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Fixation failure of glenoid components is the main cause of unsuccessful total shoulder arthroplasties.

The characteristics of these failures are still not well understood, hence, attempts at improving the
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implant fixation are somewhat blind and the failure rate remains high. This lack of understanding is

largely due to the fundamental problem that direct observations of failure are impossible as the fixation

is inherently embedded within the bone.

Twenty custom made implants, reflecting various common fixation designs, and a specimen set-up

was prepared to enable direct observation of failure when the specimens were exposed to cyclic

superior loads during laboratory experiments. Finite element analyses of the laboratory tests were also

carried out to explain the observed failure scenarios.

All implants, irrespective of the particular fixation design, failed at the implant–cement interface

and failure initiated at the inferior part of the component fixation. Finite element analyses indicated

that this failure scenario was caused by a weak and brittle implant–cement interface and tensile

stresses in the inferior region possibly worsened by a stress raiser effect at the inferior rim.

The results of this study indicate that glenoid failure can be delayed or prevented by improving the

implant/cement interface strength. Also any design features that reduce the geometrical stress raiser

and the inferior tensile stresses in general should delay implant loosening.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Glenoid loosening constitutes 32% of all total shoulder
arthroplasty (TSA) complications and has a revision rate of 7%
(Bohsali et al., 2006). To overcome this, curved-back designs,
variations in pegged or keeled designs and other macro-features
have been used. Despite many efforts, the optimal design
parameters are still not established. This difficulty is probably
caused by the fact that, fundamentally, the characteristics of
failure are not yet clear.

Previous studies have indicated failure to occur; around the
the keel/pegs (Klepps et al., 2005; Trail and Nuttall, 2002); in the
superior region (Nagels et al., 2002) or in the inferior region
(Nagels et al., 2002). Most clinical studies report failure to occur in
the cement/bone interface (Yian et al., 2005). However, most of
these studies base their findings on the presence of radiolucent
lines, which, apart from being difficult to quantify and understand
the significance of, are also unlikely to capture narrow de-bonds
ll rights reserved.

x : +44 207 581 5495.
at the implant/cement interface or thin cracks in the bulk cement.
Therefore, the findings from these radiographic studies are
questionable and there are retrieval studies that show results
indicating failure to occur wholly (Nyffeler et al., 2003) or partly
(Yian et al., 2005) in the implant/cement interface. Finally, some
studies describe failure of the bulk cement (Terrier et al., 2005). In
summary, the location of failure along and within the fixation is
not well established.

It is the purpose of this paper to determine characteristics such
as: (1) does the failure initiate inferiorly, superiorly or at the keel/
pegs? (2) What is the weakest link in the fixation; the cement, the
bone or at the interfaces? Knowing which of the constituents that
is the weakest link will determine if, for example, stronger cement
would be beneficial or if more optimal surface preparation
techniques are required to improve glenoid fixation.

Based on the concept of the ‘‘rocking horse effect’’ (Matsen et al.,
1994) and the work by Anglin, 1999, the American Society for
Testing and Materials (ASTM) adopted a standard for testing of
glenoid implant loosening (ASTM F 2028-02, 2004). This method
uses a measure of changing implant rim displacement with
number of load cycles as an indicator of loosening. However, the
measure of rim displacement is only an indirect measure of fixation

dx.doi.org/10.1016/j.jbiomech.2009.10.019
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Table 1
Material properties used in the FE model.

Material Young’s Modulus, GPa Poisson’s Ratio

UHMWPE implanta 0.6 0.4

PMMA bone cementb 2.2 0.3

PU bone substitutec 0.0475 0.3

a White polyethylene rod from manufacturer’s data sheet (RS, 2004).
b (Lewis et al., 1997).
c Cellular rigid polyurethane foam 12.5 pcf (Sawbones product catalogue,

2009).
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failure and it has not, in fact, been shown that an increase in rim
displacement correlates with initial or progressive loosening.

The reason for using these questionable, indirect measures is
that the fixation is inherently embedded in the bone and
impossible to observe directly. To overcome this problem, custom
made implants (see Fig. 1) allowing direct observation of the
fixation and the progressive failure were used in this study. These
specimens are clearly different from real implants but the simple
justification is that, whatever the shortcomings, it is the only way
to be able to observe failure directly. Also, as will be discussed
later, a recent study (Gregory et al., 2009) using real implants
supports the use of these specimens.
Subluxation Curves for Conforming Specimens
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2. Materials and Methods

2.1. Mechanical test

Modified glenoid specimens were manufactured and will be referred to as

two-dimensional or 2D specimens in this paper. The cross-sectional dimensions in

the coronal plane of commercially available keeled and pegged glenoids were

extruded by 40 mm normal to the coronal plane to create 2D implants (Fig. 1).

