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We have created a model to estimate the corrective changes in muscle activation patterns needed for a

person who has had a stroke to walk with an improved gait—nearing that of an unimpaired person.
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Using this model, we examined how different functional electrical stimulation (FES) protocols would

alter gait patterns. The approach is based on an electromyographically (EMG)-driven model to estimate

joint moments. Different stimulation protocols were examined, which generated different corrective

muscle activation patterns. These approaches grouped the muscles together into flexor and extensor

groups (to simulate FES using surface electrodes) or left each muscle to vary independently (to simulate

FES using intramuscular electrodes). In addition, we limited the maximal change in muscle activation

(to reduce fatigue). We observed that with the two protocols (grouped and ungrouped muscles), the

calculated corrective changes in muscle activation yielded improved joint moments nearly matching

those of unimpaired subjects. The protocols yielded different muscle activation patterns, which could be

selected based on practical condition. These calculated corrective muscle activation changes can be used

in studying FES protocols, to determine the feasibility of gait retraining with FES for a given subject and

to determine which protocols are most reasonable.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Functional electrical stimulation (FES) has been used in the
rehabilitation of post-stroke patients (Peckham and Knutson,
2005). It is important to know how much additional activity
should be added during FES. Many control methods have been
used to derive the required electrical stimulation patterns
(Popovic et al., 2003; Jezernik et al., 2004). These investigators
employed different machine learning algorithms to account for
the nonlinear relationship between electrical stimulation and
patient’s kinematic output. However, these methods did not
determine this relationship by directly accounting for the
biomechanics of the human neuromuscular system, through
which the neurological control strategies of human movement
may be characterized more accurately.

We have developed electromyographically (EMG)-driven bio-
mechanical models to estimate muscle forces and joint moments
(Lloyd and Besier, 2003; Buchanan et al., 2004). Since these
models determine muscle forces based on recorded EMG data,
they can be used to determine how different muscle activation
ll rights reserved.
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patterns influence joint moments, and thus can be used to study
FES protocols.

In this study, we constructed a biomechanical model to
estimate the corrective increases in muscle activation patterns
that would enable post-stoke patients to walk with a similar joint
kinematics to that of an unimpaired person. Our goal is to provide
a platform for studying FES protocols, through which the
appropriate stimulation patterns can be determined to achieve
the desired normal movement.
2. Methods

In this study we focused on the ankle joint model. We included the main

contributors to plantar/dorsiflexion: tibialis anterior (TA), medial and lateral

gastrocnemius (MG and LG), and soleus (Sol). Our model is generic and can be

applied to any joint given the necessary anatomical and physiological data.

2.1. EMG-driven model to estimate muscle forces and joint moments

The EMG-driven model was developed based on a Hill-type muscle model to

calculate individual muscle forces and joint moments (Lloyd and Besier, 2003;

Buchanan et al., 2004). The muscle characteristics including insertion points,

pennation angle, and maximum isometric forces were adapted from literature

(Delp et al., 1990). Some of the parameters in our model were subject-specific and

difficult to obtain, so a calibration process was used to tune these parameters for

each subject (Heine et al., 2003). Once the parameters were tuned, the model could

www.sciencedirect.com/science/journal/jbiomech
www.elsevier.com/locate/jbiomech
dx.doi.org/10.1016/j.jbiomech.2008.07.015
mailto:buchanan@udel.edu


ARTICLE IN PRESS

Q. Shao, T.S. Buchanan / Journal of Biomechanics 41 (2008) 3097–31003098
then be used to predict muscle forces and joint moments for new muscle

activation patterns.

2.2. Optimization model to estimate corrective changes of muscle activation patterns

Using the tuned EMG-driven model, we modeled electrical stimulation by

increasing the EMGs, optimally adjusting them using a parallel version of

constrained simulated annealing algorithm (Wah and Wang, 1999) (Fig. 1). Data

from average unimpaired subjects’ gait trials were used to determine the corrected

joint angles y for stroke patients, resembling a normal kinematic pattern. We also

determined the desired joint moments, MD, through scaling the joint moment

profile of an unimpaired subject by body mass, height, and walking speed (Lelas

et al., 2003), which would generate the corrected joint angles y for stroke patients.

These data were used as input, and the new EMG pattern was then optimized to

produce the desired joint moment. We chose to minimize the sum of DEMGs as the

cost function, which is related to the muscle fatigue caused by electrical

stimulation. (In this context, ‘‘EMG’’ means the normalized, rectified, and filtered

EMG signal.)

