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The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening

contractions based on analysis of power produced by resultant joint moments. For that purpose, we
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a b s t r a c t

present net ankle joint powers and muscle fascicle/muscle–tendon unit (MTU) velocities for medial

gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and

cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were

similar: negative power (ankle moment� angular velocityo0), indicating absorption of mechanical

energy, was associated with MTU lengthening, and positive power (generation of mechanical energy)

was found during MTU shortening. This was also found for the general fascicle velocity pattern in SO. In

contrast, substantial differences between ankle joint power and fascicle velocity patterns were

observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of

SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle

velocity and ankle joint power during stance in both muscles. These results indicate that during

walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed

by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy

transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily

indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to

muscle concentric action, especially in humans.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Although the two types of dynamic muscle action during natural
movements (concentric/shortening and eccentric/lengthening) have
been studied for over a century (Abbott et al., 1952; Asmussen,
1953; Chauveau, 1901; Duchateau and Enoka, 2008; Hill, 1938;
Komi, 1973; Margaria, 1968), researchers still debate the semantics
of the terms eccentric and concentric contraction (Cavanagh, 1988;
Faulkner, 2003). It also remains unclear how these two types of
muscle action can be identified in natural movements. The main
objective of this paper is to highlight the difficulties of identifying
contraction type based on analysis of power produced by resultant
joint moments, which has become a standard procedure.

Based on early work by Herbert Elftman (Elftman, 1939a,
1939b) and James Morrison (Morrison, 1970), the recently
deceased David Winter proposed some basic principles regarding
ll rights reserved.
identification of muscle action type during natural movements
using net power produced by the resultant joint moment
(Robertson and Winter, 1980; Winter, 1978). After experimental
confirmation that the sum of powers of all resultant muscle
moments and joint forces applied to a rigid body segment equaled
the rate of change of segment total energy, it was postulated that
if the resultant muscle moment at a joint is in the same direction
as the joint angle changes (i.e. net joint power is positive), the
muscles crossing the joint act concentrically. A negative net joint
power indicates absorption of mechanical energy by lengthening
contractions, which occur when the resultant muscle moment
and joint angular velocity have opposite signs. The term ‘muscle’
refers here to all tissues surrounding the joint including the
joint capsule, ligaments and muscle–tendon units (MTU). The
latter includes all structures between the muscles’ origin and
insertion. In this interpretation of muscle contraction type, it is
assumed that the resultant muscle moment at a joint, as com-
puted by inverse dynamics, can be fully ascribed to agonistic
skeletal muscles. In other words, the contribution of antagonistic
muscles and ‘passive’ structures such as ligaments is neglected. In
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Fig. 1. Ankle joint power, MTU velocity and fascicle velocity of MG and SO

muscles (mean7SD, n¼9 strides) during overground walking in the cat as a

function of normalized step cycle time. The step cycle starts with paw contact and

the vertical dashed lines indicate paw lift-off.
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addition, joint power analysis does not refer to actual anatomi-
cally defined muscles, but to a single equivalent, one-joint muscle
(Robertson and Winter, 1980; Winter, 1978) whose power (mus-
cle force�MTU velocity) equals net joint power (resultant muscle
moment� joint angular velocity), assuming workless joint con-
straints (e.g., Storace and Wolf, 1979).