A testing rig in compliance with the ASTM standard (ASTM F 2028-02, 2004) was

used to carry out the cyclic testing (Fig. 2). The glenoid specimens articulated

against a humeral head. The humeral head was a semi-circular cylinder, 24 mm

radius by 40 mm long, corresponding to the 2D geometry of the glenoid

components (Fig. 2). The glenoid implants were CNC machined from ultra high

molecular weight polyethylene or UHMWPE (RS catalogue, 2004). In total, twenty

implants of different design parameters were manufactured to make a total of

8 specimen groups (Table 2); peg versus keel, flat-back versus curve-back,

conforming (25 mm glenoid radius) versus less conforming (29 mm glenoid

radius).

The implants were cemented into porous polyurethane (PU) bone substitute,

which has properties (see Table 1) representative of the rheumatoid bone (Yang
Fig. 1. Cemented 2D-specimen in bone substitute; flat-back peg (left) and curved-

back keel (right).
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Fig. 2. The ASTM F2028-08 biaxial testing rig, modified according to the 2D

configuration of this study.

Fig. 3. Subluxation curve of three conforming specimens with loading point

derived at the linear section of the curve (dotted). Note: displacement range

(shaded) at point of subluxation.
et al., 1997) present in many TSA cases. The PU parts were also CNC machined and

designed to accommodate a uniform 2 mm thick cement mantle (Couteau et al.,

2001). Stryker Simplexs polymethylmethacrylate (PMMA) bone cement was hand

mixed at room temperature and introduced using finger pressure and a cement

layer on both the bone and implant side. The implantation was carried out by an

experienced shoulder surgeon (S.S.).

The humeral head was compressed into the glenoid using a horizontal load of

1800 N applied by a pneumatic cylinder. This load is higher than the compressive

load specified in the ASTM standard but is not physiologically unreasonable

(Anglin et al., 2000a). The 2D implants were bulkier and stiffer structures than real

implants, so higher loads were applied in order to generate stresses in the 2D

fixation that were similar to the stresses in the fixation of a real implant (as

determined from a finite element model of the two cases).

In addition to the constant horizontal load applied through the glenoid, the

specimens were loaded by displacing the humeral head vertically at 0.5 Hz in sets

of 4000 cycles via displacement control. The humeral head was displaced

superiorly (that is, vertically upwards) from the centre of the glenoid and back

to the centre. This imposed compressive stresses mostly onto the superior part of

the fixation and tensile stresses mostly on the inferior part of the glenoid fixation,

thereby making it easier to understand the type of failure observed. This loading

regime does not seem unreasonable as, clinically, superior migration and loads are

more common (Bergmann et al., 2007; Trail and Nuttall, 2002).

Prior to fixation failure testing, two specimens of each design were tested

qausi-statically to determine the load and displacement to subluxation. The ASTM

standard specifies that 90% of the subluxation displacement must be determined

and used as the vertical displacement during the cyclic test. However, it was not

easy to determine the 90% subluxation displacement. This was due to: (1) the

force–displacement response being very flat near the subluxation point (Fig. 3)

making it difficult to accurately determine the subluxation displacement; (2) great

inter-specimen variability of the non-linear behaviour in the near-subluxation

region (Fig. 3), resulting in significant scatter of the 90% subluxation displacement

between specimens. Instead, the load and displacement at the end of the linear

region of the curve, where there was much less variability between specimens,

were used (Fig. 3). The end of the linear region was defined as the point when

there was a 10% displacement difference between the (average) non-linear

response and an extrapolation of the linear region (Fig. 3). This approach led to

2.5 mm for the conforming designs and 3.25 mm for the less conforming designs
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or 1200 and 1100 N, respectively. That is, approximately 83% of the average

subluxation load. Although these loads were slightly lower than would have been

the result of strictly applying the 90% ASTM recommendation, they were still near-

subluxation loads, which is the principal recommendation of the ASTM standard.

