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The uncontrolled manifold (UCM) analysis quantifies the extent to which co-variation among a set of
variables facilitates consistent performance by partitioning variance in those variables into two compo-
nents then calculating their normalized difference (i.e., the synergy index). Although UCM-derived mea-
sures are thought to depend on the number of data points analyzed, the minimum number needed to
reasonably approximate true values of these measures is unknown. For each of two performance vari-
ables related to mechanical stability of gait, we evaluated changes in UCM-derived measures when
increasing the number of analyzed points, here steps. Fourteen older adults walked on a treadmill while
motion capture tracked movement. For each subject, n steps (where n = 2–99) were randomly sampled
from the first 100, then used to calculate UCM-derived variables. For each subject, variables were
expressed as a percent of the subject-specific value with n = 100 and averaged across 50 simulations.
For each n, 95% confidence intervals (CIs) were calculated from group data. The minimum number of
steps to ‘‘reasonably approximate” a variables was defined as the value of n for which the lower CI
was >90% of the value with n = 100. Regardless of performance variable, reasonable approximations of
the synergy index were attained with n = 16 steps, whereas n = 50 steps were needed for each of the vari-
ance components However, the differences between using 16 steps and 50 steps were small. Collecting
15–20 steps is recommended for a reasonable approximation of the synergy indices considered herein,
particularly when data collection is constrained to a limited number of steps.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The production of human movement inherently involves more
degrees of freedom (DoFs) than required by constraints of the
action (Bernstein, 1967), and the ability to exploit such redundancy
may be important to maintaining a heathy motor system. Motor
redundancy ensures that multiple solutions exist for a given motor
problem, e.g., no single combination of muscle forces produces a
given joint moment, which provides flexibility to the system
(Latash, 2018; Latash, 2012). The exploitation of motor redundancy
may help to reduce variance in motor performance in the presence
of system noise or varying initial conditions, and to facilitate per-
formance of secondary actions and appropriate reactions to chal-
lenging circumstances (Hsu and Scholz, 2012; Latash et al.,
2007). The extent to which redundancy is exploited to accomplish
a motor task can be evaluated using the uncontrolled manifold
(UCM) analysis, which in essence quantifies coordination – i.e.
how variations in all of the DoFs that contribute to performance
(termed elemental variables) co-vary in order to produce consis-
tent output in a performance variable.

As suggested in a 2010 review on UCM analysis: ‘‘when apply-
ing the UCM approach. . .the number of data points used in the
analysis is an important consideration. . .Ideally the more data
points. . .. the better” (Latash et al., 2010). In the case of gait, every
step is equivalent to a data points and the UCM analysis is per-
formed across steps at comparable time-normalized points within
the step. While more steps may be ‘‘better”, the number that can be
captured during an experiment may be limited by the population
or the experimental manipulation. An ‘‘informal analysis” from a
single subject performing a reaching task suggested including ‘‘at
least 20 trials for UCM analysis to increase the chances of having
a stable (output) estimate” (Latash et al., 2010), which is consistent
with the number of steps analyzed in prior gait studies (Eckardt
and Rosenblatt, 2018; Krishnan et al., 2013; Papi et al., 2015;
Robert et al., 2009; Rosenblatt et al., 2014a,b; Verrel et al., 2010).
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However, whether 20 steps provides stable estimates of UCMmea-
sures during gait has yet to be tested. In light of the insights UCM
analysis can offer into strategies used by non-impaired (Eckardt
and Rosenblatt, 2018; Hsu et al., 2013; Kapur et al., 2010;
Olafsdottir et al., 2007; Papi et al., 2015; Qu, 2012; Robert et al.,
2009; Shim et al., 2004) and clinical populations (Black et al.,
2007; Latash et al., 2002; Papi et al., 2015; Park et al., 2012) to gen-
erate movement solutions during everyday activities, it is impor-
tant to know the number of observations needed to characterize
these movements.

