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Measures that can predict risk of falling are essential for enrollment of older adults into fall prevention

programs. Local and orbital stability directly quantify responses to very small perturbations and are
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therefore putative candidates for predicting fall risk. However, research to date is not conclusive on

whether and how these measures relate to fall risk. Testing this empirically would be time consuming

or may require high risk tripping experiments. Simulation studies therefore provide an important tool

to initially explore potential measures to predict fall risk. This study performed simulations with a 3D

dynamic walking model to explore if and how dynamic stability measures predict fall risk. The model

incorporated a lateral step controller to maintain lateral stability. Neuronal noise of increasing

amplitude was added to this controller to manipulate fall risk. Short-term (l�S) local instability did

predict fall risk, but long-term (l�L) local instability and orbital stability (maxFM) did not. Additionally,

l�S was an early predictor for fall risk as it started increasing before fall risk increased. Therefore, l�S could

be a very useful tool to identify older adults whose fall risk is about to increase, so they can be enrolled

in fall prevention programs before they actually fall.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Fall risk increases in older adults and many risk factors
contribute to this (Tinetti et al., 1988). Falls in older adults can
be reduced by early enrollment in fall prevention programs (Lord
et al., 2003; Skelton and Beyer, 2003). Identifying people at high
fall risk before they have actually fallen would allow earlier
enrollment in fall prevention programs and possibly prevent or
delay the onset of repetitive falls. To identify those at high fall
risk, measures are needed that can easily be obtained without
actually inducing falls. Several studies suggested that increased
gait variability may prospectively predict future falls (Maki, 1997;
Hausdorff et al., 2001; DeMott et al., 2007). Results are however
inconclusive on which variables to use (Owings and Grabiner,
2004; Brach et al., 2005; Moe-Nilssen and Helbostad, 2005) and
how much of an increase in variability would result in an increase
in fall risk (Brach et al., 2010).

A simulation study with a 3D dynamic walking model con-
firmed that gait variability and fall risk were correlated (Roos and
Dingwell, 2010). This relationship was however strongly nonlinear.
At very low and very high gait variability levels, an incremental
increase in variability affected fall risk little, while at intermediate
gait variability levels, a similar increase resulted in a significant
ll rights reserved.
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increase in fall risk (Roos and Dingwell, 2010). Gait variability
therefore might not easily be used as a measure to identify people
at risk of falling, as specific increases in gait variability may or may
not result in increased fall risk. In this study, we therefore explored
different measures that may predict fall risk.

‘‘Local’’ (and also ‘‘orbital’’) stability refers to how a system
responds to infinitesimally small perturbations (Dingwell and
Cusumano, 2000). Conversely, ‘‘global stability’’ typically refers to
the set of the largest possible perturbations a system can with-
stand. For human walking, falling is a failure of global stability.
There is, however, no theoretical reason that ‘‘local stability’’ must
predict ‘‘global stability’’. This is something that must simply be
tested on a case-by-case, system-by-system basis. Local and orbital
stability (Dingwell and Cusumano, 2000; Dingwell and Kang, 2007)
have been studied in walking. Orbital instability was greater in fall
prone older adults than in younger adults and healthy older adults
(Granata and Lockhart, 2008) and also greater in post-polio
patients than in healthy adults (Hurmuzlu et al., 1996). Other
studies examined the influence of gait speed on local dynamic
stability (Dingwell and Marin, 2006; England and Granata, 2007;
Kang and Dingwell, 2008; Bruijn et al., 2009). Kang and Dingwell
(2008) found that both younger and older adults had decreased
dynamic instability (local and orbital) when they walked slower
and that older adults were more unstable than younger adults at
all walking speeds tested. However, none of these previous studies
imposed actual perturbations on their subjects or induced actual
falls. Therefore, it remains unclear what insights these dynamic
stability measures may have for assessing actual fall risk.
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Whether local and/or orbital stability are directly correlated to
actual fall risk therefore remains unknown. Simulations provide an
important tool to initially explore such measures that could predict
fall risk. Exploring such measures experimentally would require
either (1) longitudinal studies, which are time consuming and
expensive, or (2) tripping or slipping studies, which are complex
and potentially dangerous. Simulation models do not get injured,
do not learn, and allow total control over the system. Probability of
falling increased in a 3D dynamic walking model when neuronal
noise of increasing amplitude was applied (Roos and Dingwell,
2010). This model forms an ideal platform to determine the
relationship between local and orbital stability and risk of falling.

This work directly extends work by Su and Dingwell (2007) that
demonstrated that short-term local instability (l�S) increased, but
that orbital stability did not change, when a 2D dynamic walking
model was perturbed with increasing magnitude. They however did
not perturb their model to the point that it actually fell, and
therefore could not relate these measures to fall risk. Additionally,
because this model was 2D and not 3D, it was passively stable and
incorporated no additional control. Introducing lateral motion in a
3D model leads to qualitatively very different dynamics (Kuo, 1999).
Such 3D models are inherently unstable in the lateral direction and
require active control to prevent falling. Humans are likewise far
more sensitive to lateral perturbations during walking (Bauby and
Kuo, 2000; Donelan et al., 2004; Dean et al., 2007; O’Connor and
Kuo, 2009; McAndrew et al., 2010, 2011), making 3D models
uniquely relevant to studying human locomotor control.