2.2. FE analysis

To represent each of the implant configurations, eight 2D models were built using

between 8800 and 14,400 quadrilateral elements. The materials were modelled as

linear elastic and the relevant properties are shown in Table 1. The FE analysis was

carried out in Marc/Mentat 2005 (MSC Software, Palo Alto, CA) and modelled as a

plane strain problem. The humeral head was assumed rigid with a friction coefficient

of 0.07 between the humeral head and glenoid implant (Anglin et al., 2000b). The

interfaces between the UHMWPE and PMMA and the between PMMA and bone

substitute, were modelled as fully bonded. The loading and boundary conditions

mimicked the laboratory test set-up. Mesh convergence was verified.

Predicted stresses, normal and tangential to the interfaces, were used to

evaluate the risk of failure of the implant/cement and cement/bone interfaces. The

maximum principal stress was used to evaluate the risk of failure of the cement

mantle. The minimum principal stresses were used to predict bone crushing.

To predict failure the stresses were compared to relevant strength values.

Unpublished work in our laboratory has found the cement/bone-substitute

interface tensile strength to be greater than 2.3270.54 MPa. The strength of the

polyethylene-implant/PMMA bone cement interface depends on the roughness of

the polyethylene surface. Unpublished work in our laboratory has found the

tensile strength of this interface to range between virtually zero and 3.2 MPa for
Fig. 4. In all cases failure (indicated by arrows) was observed in the implant/

cement interface and initiated in the inferior part of the fixation. In the figure,

inferior is the lower part of the fixation and superior is the upper part of the

fixation.

Fig. 5. Failure pathway in keeled (left) and pegged glenoids (right). A similar failure pat

of the fixation and superior is the upper part of the fixation.

Table 2
Results showing average, and in brackets the standard deviation, number of cycles to

Flat-back peg F

Less conforming (5 mm radial mismatch) 8275 (7 0 6), n=4 9

Conforming (1 mm radial mismatch) 13,969, n=1 1
realistic implant surface roughness (that is, roughness ranging from ‘‘smooth’’ to

5.5 mm). The roughness of the backside of the polyethylene glenoids in this study

was to 3–6 mm and it was assumed that the implant/cement interface strength for

this study was in the range of 1 to 3.2 MPa. The tensile strength of PMMA bone

cement is 27.1 MPa (Krause and Hofmann, 1989) and the compressive strength of

the bone substitute is 3.9 MPa (Sawbones product catalogue, 2009).
3. Results

3.1. Cyclic testing

In all twenty specimens, irrespective of design type, failure
was observed at the implant/cement interface (Fig. 4). Initial
failure occurred at the inferior edge of the glenoid component and
propagated superiorly across the back of the glenoid until it met a
fixation feature. The crack propagated around the periphery of the
fixation keels. However, for pegged designs, the crack propagated
as far as the tip of the inferior peg and then ‘jumped’ across the
bone to the tip of the next peg where failure progressed at the
cement/bone interface (Figs. 4 and 5). Progressive superior bone
crushing was also observed. Cycles to failure varied between 8000
and 14,905 cycles (Table 2), failure being defined as the crack
having reached the centre line of the implant (Fig. 5). The number
of cycles to failure shown in Table 2 can be used to compare the
different implant designs but the results of this 2D study should
not be used to quantitatively estimate real life time survival.

3.2. FE results

Fig. 6 shows the predicted stresses in the fixation of the
curved-back, keeled implant. While there were differences in
stresses between the different implant designs, this figure
demonstrates the characteristic features of the stress
distributions for all the implants and is used to demonstrate the
FE results. The figure also includes the strength values, mentioned
earlier, of the various components of the fixation.

The normal stress along the implant/cement interface was
predominantly compressive superiorly and tensile inferiorly. The
average tensile stress in the inferior region was 0.83 MPa and
h was observed for all design configurations. In the figure, inferior is the lower part

failure for different implant designs. Number of samples is ‘n’.

lat-back keel Curve-back keel Curve-back peg

764 (5 2 5), n=4 10,519 (8 5 8), n=4 13,150 (7 6 3), n=4

2,297, n=1 14,905, n=1 12,100, n=1
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Fig. 6. Plot of the predicted stresses in the fixation of the curve-back keel specimen. The plotted stresses are at: the two interfaces; in the bulk PMMA bone cement and in

PU bone substitute. The strengths of the two interfaces, of the cement and of the PU bone substitute are also shown. The implant/cement interface strength is only known

within a range and this range is indicted by the hatched area. Only a minimum value of the cement/bone-substitute strength is known (2.32 MPa) and the arrows indicate

that the strength is likely to be higher than 2.32 MPa.
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increased to 3.35 MPa towards the edge and were within the
range of the implant/cement interface strength of 1–3.2 MPa,
indicating that failure of this interface is likely. In contrast, the
maximum principal stresses in the cement were much lower than
the tensile strength of the PMMA bone cement (27.1 MPa). The
stresses in the cement/bone interface were also tensile in the
inferior zone and reached the cement/bone interface strength,
conservatively estimated to be 2.32 MPa, only in the small region
very close to the edge.