The purpose of this study was to evaluate the minimum number
of steps needed to obtain a ‘‘reasonable approximation” of the
‘‘true” value of three UCM-derived measures – two variance com-
ponents and the synergy index. Here we use the term ‘‘reasonable
approximation” rather than ‘‘reliable” or ‘‘accurate”, which utilize
specific methodologies. Specifically, we will ‘‘approximate” – i.e.,
obtain values that are �90% the ‘‘true value”, or the value obtained
with a ‘‘large” number of steps – with ‘‘reasonable” certainty – i.e.,
95% confidence.

2. Methods

This study is a secondary analysis of data from fourteen healthy
community-dwelling older (>65 years) adults (7 female;
71.4 ± 6.8 years; 1.69 ± 0.09 m; 67.4 ± 7.5 kg) who participated in
a larger study focused on the effects of obesity on fall risk. Only
data from subjects with body mass index of 17.5–25.0 kg/m2 is
included. All subjects were screened for neuromusculoskeletal
health (e.g., normal range of motion, no joint replacements or his-
tory of neurodegenerative disease) and provided written informed
consent before participating in this study approved by the Rosalind
Franklin University IRB.

Participants walked on a motorized treadmill (Motek; Amster-
dam, Netherlands) for 10 min at a self-selected velocity, deter-
Fig. 1. Definition of elemental variables used in the UCM analyses. (left) sagittal plane vie
of the pelvis and the shoulders; (middle) frontal plane view with white circles represent
on the swing; (right) blank circles represent hip joint centers.
mined using a previously described approach (Rosenblatt et al.,
2014a,b). An 8-camera motion capture system (Vicon; Oxford,
UK) tracked the motions of passive reflective markers placed on
body landmarks according to the full body plug in gait model. Mar-
ker data was processed using commercial software (Nexus; Oxford,
UK) to obtain locations of the lower limb joint centers and segment
lengths. Two performance variables related to mechanical stability
of gait were then considered in the analysis. One variable, the
mediolateral (ML) trajectory of the swing limb (Krishnan et al.,
2013; Rosenblatt et al., 2015; Rosenblatt et al., 2014a,b) - defined
as the mediolateral position of the swing limb ankle joint center
relative to that of the stance limb (AJCML) - was chosen due to
the importance of mediolateral foot placement in the control of
mechanical stability while walking (Bauby and Kuo, 2000;
Donelan et al., 2004). We also considered the frontal plane position
of whole body center of mass (CoM) relative to the stance limb
ankle joint center (CoMML), given the importance of ML CoM con-
trol in the maintenance of upright gait (Hurt et al., 2010; Papi
et al., 2015). For both performance variables, elemental variables
were segment angles of the lower limbs and trunk. For the AJCML

analysis, motion data was normalized from 0 to 100% correspond-
ing to each left-leg swing; for CoMML analysis, motion data was
normalized to each left-leg swing and ensuing double support.
Normalized data was then entered into custom code (Matlab; Cam-
bridge, MA) to calculate the UCM measures, using a four step pro-
cess (Scholz and Schoner, 1999):

1) A geometric model was created to express the performance
variables as functions of 7 or 9 elemental variables (Greek
letters in Eqns. (1) and (2)), for AJCML and CoMML respec-
tively (see Fig. 1 for definitions of elemental variables). We
used a previous described model for the former (Krishnan
et al., 2013) and a similar model for the latter, with the
addition of trunk mediolateral and frontal plane flexion.
w where white circles represent the hip and ankle joint centers as well as the center
ing similar locations, with the addition of a circle representing the knee joint center
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Anthropometric tables (Winter, 2005) were used to approx-
imate the positions of the segmental CoMs relative to their
ends (y1,3,4,5 in Eq. (2)) and the magnitudes of segmental
CoMs (m1,3,4,5 in Eq. (2)). The terms L1,-4 represent the
lengths of model segments.
Fig. 2.
were co
AJCML ¼ L1 cosa sin h1 þ L2 cos b cos h2 þ L3 cos c sin h3
þ L4 cos c sin h4 ð1Þ
COMML ¼ 1
m1 þm5 þm3 þm4