The association between net joint power and contraction type of
muscles crossing the joint has been debated extensively and it has
been suggested that net joint power is not always indicative
of muscle contraction type, i.e. shortening or lengthening of the
MTU or muscle belly (Elftman, 1939a,1939b; Ishikawa et al., 2005a;
Morrison, 1970; Prilutsky et al., 1996c; Sasaki et al., 2009; van Ingen
Schenau, 1989; Zajac et al., 2002; Zatsiorsky, 2002). The main
reasons for this incongruity are the following: (1) net joint power
does not have to equal total power of all MTUs crossing the joint
(even if antagonistic muscles do not generate power) due to the
presence of two- or multi-joint muscles that can transfer mechanical
energy to/from the segments forming the joint from/to other body
segments (for reviews see van Ingen Schenau, 1989; Zatsiorsky and
Prilutsky, 2012). It should be noted that the segments forming a
joint can also transmit/receive mechanical energy to/from other
body segments due to the action of joint forces that do not generate/
absorb energy (e.g., Robertson and Winter, 1980; Zajac et al., 2002;
Zatsiorsky, 2002). This energy transfer has the same influence on net
joint power and total MTU power, and thus does not affect
inferences about muscle contraction type from net joint power.
(2) There may be a mismatch between net joint power (equivalent
to total MTU power when energy transfer by bi-articular muscles is
insignificant) and power generated by the muscle contractile tissue
or fascicles (muscle force�muscle fascicle velocity) due to the
presence of in-series elastic structures (Maas and Lichtwark, 2009;
Windhorst, 2008; Zajac, 1989) and the effects of pennation angle
(Roberts, 2002). Series compliance of tendinous connective tissue
allows storage of energy and return of elastic energy that can
decouple work done on or by the MTU from that of the muscle
fascicles (Lichtwark and Wilson, 2006; Roberts et al., 1997).

Until recently, this debate has been based predominantly
on human studies that combined the assessment of joint power
with the estimation of MTU and muscle fascicle behavior using
musculo-skeletal models (Bobbert et al., 1986; Prilutsky and
Zatsiorsky, 1994; Sasaki et al., 2009) or animal studies on exten-
sively dissected MTUs (Ettema et al., 1990; Zuurbier and Huijing,
1992). Due to the use of sonomicrometry in animals (Griffiths,
1989,1987) and ultrasonography in humans (Henriksson-Larsen
et al., 1992; Kawakami et al., 1993; Rutherford and Jones, 1992),
muscle fascicle length can now be examined in vivo. Using these
methods, further support has been found for the argument that
joint power does not necessarily reflect muscle fascicle contraction
type (e.g., Biewener and Roberts, 2000; Ishikawa et al., 2005a;
Spanjaard et al., 2008).

However, we have not encountered a study in which joint
power is directly compared to muscle fascicle length changes.
Estimating contraction type at the fascicle level during a parti-
cular phase of net joint power may be relevant for rehabilitation
and sport science, for example to assess the risk of muscle
damage, or whether the muscle is performing a therapeutically
prescribed type of muscle action.

Here we present joint powers and muscle fascicle behavior for
two functionally important ankle extensors during walking in
humans and cats, whose in vivo maximum tendon stresses
(Pollock and Shadwick, 1994), and thus discrepancy between
MTU and muscle fascicle length changes, were expected to differ.
Specifically, we compared the pattern of joint power during
walking with instantaneous length changes at the MTU and
muscle fascicle level of one-joint soleus (SO) and two-joint medial
gastrocnemius (MG) muscles.
2. Joint power and muscle contraction type in the cat

In Fig. 1, data from one representative cat (mass: 4.1 Kg)
walking on a level surface are presented. The cat walked at a
freely chosen speed of 0.7070.06 m/s during which the stance
phase occupied 65% of the total step cycle. All surgical and
experimental procedures were in agreement with the ‘‘Principles
of laboratory animal care’’ (NIH No.86-3, 1985) and approved by
the institutional animal care and use committee of the Georgia
Institute of Technology, where cat data were collected.

Group means (5–6 cats) for MG and SO fascicle lengths and
velocities (Maas et al., 2009), and hindlimb joint powers have
been presented previously (Prilutsky et al., 2011). SO muscle is
active from approximately the last 15% of the swing phase to
�80% of the stance phase (see Gregor et al., 2006). For MG, the
onset of EMG activity is similar to SO, but EMG offset occurs
earlier (�65% of the stance phase). Thus, SO and MG are
predominantly active during the stance phase of walking (which
is also the case in humans, see Lay et al., 2007). Therefore, we
have focused our comparisons on the stance phase.