The minimum principal (compressive) stresses in the under-
lying bone substitute in the superior part of the fixation are
predicted to reach �5.2 MPa, exceeding the 3.9 MPa compressive
strength of the PU bone substitute. This predicted bone substitute
crushing in the superior region was also observed during the
experiments (Fig. 4).
4. Discussion

All implants, irrespective of the particular fixation design,
failed at the implant–cement interface and failure initiated at the
inferior edge part of the component fixation. Finite element
analyses indicated that this failure scenario was caused by a weak
implant/cement interface strength and relatively high tensile
stresses in the inferior region, possibly worsened by a stress
concentration at the inferior edge, where tensile stresses are
highest. Crushing of the bone substitute in the superior region
was also apparent.
4.1. Location of failure

Clinical radiographic studies have found radiolucent lines
around the peg/keel which have been interpreted as a loss of
fixation (Barrett et al., 1987; Hertel and Ballmer, 2003). Other
studies (Nagels et al., 2002; Nuttall et al., 2007; Yian et al., 2005)
have reported radiolucent lines inferiorly. In particular, Nagels
et al. (2002) found that radiolucent lines grew over time inferiorly,
while radiolucent lines existed in the superior part of the fixation
immediately following the surgery (Nagels et al., 2002), possibly
indicating the critical nature of inferior radiolucent lines.

Failure of the fixation in the inferior region was the obvious
failure mode in all specimens, which is consistent with the clinical
studies just mentioned. The finite element analysis showed that
this region is exposed to tensile stresses and interfaces are
typically weak in tension. The tensile stresses increased rapidly
towards the inferior edge (Fig. 6), due to the geometry of the edge
of the component. Although the edge of the 2D set-up may not
have represented the real implant features accurately, the
analysis does demonstrate that implant failure may be sensitive
to subtle details of the edge geometry, which could probably be
modified to lower the risk of failure.

4.2. The weakest link of the fixation

PMMA bone cement has been a cause for concern in implant
loosening because it is known to be weak in tensile fatigue (Saha
and Pal, 1984). It is often presumed that the cement is the
weakest link in the fixation (Hopkins et al., 2004; Lacroix and
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Prendergast, 1997). However, in this study there were no
indications that cement was fracturing and the cement stresses
were predicted to be very much lower than both the tensile
strength of cement of 27.1 MPa and the fatigue strength of 10 MPa
(Murphy and Prendergast, 2000). Thus, the bulk cement is
unlikely to be the weakest part of the fixation.

In this study, the bone substitute was crushed superiorly and
finite element predictions also found stresses indicative of
compressive failure. This may explain the radiolucent lines
observed in clinical studies. However, this interpretation has to
be viewed in the context that this study used bone substitute
material, which may have a lower compressive strength (3.9 MPa)
than real glenoid bone (10.3 MPa, Anglin, 1999). However,
rheumatoid bone strength is likely to be much lower (Yang et al.,
1997) and possibly reasonably represented by the bone substitute
strength. Also the compressive stresses in the superior region
of the 2D set-up are possibly larger than in the physiological
(3-dimensional) implant fixation.

An important limitation of this study is the use of the possibly
non-physiological 2D set-up. The simple justification for the 2D
set-up is that, whatever its shortcomings, it is the only way to be
able to observe failure directly. A recent study, that was in many
ways similar to the present study but using real (3D) implants,
also found that failure took place at the implant/cement interface
(Gregory et al., 2009). It would therefore seem that the 2D set-up
is reasonably representative of physiological conditions.

Another limitation related to the 2D nature of the study is that
no grooves or other macrofeatures at the glenoid back were
included. The effects of such macrofeatures will undoubtedly
depend on their specific geometry but is unlikely to change the
recommendation of this study to increase the PE–cement inter-
face strength. Similarly, real implants usually contain notches or
holes in the polyethylene keel or pegs to create an interlock to
help prevent the implant from simply slipping out of the cement.
These features would possibly delay failure but, as mentioned
above, the study by Gregory et al. (2009), indicated that it would
not change the recommendation to increase the PE–cement
interface strength.