� ½m1 � y1 � L
1
cosa sin h1 þ � � �
m5 � ðL1 cosa sin h1þ0:5 � L2 cos b cos h2
þ y5 � L5 cos e cos h5Þ � � �
m3 � ðL1 cosa sin h1þL2 cosb cos h2 þ y3 � L3 cos c sin h3Þ þ � � �
m4 � ðL1 cosa sin h1þL2 cosb cos h2 þ y3 � L3 cos c sin h3
þ y4 � L4 cos c sin h4Þ� ð2Þ
2) A Jacobian matrix was derived from the model to relate
changes in elemental variables to changes in the perfor-
mance variable. At every percent of the normalized gait
cycle, the Jacobian was evaluated at the mean values of
the elemental variables. The null space of the evaluated Jaco-
bian defined the UCM.
AJC
ML

Synergy 
Index

V
UCM

V
ORT

UCM-related variables for two performance variables plotted as a function of num
nducted and the output was averaged across repetitions. Each curve represents
3) For each left-step, deviation vectors were independently cal-
culated at every percent of swing as the difference between
the elemental variables at that point and their respective
means. These vectors were projected onto the UCM and a
space orthogonal to it. The squared length of the projected
vectors in each space, relative to the number of DoFs in that
space, was averaged across multiple steps to define two vari-
ance components (VUCM and VORT, respectively).

4) The synergy index was calculated at each percent as the dif-
ference between VUCM and VORT, relative to the total vari-
ance. The index was then z-transformed (Robert et al.,
2009). All outcomes were averaged across 0–100%

For each participant, we ran the four-step process within a lar-
ger Monte Carlo simulation to generate subject-specific curves of
the synergy index, VUCM and VORT as a function of number of
steps. This was done to visually verify that the curves plateaued
after some ‘‘large” number of steps (Nmax). Within the simulation,
we performed the following actions: (1) set Nmax = 100; (2) ran-
domly selected n = 2 steps from the first Nmax steps; (3) calcula-
teed UCM-derived variables for n steps using the four-step
process; (4) repeated actions 2 and 3 over 50 replications (above
which limited improvements in simulation accuracy were
expected) (Efron and Tibshirani, 1986); (5) calculated an average
value across replications for the synergy index, VUCM and VORT; (6)
increased n to n + 1 and repeat actions 2–5 until n = Nmax; (7)
visually identified a plateau in the synergy index, VUCM and VORT

curves; if none existed then we would increase Nmax and repeat
actions 1–7.
CoM
ML

ber of steps (n) included in the UCM analysis. For each n, 50 Monte Carlo repetitions
averaged result for a given subject. All curves plateau at n < 100.
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After determining an appropriate Nmax, the values for the syn-
ergy index, VUCM and VORT obtained within a given replication,
for a given n, were expressed as percentages of the values attained
with Nmax. For each subject these percentages were then averaged
across all 50 simulation replications. From these subject-specific
averages, at each n we calculated 95% confidence intervals (CIs)
then calculated the grand mean curves by averaging subject-
specific curves. The minimum number of steps needed to provide
a ‘‘reasonable approximation” of a measure was defined as the
lowest value of n, above which all lower CIs were �90% of the
grand mean values.
3. Results

In general, regardless of performance variable, the curves for
each of the UCM-related variables as a function of number of steps
in the analysis plateaued prior to n = 100 (Fig. 2). Therefore we set
Nmax = 100 for all ensuing analyses when determining the mini-
mum n needed to approximate ‘‘plateau” values (Fig. 1).
Fig. 3. Grand-mean curves of UCM-related variables as a percent of the value with Nmax =
each subject, for each n, 50 Monte Carlo repetitions were performed and the outputs w
averaged across the 50 repetitions. Each curve represents the grand mean of the norm
curves. The number of steps that provide a ‘‘reasonable approximation” of values at Nm
Regardless of the performance variable, the synergy index shar-
ply increased for small step counts then leveled out (Fig. 3); with
16 steps in the analysis, the 95% CIs for the synergy index were
�90% of the values obtained when 100 steps were analyzed.
(Fig. 2). Thus 16 steps provides a reasonable approximation of
the synergy index.