The aims of this study were therefore to determine how
increased neuronal noise affects local and orbital stability, and if
these measures are related to gait variability and can directly
predict fall risk in a 3D dynamic walking model. We hypothe-
sized, based on Su and Dingwell (2007), that: (1) orbital stability
would not be a good predictor for fall risk, (2) short-term local
instability would be a good predictor for fall risk, and (3) long-
term local instability would not be a good predictor for fall risk.

2. Methods

Complete technical details on the simulation model are provided in the

Supplementary material of this paper and in Roos and Dingwell (2010). Briefly, a 3D

dynamic walking model (Kuo, 1999) was replicated in Matlab (Mathworks, R2008a).

This model was then adapted to simulate multiple consecutive steps and incorporate

simulated neuronal noise. The model comprised a pelvis segment and two rigid legs

with semi-circular feet (Fig. 1). The model orientation was prescribed by four angles:

(1) f (splay angle), (2) ySt(stance angle), (3) yRoll(roll angle) and (4) ySw(swing angle).

The splay angle (f) was a parameter for each individual integration step, and was only

adjusted from step-to-step. The state variables of the model therefore comprised the

latter three angles with their corresponding angular velocities:

SðtÞ ¼ ½yRollðtÞ, ySt ðtÞ, ySwðtÞ, _yRollðtÞ,
_ySt ðtÞ, _ySwðtÞ�AR6

ð1Þ
Fig. 1. Schematic picture of the 3D dynamic walking model used in this study.

(A) is a side view with the angles of the swing leg (ySw) and stance leg (ySt). (B) is a

frontal view with the leg splay angle (f) and lateral roll angle (yRoll) indicated.
Unlike our previous 2D model (Su and Dingwell, 2007), which was passively

stable, introducing yRoll enabled lateral movement of the walker causing lateral

instability (Kuo, 1999). Lateral stability could only be maintained by also

incorporating a controller that made lateral step adjustments. Initial conditions

were estimated from Kuo (1999) and further optimized for a moderate walking

speed (0.94 m/s).

Neuronal noise, similar to that present in humans, was simulated by applying

small random perturbations to the lateral step controller. This added noise

represented the changes in neuronal noise that happen with ageing due to

multiple physiological factors (Shaffer and Harrison, 2007). Across multiple steps,

sequential perturbations were chosen as uniformly distributed random numbers

with maximum amplitude 7 jnoise. Multiple sets of simulations were run where

jnoise was varied between values that did not make the model fall and values for

which the model always fell. For each jnoise, 100 walking trials were simulated for

125 consecutive walking steps or until the model fell over. The 125 steps reflected

human walking behavior, where 90.5% of walking bouts fall below 100 steps

(Orendurff et al., 2008). For each jnoise, the probability of falling (%Fall) was

computed as the percentage of trials where the model fell. For each simulation,

step variability measures were calculated as the standard deviations of step length

(SDSL), step width (SDSW) and step time (SDST). Kinematic state variability

(MSD yTotð Þ) was calculated by combining the variability of the individual state

variables (calculated as in Dingwell and Marin (2006)) in a vector and calculating

the length of this vector. A complete analysis of these variability results is

presented in Roos and Dingwell (2010).

Orbital stability quantifies from cycle to cycle the tendency of the system’s

state variables to return to a specific trajectory (the limit cycle) after a small

perturbation. Thus, orbital stability can only be calculated for systems that exhibit

periodic behavior. Orbital dynamic stability was calculated by estimating the

maximum Floquet Multiplier (maxFM) as in (Hurmuzlu and Basdogan, 1994; Su

and Dingwell, 2007). Details on how maxFM was calculated are given in the

Supplementary material. Consecutive orbits are deemed stable, on average, when

maxFMo1 and unstable when maxFM41.

Local instability quantifies how the system’s state variables respond to very small

perturbations in real time. Local instability assumes aperiodic behavior and therefore

that the system dynamics do not return to a limit cycle after small perturbations

(Dingwell and Cusumano, 2000). Local instability is calculated by local divergence

exponents. These exponents quantify how fast neighboring trajectories of the state

space either converge or diverge. Positive exponents indicate that the trajectories are

diverging. The larger the magnitude of the exponent, the faster small perturbations

from any given trajectory diverge. For walking, a short-term (l�S) and a long-term

local divergence exponent (l�L) can be calculated (Dingwell and Cusumano, 2000;

Dingwell et al., 2001). Details on how the local divergence exponents were calculated

are given in the Supplementary material.

The accuracy of the maximum Floquet Multipliers (maxFM) and local diver-

gence exponents (l�L and l�S) may increase with the number of gait cycles used in

the calculations (Bruijn et al., 2009). We calculated maxFM, l�L and l�S using a

varying number of steps (Fig. 2) and found that maxFM decreased (became more

stable) and l�L and l�S increased (became more unstable) when more steps were

used. The general trend of the data over the different noise amplitudes however

did not change. At higher noise levels there were few trials that walked over 50

steps, and this would reduce statistical precision. We chose to calculate the

dynamic stability measures over the first 50 steps of the first 20 trials of each jnoise

that walked at least 55 steps. The last five steps of each simulation were omitted

to exclude potential fall dynamics.