The stresses predicted for the implant/cement interface were
of similar magnitude to those at the bone-substitute/cement
interface. Possibly it could be argued that the strength of the
bone-substitute/cement interface (greater than 2.32 MPa) is high-
er than the implant/cement interface strength (1–3.2 MPa) and
that this would explain why it was consistently the implant/
cement interface that was observed to fracture. Furthermore, the
fracture of the implant/cement interface appeared brittle (there
was no cement attached to the fracture surface of the poly-
ethylene and no polyethylene attached to the fracture surface of
the cement). It may be that the implant/cement interface is more
brittle than the cement interdigitised bone-substitute/cement
interface. Perhaps to fully explain the observed failure scenario a
fracture mechanics approach is necessary.

Although using bone substitute material instead of real glenoid
bone is a limitation of the study, unpublished work in our
laboratory has shown that the glenoid-bone/cement interface
strength is higher than the bone-substitute/cement interface
strength. It would therefore seem unlikely that using the stronger
glenoid bone would have changed the finding that the implant/
cement interface is the weakest link.

The conditions of the implantation in this laboratory study
were ideal. In the clinical situation factors such as poor cementing
(including a non-uniform cement mantle), bone preparation
techniques and the presence of interstitial fluids may lead to
very much lower cement/bone interface strengths. Although
surgical techniques are continuously being improved in order to
minimise the effect of such factors they are still very real, and
probably they do adversely affect clinical loosening (Norris and
Lachiewicz, 1996). However, the scope of this study was not to
investigate the effects of imperfect surgical techniques.

The results of this study contrast with the apparent consensus
from clinical studies (primarily radiographic) that loosening is at
the cement/bone interface (Bohsali et al., 2006; Matsen et al.,
2008). However, radiolucent lines have been attributed to a
formation of fibrous connective tissue (Wirth et al., 2001). It is
unlikely that there would be any soft tissue at a debonded
implant/cement interface. One possible reason that the clinical
studies do not report implant/cement interface failures may be
that such failures are not captured on radiographs, even when
present. There are also retrieval studies that show clinical failure
to take place wholly (Nyffeler et al., 2003) or partly (Yian et al.,
2005) at the implant/cement interface. It may also be that the
failure scenario cannot be explained completely as taking place at
just one interface. The results shown for the pegged implant in
Figs. 4 and 5 show such a mixed failure scenario where fixation
fracture initiates in the implant/cement interface but later
propagates through the cement and into the bone and bone–
cement interface.

Some authors have suggested that glenoid failure is due to a
biological reaction caused by polyethylene wear particles (Wirth
et al., 1999). Such biological reactions at the cement–bone
interface cannot be accounted for in our in-vitro study and could
also explain why cement/bone interface failure is not observed in
this study. Even if this is the case, the results of this study may
still be clinically relevant in a similar manner to the clinical
relevance of in-vitro studies of, for example, poor cementing or
bone preparation techniques. Such factors may be most directly
relevant to early loosening or to early stages of clinical (gross)
loosening. Early stages of fixation failure are difficult to observe in
clinic and may differ from the later stage failures that can be
observed clinically. However, any such factor that may influence
early fixation failure, may in turn have an effect on long-term
failures that may or may not be influenced by biological reactions.
5. Conclusions

A 2D laboratory set-up enabled, for the first time, direct
observations of glenoid fixation failure, which was shown to
initiate in the inferior part of the fixation, the implant/cement
interface being the weakest part of the fixation. The results
indicated that efforts to strengthen PMMA bone cement are
unlikely to have any effect on glenoid loosening because the
cement is not the weakest link.

The results indicated that strengthening the polyethylene
implant/cement interface, for example by roughening the poly-
ethylene surface, will improve the fixation strength of glenoid
implants. Also, design features that lead to overall lower tensile
stresses inferiorly and in particular features that reduce the stress
raiser at the edges of the fixation are likely to improve implant
loosening performance.

While strengthening the polyethylene implant/cement inter-
face can only be advantageous, the impact of the recommenda-
tions of this paper should be viewed in the context that clinically
most failures are believed to occur at the bone/cement interface.
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