAc) ®)
so that the fraction of under-estimation of the true volume fraction
is:

L (fRz—%> 3t 1<t>3 ©)

T 4R 4R 16\R

If t > 2R, the observed area of the component in an opaque con-
taining volume will be zero.

2.2. Aligned ellipsoidal components

The morphology of many cells is more ellipsoidal than spheri-
cal. Here, we derive the underestimation of volume fraction for
cells that are ellipsoidal with the following form:

X2 y2 22

EANCEER

with b < ¢, and with the long axis of the cell aligned perpendicular
to the imaging plane.

The procedure follows that used for spherical components, and
provides a similar result. The true mean intercepted area for an
ellipsoidal component is:

nb” ./i(l - ?_22> dA _ 4nb’c
a a

E(Ac) = (10)
Similarly, considering the case § > c+t, with slice thickness
t<2c

EA) -a = [, b’ [1 - M} dA
() (oDl an

The fraction by which the true volume fraction is expected to be
underestimated is thus:

3t 1/t
"Z&‘E(E) (12)

As with spherical components, the degree of under-estimation
depends on the thickness to cell size ratio t/c. If t > 2c, no cells
are visible through the opaque matrix.

3. Computational methods

To assess the convergence towards our predictions, we gener-
ated simulated microscopy slices containing a volume fraction of
¢ = 0.05 of ellipsoidal cells with an aspect ratio (short axes:long
axis) of b : ¢ = 0.31 or spherical cells with b : ¢ = 1 using a custom
code in Matlab (The Mathworks, Natick, MA). This code generated
images with a prescribed number of pixels of finite thickness sec-
tions through the simulated tissue. Matrix was taken as opaque,
and cells as fully transparent, so that all pixels were set to O if
the sum of the distances between the pixel center and the two
elliptical foci was greater than twice the length of the long axis
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Fig. 3. (a) The volume fraction of ellipsoids, including spheres, within a matrix can be estimated from polished sections or infinitesimally thin slices using via either the
Glagolev or Delesse principle. The mean area fraction, Ar/a?, is equivalent to the volume fraction of the spherical constituent. (b) A transection plane of finite thickness t
through this same composite, representative of a histology slice. Regions between two dashed planes (red online) represent the slices of transection plane. The 2D figure on
the right is the view of the vertical xz plane through the center. As evident in Fig. 1, a range of estimates of Ar/a® are possible from such a slice.
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Fig. 4. For three critical slices, the cross-sectional area of the inclusion on the top of the slice is no smaller than that on bottom. This is the case for both (a) a spherical
inclusion and (b) and ellipsoidal inclusion.

of the cell, 2¢, and to 1 otherwise. The positions of the centers of
cells in the direction perpendicular to the imaging plane were cho-
sen randomly from a uniform distribution. Cells were spaced uni-

formly on a square lattice to ensure no overlap. Effective volume
fractions were calculated by determining the area fraction of
non-occluded space for slices of prescribed thickness.
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To establish the limits of the approach for cells that are oriented
randomly, additional simulations were performed in which orien-
tations of the long axes of the cells were chosen from a uniform
spherical distribution. Spacing of cells along the imaging axis was
random; because no overlap was allowed, some cells had to be
repositioned to maintain ¢ = 0.05.

4. Results and discussion

Estimating the volume fraction from a measured area fraction is
a commonly encountered problem when analyzing the mechanical
behavior of biological tissues. In doing so, it is important to ensure
that the containing area is constant throughout all the planes of
transection, as by Mayhew and Cruz Orive (Mayhew and Cruz
Orive, 1974). When the thickness of a histology section is not neg-
ligible relative to the size of the cells, the measured area will be
inaccurate resulting in a biased estimate of the volume fraction
of the components. Chayes (Chayes, 1956) derived a correction
for the case of opaque spherical components of constant radius
in a transparent containing volume. In this case, the observed area
will be the maximum possible area of inclusions in the slice.