2.3. Data collection and model calculations

Data were collected from two post-stroke patients who could walk without

assistance (Table 1). EMG, joint position, and force plate data were collected during

four walking trials for subjects 1 and 2. EMGs were collected using surface

electrodes from each muscle. Maximum voluntary contraction (MVC) trials were

collected for normalization of EMG. The experimental protocol was approved by
Fig. 1. Theoretical flow of the optimization model. In this model, corrected joint

angles and desired joint moment were the inputs, and we used constrained

simulated annealing algorithm to calculate the DEMGs, which were required to

achieve the desired joint moment profile for the stroke subjects. The new EMG

profiles were generated using a cubic spline interpolation algorithm with 16

control nodes evenly distributed across the time period.

Table 1
Information of the two subjects

Subject Gender Age (years) Time since stroke (years)

1 M 77 4

2 M 58 3

Table 2
Statistical results of calibration and prediction on walking trials of stroke subjects’ 1 a

Subject Trial R2 va

1 Calibration 1 0.973

Prediction 2–4 (mean (SD)) 0.884

2 Calibration 1 0.971

Prediction 2–4 (mean (SD)) 0.933

We calculated the R2 value, root mean square (RMS) error, and normalized RMS error (n

forward dynamic joint moment profiles with the inverse dynamic joint moment profil
the Human Subjects Review Board of University of Delaware, and the subjects gave

an informed consent before the data collection.

The parameters in the EMG-driven models were tuned using the initial

walking trial for each subject. The calibrated models were then used to predict the

other walking trials of the subjects. This paradigm is a good test of the model’s

predictability of novel trials, because the EMG data were variable from trial to trial,

unlike data for healthy subjects.

The new EMG patterns were then calculated for the initial trials of each subject

using the optimization model. Two EMG changing algorithms were implemented.

In Algorithm 1, the EMGs of every muscle were altered separately, representing the

FES protocol of using epimysial and intramuscular electrodes to stimulate each

individual muscle. In Algorithm 2, the EMGs of the muscles were grouped together

as either dorsiflexors or plantar flexors and altered simultaneously, representing

the FES protocol of using surface electrode to stimulate one muscle group. In

addition, a constraint on DEMG limit (0pDEMGo0.6) was added. This was done to

avoid too large DEMG values, which may cause the patient’s discomfort for intense

electrical stimulation and induce fatigue. Different upper limit may be used

depending on the patient’s comfortable tolerance.
3. Results

The predicted joint moments of our EMG-driven model
were close to inverse dynamic joint moments, which verified
that the calibrated model could be used to predict novel trials
(Table 2).

Stroke subjects’ 1 and 2 ankle joint angles in walking trial 1
were different from those of the average unimpaired subject
(Winter, 1990; Fig. 2). We compared the original ankle joint
moment of each post-stroke patient with the desired unimpaired
patterns (Fig. 3 for subject 1). It was determined that the ankle
joint moment should be altered during stance phase to match the
unimpaired profile. We added the late swing phase as a buffering
interval to account for the effect of electromechanical delay.
Therefore, late swing phase and stance phase were chosen as the
data of interest.

The original EMG of TA for subject 1 was small (Fig. 4). After
adding the calculated DEMG (Fig. 5), the new moment was close
to the desired moment (Fig. 3), and the kinematics of the subject
would shift from Line ‘‘Stroke subject 1’’ to Line ‘‘Average healthy’’
in Fig. 2. The increase of EMG in dorsiflexor (TA) during late swing
phase and early stance phase was needed to achieve a normal
dorsiflexion moment. We observed similar results on subject 2.
The statistical results for subjects 1 and 2 demonstrated that both
algorithms generated similar results of joint moment profiles
(Table 3).
Hemiplegic side Modified lower extremity Fugl–Meyer Score

Right 32/36

Right 28/36

nd 2

lue RMS error (N m) Normalized RMS error (%)

1.53 2.48

(0.041) 6.86 (1.05) 10.33 (1.83)

3.32 3.03

(0.016) 10.89 (5.41) 11.93 (5.67)

ormalized to peak-to-peak joint moment) to compare the calibrated and predicted

es.
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Fig. 4. The original normalized EMG patterns of subject 1. Note the subject had

normal TA activity during swing phase, and the activation of TA was small during

early stance phase, which supports the demand of using electrical stimulation to

activate this weak muscle.

Fig. 5. The results of normalized DEMG for subject 1: (a) Algorithm 1 and (b)

Algorithm 2. The TA needed to be stimulated over the late swing phase and early

stance phase for both algorithms. The soleus was chosen as the only plantar flexor

to be stimulated in Algorithm 1, because it would require a smaller amount of

stimulation than the gastrocnemius, and thus reduces fatigue.