Patterns of ankle joint power and MTU velocity of MG and
SO during stance were qualitatively similar: negative power
accompanied MTU lengthening and positive power accompanied
MTU shortening. The transition from negative to positive power
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occurred simultaneously with the transition from MTU lengthen-
ing to shortening for SO. In MG, however, the change in sign of
MTU velocity occurred prior to the change in sign of joint power.

As the pattern of SO fascicle velocity was qualitatively similar
to that observed at the MTU level, the pattern of fascicle velocity
was also similar to the ankle joint power pattern during stance.
In contrast, substantial differences between ankle joint power
and fascicle velocity patterns were observed for MG. At the
beginning of the stance phase, when joint power was negative,
the MG fascicles either shortened or operated almost isometri-
cally. The second half of stance was characterized by positive
ankle joint power, whilst MG fascicles initially shortened, but
then lengthened.
3. Joint power and muscle contraction type in humans

In Fig. 2, data from a young, healthy male are presented
(32 years, mass: 73 kg). The subject walked overground on a level
surface at a self-selected speed of 1.3270.03 m/s during which
the stance phase occupied 61% of the step cycle. Ethics approval
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Fig. 2. Ankle joint power, MTU velocity and fascicle velocity of MG and SO

muscles (mean7SD, n¼5 strides) during overground walking in humans as a

function of normalized step cycle time. The step cycle starts with foot contact and

the vertical dashed lines indicate foot lift-off. For both cat and human data, fascicle

and MTU velocities were calculated by differentiating length changes with respect

to time. Human fascicle data were analyzed using an automated tracking

algorithm (Cronin et al., 2011).
was obtained from the Institutional Human Research Ethics
Committee of the University of Queensland, Australia, where
human data were collected, and all relevant ethics guidelines
were followed.

Unlike in the cat, early stance of human walking was asso-
ciated with MTU shortening. In this phase, negative power was
generated by the active ankle dorsi-flexors, while the ankle
plantar-flexors showed relatively low activity. For the remainder
of stance, like in the cat, patterns of ankle joint power and MTU
velocity were qualitatively similar.

In both muscles, there were substantial differences between
patterns of fascicle velocity and ankle joint power during stance.
In MG, mid-stance was characterized by fascicle lengthening or
isometric behavior whilst ankle power was negative. During
push-off, positive power occurred during fascicle shortening,
although the latter occurred earlier. In SO, there was very little
concordance between fascicle velocity and ankle power. The
fascicles were almost isometric for most of the step cycle,
exhibiting peak shortening and lengthening velocities of just
10.8 and 15.1 mm/s, respectively. Conversely, joint power varied
substantially and exhibited several changes in polarity through-
out the step cycle.
4. Conclusion

In both cats and humans, ankle joint power during the stance
phase of level walking gives a reasonable estimate of periods
when the MTU is lengthening or shortening, for both one-joint
soleus and two-joint gastrocnemius, but is a poor predictor of
muscle fascicle contraction type during walking. Our data suggest
that only a small fraction of net ankle power was generated by the
muscle fascicles, especially in humans, and thus recoil of in-series
elastic structures must have contributed. It should be noted that
at other joints that are crossed by MTUs with considerably shorter
tendons, as well as in smaller animals, fascicle behavior may
be more strongly coupled to joint power. The elastic contribution
to energy generated by human SO MTU during walking is �91%
(estimated from Fig. 4 in Ishikawa et al., 2005b), whereas tendons
of cat SO and MG during walking only provide 21% and 31%,
respectively (see Tables 2 and 3 in Prilutsky et al., 1996b). Our
results and the above estimates are consistent with previous
reports that the capacity of strain energy storage in ankle
extensor tendons (Pollock and Shadwick, 1994) and efficiency of
terrestrial locomotion (Taylor and Heglund, 1982) increase with
animal mass. A small part of ankle power can be attributed to
energy transfer between the knee and ankle joints, although the
contribution of this mechanism in walking cats is relatively small
(Prilutsky et al., 1996a). We conclude that at the ankle joint,
identification of muscle contraction type based on analysis of
joint power often gives incorrect results.
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