In this note, we give a quantitative description of the opposite
scenario: the case of an opaque containing volume with spherical
or ellipsoidal transparent inclusions. This method is effective when
cross-sections contain a sufficient number of cells that the effects
of cases outside the scope of our error estimation correction are
rare (Fig. 4), such as when the thickness of the transection plane
is larger than the diameter of the components aligned with the
transection plane thickness direction and there is thus no observed
area of the cells.

When the thickness of the transection plane is not large com-
pared to cell components, the under-estimation of the expected
value of the cell area is related to the ratio of the section thickness
to the size of the inclusions (Fig. 5). For aligned ellipsoidal cells,
error is small for relatively thin histologic sections, and rises to
100% for sections that are thick compared to the cells. To place this
into the context of commonly applied imaging schemes in which
estimation of volume fractions could be desired, we make refer-
ence to confocal fluorescence microscopy and histological slices
of cartilage and fibrocartilage, two orthopedic tissues containing
chondrocyte cells whose shape is actively maintained to be ellip-
soidal (Grashoff et al., 2003). In the context of confocal fluores-
cence microscopy, volume fractions of cells can be estimated by
staining the ECM and optically sectioning the tissue (Wong et al.,
1996). This optical sectioning enables a region of approximately

100 T T T T [ T T T T [ T T T T [ T

L —
L

~
W
I
|

T T T
L1

W
=)
I
|

T T T
L1

25

I
|

T T T
T

estimated error in ¢ (%)

0 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1
0 0.5 1 1.5 2
normalized histology slice thickness, t/R or t/c

Fig. 5. The estimation bias in volume fraction, ¢, for thick slices can be predicted for
both spherical inclusions of radius R and ellipsoidal inclusions of major axis ¢
aligned perpendicular to the transection plane for cases when the matrix is opaque
compared to the inclusion. Here, t is the thickness of the transection plane.

t = 500 nm thickness to be selected from a cell that is on the order
of 2R = 12 micrometers in diameter, depending upon osmotic con-
ditions (Guilak et al., 2002). For such a case, the error associated
with occlusion of the cell diameter can be found to be small from
Fig. 5: for t/R = 0.083, the expected underestimation in volume
fraction is on the order of 5%. This can of course be compensated
for in confocal fluorescence microscopy by reconstructing entire
cells and interpolating the true diameter (Guilak et al., 2002). Addi-
tionally, improvements in ultramicrotome sectioning of tissues at
low temperatures enable the production of specimens that are thin
compared to most eukaryotic cells (Plumley et al., 2019).

For the case of a histology slice like that in Fig. 1, the problem is
more pronounced. In this case, the thickness of the histology slice
is on the order of 5-10 micrometers thick, meaning t/R on the
order of 0.5 -1 and underestimation of volume fraction on the
order of 35-65%. Here, no analogous workaround exists, and the
Delesse and Glagolev principles are the logical approach to esti-
mating volume fractions from these slices.

The Delesse and Glagolev approaches both rely upon having
sufficient numbers of cell images to obtain a meaningful estimate.
Additionally, estimates improve with increasing image resolution.
To assess the rate of convergence towards our estimates, we per-
formed two computational studies. In the first, we considered
aligned cells with a volume fraction of 0.05 and assessed the esti-
mates as a function of slice thickness and number of pixels in an
area of matrix containing a single cell. 100 cells were imaged for
each slice thickness considered. For fewer than 16 by 16 pixels
per area corresponding to a single cell, too few cells were visible
in our images to estimate a volume fraction. For the three slice
thicknesses considered, the estimates converged to our model for
more than 32 by 32 pixels per cell area (Fig. 6). The thickest slice
considered had an estimated volume fraction approximately 10-
20% below the model’s predictions, likely due to numerous cells
that did not penetrate both ends of the slice. Convergence towards
the model was independent of the aspect ratio of the cell.

In the second assessment, we considered how the volume frac-
tion estimate converged to the model as a function of the number
of cells imaged for the case of cells imaged at 32 by 32 pixels over
an area corresponding to a single cell (Fig. 7). The volume fraction
estimates followed our model with increasingly fidelity as the
number of cells imaged increased. For thinner sections, as few as
10 images were sufficient for very good convergence.