In contrast, with 16 steps in the analysis, we could be 95% con-
fident that the values of the variance components were 78–81% of
the values with n = 100 (Fig. 2). We required n = 49 steps to obtain
‘‘reasonable approximations” for both variance components for
each performance variable (Fig. 2). The average absolute change
in the variance components for n = 16 compared to n = Nmax varied
from 3.4e-5 to 6.4e-5, depending on the component and perfor-
mance variable (Fig. 1).
4. Discussion

The purpose of this study was to evaluate the minimum number
of steps needed to obtain a ‘‘reasonable approximation” for three
100, for two performance variables plotted as a function of number of steps (n). For
ere expressed relative to the values with n = Nmax. Normalized values were then

alized curves. Error bars are 95% CI obtained from the subject-specific normalized
ax is noted by the arrow.
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UCM-derived measures. Regardless of performance variable, 16
steps was sufficient to obtain a ‘‘reasonable approximation” of the
synergy index. While nearly 50 steps were needed to reasonably
approximate the variance components, the two proportionally
changed from n = 16 to n = 50, explaining the lower number of steps
for the synergy index. Importantly, previous results regarding vari-
ance components from studies using n < 50 (Krishnan et al., 2013;
Papi et al., 2015; Robert et al., 2009; Rosenblatt et al., 2014a,b;
Verrel et al., 2010) should not be dismissed. While reported values
from these studies may not represent the ‘‘true values” (i.e. those
obtainedwithNmax), thedifferencebetween reportedand ‘‘true” val-
ues is expected to be relatively small; average absolute changes in
variance components with n = 16 vs. n = 100 were an order of mag-
nitude less than the smallest subject-specific values for these same
variables (1e-5 vs. 1e-4, respectively). Because the magnitudes of
the variance components are small relative to the synergy index,
small deviation fromNmax maymanifest as larger percentage differ-
ences. As there is no reason to believe differences between reported
and ‘‘true” values should depend on experimental conditions, previ-
ous reports of between-condition effects would be expected to per-
sist evenwithmore data points. However additionalwork is needed
to demonstrate this.

Several factors may limit generalizability of the current findings.
This study utilized treadmill walking, which could limit generaliz-
ability to overground conditions, although foot placement and
CoM motion relative to the foot may be independent of walking
modality (Rosenblatt and Grabiner, 2010). Moreover, in the current
study, the95%CI for the synergy index forAJCMLwithn = 16overlaps
with previous data from overgroundwalking (Krishnan et al., 2013)
(95% CIs: 1.22–1.47 vs. 1.23–1.51, respectively). Results from the
current study may not generalize to other performance variables,
although findings were similar for AJCML and COMML. Generalizabil-
ity across performance variables (and tasks) is not trivial in light of
thewide variety of tasks towhich theUCManalysis has been applied
(Black et al., 2007; Eckardt and Rosenblatt, 2018; Hsu et al., 2013;
Kapur et al., 2010; Latash et al., 2002; Olafsdottir et al., 2007; Papi
et al., 2015; Park et al., 2012; Qu, 2012; Robert et al., 2009; Shim
et al., 2004). Given that thresholds for ‘‘reasonable approximations”
dependon intersubject variability, resultsmaydifferwithadifferent
sampling of subjects. While variance component curves show con-
siderable intersubject variability (Fig. 1) their shapes, and thus val-
ues at a given n relative to Nmax (used to calculate thresholds) tend
to be consistent across subjects.

The ability to obtain a ‘‘reasonable approximation” for UCM-
derived measures using a relatively small number of steps is
important if these measures are to be employed within clinical set-
tings where time, space and patient mobility may be constrained.
However, it is first critical to evaluate reliability using interclass
coefficients, to establish the functional implication of smaller/lar-
ger synergy index during gait and, relatedly, to estimate the mini-
mum clinical important difference. Once accomplished, clinical
implementation may be possible; similar measures have demon-
strated sensitivity to functional changes in patient populations
(Falaki et al., 2016; Lewis et al., 2016).

In conclusion, the individual components used to calculate the
synergy index required 50 steps to provide ‘‘reasonable approxi-
mations”, however the differences between using 15–20 steps
and 50 steps were small (i.e. 20%). The collection of 15–20 steps
results in a reasonable approximation of the synergy index related
to frontal plane foot placement and CoM control, which is advanta-
geous when the data collections are constrained to a limited num-
ber of steps.
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