Table 3
Statistical results of different optimization protocols for stroke subjects 1 and 2

Subject Protocol R2 value RMS error

(N m)

Normalized

RMS error (%)

P
DEMG/

EMGMVC

1 Algorithm 1 0.979 2.09 2.47 332.5

Algorithm 2 0.980 2.10 2.48 368.8

2 Algorithm 1 0.966 7.10 4.69 718.7

Algorithm 2 0.948 10.48 6.15 641.9

We calculated the R2 value, root mean square (RMS) error, and normalized RMS

error (normalized to peak-to-peak joint moment) to compare the new joint

moment profiles after adding stimulation with the desired joint moment profiles.
P
DEMG/EMGMVC is the sum of all normalized DEMG for all the four muscles and

1080 time steps (our sampling rate of EMG is 1080 Hz).

Fig. 2. Ankle joint angles during gait of average unimpaired subject and two stroke

subjects. The time axis was normalized to one gait cycle, HS denotes heel strike,

and TO denotes toe off. Positive joint angle indicates dorsiflexion. Note that the

two stroke subjects had drop-foot during swing phase and smaller plantar flexion

during late stance phase.

Fig. 3. The results of joint moments using Algorithm 1 for subject 1. The new

moment is the moment calculated from the new EMG, the original moment is the

original moment for the stroke patient, and the desired moment is derived from the

unimpaired subject’s trial. Positive moments indicate dorsiflexion. Note that

subject 1 lacked a dorsiflexion peak during early stance phase, which needed to be

corrected by adding stimulation. After the ankle dorsiflexion was restored to

normal, stronger plantarflexion moment was needed to plantarflex the ankle and

finish the push-off by adding stimulation.
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4. Discussion

This optimization model was developed based on our EMG-
driven model, and took advantage of the EMG-driven model’s
ability to predict novel trials. We employed this optimization
model on two stroke patients’ walking trials and got the corrective
changes in EMG patterns. These calculated corrective changes
could be used as reference data in both stroke patients’ gait
training with FES.

It was observed that the TA needed to be stimulated during
late swing phase and stance phase to achieve normal ankle
kinematic patterns for our post-stroke subjects. Since the
volitional ankle moment during swing phase is close to zero for
both stroke and unimpaired subjects, the early swing phase’s
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kinematic pattern will be restored to a normal pattern auto-
matically, as long as the late swing and stance phase’s kinematic
and kinetic patterns have been corrected using stimulation. The
TA activity during swing phase in post-stroke subjects was similar
to that found in unimpaired subjects, and the patients lacked the
normal second peak of TA activity at initial foot contact, which
might account for their flat foot walking (Burridge et al., 2001).
Our results showed similar results that the TA activity needed to
be corrected at heel strike to avoid drop-foot.

Two different optimization protocols were implemented
during our calculation, providing different options for different
stimulation protocols using surface electrodes and implantable
epimysial and intramuscular electrodes. Different optimization
protocols may be selected based on clinical judgment and
practical condition.

After the corrective muscle activation changes were estimated
using our model, the appropriate electrical stimulation patterns
could be determined through other developed models to achieve
the corrective changes (Riener et al., 1996; Soetanto et al., 2001;
O’Keeffe et al., 2003). After the stimulation patterns are deter-
mined, they could be used as a baseline in open-loop or hybrid
(combined feed-forward and feedback) control during an FES
intervention.

There are several assumptions and limitations of this study.
First, our model does not attempt to balance the moments at the
knee, hip as well as the ankle, and our model can be extended to a
multi-joint model combining other joints in future study. Second,
a ground contact model may be developed instead of our scaling
procedure to directly account for the change of ground reaction
force after the kinematics is restored to normal, and it can be used
to calculate the desired joint moments. Third, other desired joint
moment profiles could also be used for different goals during FES
intervention. Fourth, we did not account for the change of muscle
force–activation relationship caused by stroke, and used the
calibrated subject-specific muscle parameters to account for this
impaired musculature. Fifth, we also need to recruit more patients
and get results on different groups of patients.

In conclusion, we have developed a method to determine
changes in muscle activation patterns needed for stroke subjects
to correct their gait patterns so that they match those of
unimpaired people, and we have demonstrated this in two
subjects. The calculated corrective muscle activation changes
may provide a baseline reference in open-loop control or hybrid
control during FES intervention.
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