Although many cells such as cardiomyocytes, fibroblasts, and
chondrocytes tend to align in three dimensional tissues and cul-
ture, especially when stressed (Grashoff et al., 2003; Spencer
et al., 2016; De et al., 2007; Zemel and Safran, 2007), they often
transition from a disordered to an ordered state during maturation
of tissue constructs in a way that is strongly influenced by the
boundary conditions (Wang et al., 2014; Abhilash et al., 2014;
Svoronos et al., 2013). In these earlier stages, cells typically adopt
a more rounded morphology (Elson and Genin, 2016), so that the
orientation distribution is less critical. To assess the error associ-
ated with having a random distribution of cells, we repeated the
simulations, but this time with orientations of the long axis of
the ellipse oriented in a direction that was chosen randomly from
a spherical orientation distribution (Fig. 8). An additional problem
arises in these cells, in that having an orientation skewed from the
perpendicular to the imaging plane can lead to further occlusion of
the cell area, especially for cells oriented close to 45° to the imag-
ing plane. This leads to a larger under-prediction of volume frac-
tion than predicted by our model.

Many cells are not well approximated by ellipsoids. Because of
the problem of cell processes that are thin compared to the slice
thickness being occluded by the ECM, these processes can be
entirely missed when using the Delesse or Glagolev principle to
estimate the volume fractions of cells in an opaque matrix. The



6 Y. Liu et al./Journal of Biomechanics 104 (2020) 109705

J—
S}

~~
)
p—

b/c=1

== \'E;f/i\f/i\}

—
(=)

W

o
%

¢apparent / ¢actual
(=]
=

(b)

04 F —8— 1/c=0.01
—m— 1/c=0.25
#c=0.5
0.2+ — = model
0.0 " 1 " 1 " 1 " 1 " 1 " 1 " 1 "
8 16 32 64 128 256 512 1024 2048

Pixels per side

1.0 = =

s

PN

o
%

(papparent / (pactual
o
=N
T

—8—1/c=0.01
04l [ t/c=0.25
t/c=0.5
— — model
02 F
0.0 n 1 n 1 n 1 n 1 n 1 n 1

n 1 n
8 16 32 64 128 256 512 1024 2048

Pixels per side

Fig. 6. Simulations of the underestimation of volume fraction for cells in a relatively thick opaque matrix, with data shown mean =+ standard error. 100 simulated cells were
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the model increased with increasing slice thickness t/c, and decreased with the
number of cells imaged. Each cell occupied an area of matrix that was 256 by 256
pixels. Ellipsoidal cells were chosen with b/c = 0.3, and with the long axes of cells
aligned perpendicular to the imaging plane.
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Fig. 8. Simulations of the underestimation of volume fraction for randomly
oriented cells in a relatively thick opaque matrix, with data shown mean +
standard error. The deviation from the model increased with increasing slice
thickness t/c, and decreased with the number of cells imaged. Each cell occupied an
area of matrix that was 256 by 256 pixels. Ellipsoidal cells were chosen with
b/c = 0.3, and with the long axes of cells aligned in a direction that was chosen from
a uniform spherical distribution.

errors in measurement in these conditions are not accounted for by
our model. This would pose a significant issue for cells such as
axons, which extend cell processes that can be long compared to
their cell bodies and that can sustain a significant proportion of
their volume (Lee et al., 1986). The problem is lesser for fibroblasts,
which extend cell processes during remodeling of their ECM that
typically engulf a much smaller fraction of the cell volume
(Heath and Peachey, 1989).

Ideally, one should try to limit the section thickness to avoid
inaccuracy in the volume fraction estimate when using Delesse
principle. However, when this is not possible, the procedure
described within this note can be used to limit bias in the measure-
ment for cases of reasonably ellipsoidal, aligned cells with pro-
cesses that do not hold a significant proportion of the cell’s volume.
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