Outcome measures of this study were l�S , l�L , maxFM and %FALL. Significant

differences in l�S , l�L and maxFM for the different values of jnoise were analyzed with

one-way ANOVA tests, and Bonferroni posthoc tests. Correlations between l�S , l�L
and variability measures or maxFM were calculated by a Pearson correlation. All

statistical analyses were performed using SPSS (Version 17.0, release 17.0.0).
3. Results

The model exhibited periodic gait when no noise was added to
the controller. The kinematic variability increased appreciably
with added neuronal noise (Fig. 3).

The orbital stability (maxFM) did not increase continuously
with noise amplitude (jnoise) (Fig. 4). Increases in maxFM only
became statistically significant (po0.01) at the highest noise
amplitudes. As a result, maxFM was not a good predictor of fall
risk (%FALL) (Fig. 6A). This confirmed our first hypothesis.

The short-term local instability (l�S) increased (i.e., became
more unstable) when noise was applied to the model, and leveled
out at the higher noise levels (Fig. 5B). l�S started increasing before
the probability of falling (%FALL) increased and was therefore a
good early predictor for fall risk (Fig. 6B). The long-term local
instability (l�L) did not change with jnoise (Fig. 5C) and was not



25 50 75 100 125

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

steps

m
ax

FM

25 50 75 100 125
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

λ S
*

25 50 75 100 125
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

λ L
*

steps steps

jnoise = 3*10-5

jnoise = 18*10-5

jnoise = 15*10-5

jnoise = 12*10-5

jnoise = 9*10-5

jnoise = 6*10-5

Fig. 2. The number of walking steps used in the calculations (steps) versus (A) maxFM, (B) l�S and (C) l�L for the different neuronal noise (jnoise) values.

-0.02
0.02

0.06

-0.50.00.51.0

θSw

-0.5

0.0

0.5

1.0

θSw θSw

θ R
ol

l

θ R
ol

l

θ R
ol

l

θ S
t

θ S
t

θ S
t

-0.5

0.0

0.5

1.0

θ S
t

-0.50.00.51.0
θSw

-0.02
0.02

0.06
θ Ro

ll

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0

-0.50.00.51.0-0.50.00.51.0 -0.02
0.02

0.06

-0.02
0.02

0.06

Fig. 3. Phase portraits of the model with the first three state variables in (A) and (B) and the last three in (C) and (D). The red lines in (A) and (C) are the first 25 steps of the

noise free simulation and the blue lines in (B) and (D) are the first 25 steps of a trial with jnoise¼24�10�5. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

P.E. Roos, J.B. Dingwell / Journal of Biomechanics 44 (2011) 1514–15201516
correlated with fall risk (%FALL) (Fig. 6C). This confirmed our
second and third hypothesis.

There were weak correlations that were statistically significant
between l�S and the variability measures (0.367rr2r0.378;
pr0.001) (Fig. 6A). There were no significant correlations
between l�L and the variability measures (0.036rr2r0.053;
pZ0.475) (Fig. 6B). MaxFM was not correlated with variability
measures (not shown). This was not surprising as MaxFM already
did not change with jnoise. Neither short-term (l�S) nor long-term
(l�L) local divergence exponents were correlated to orbital
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(maxFM) stability measures (r2
¼0.120; p¼0.742 and r2

¼0.550
and p¼0.099, respectively) (Fig. 8).
Fig. 5. Probability of falling (%Fall), short-term (l�S) and long-term (l�L) local

divergence exponents against noise amplitude (jnoise). Error bars represent 71

standard deviation. Significant differences (po0.01) in l�S and l�L from the value at

jnoise¼3�10�5 are indicated with a n.
4. Discussion

Measures that can predict risk of falling are essential for early
enrollment of older adults into fall prevention programs. Testing
such measures empirically would require time consuming long-
term follow up studies to observe frequency of falling. Simulation
studies therefore provide an important tool to explore potential
measures to predict fall risk. This study performed simulations
with a 3D dynamic walking model to determine how well several
proposed dynamic stability measures predict fall risk in this model.

Our model (Fig. 1) exhibited stride lengths, stride times, step
widths, and walking speeds very comparable to humans. Many
predictions derived from the original 3D model (Kuo, 1999) were
subsequently confirmed in human experiments. The overall
kinematics of human walking are well predicted by this model
(Bauby and Kuo, 2000). Likewise, humans exhibited similar
changes in stepping kinematics (variability of step length, step
width, etc.) when they were externally stabilized in the medio-
lateral direction (Donelan et al., 2004; Dean et al., 2007). We
recently applied small-to-moderate amplitude pseudo-random
noise-like perturbations to humans walking on a treadmill. The
changes exhibited by humans in kinematic variability (McAndrew
et al., 2010) and in the same dynamic stability measures applied
here (McAndrew et al., 2011) were also mostly very consistent
with what we demonstrate here for our dynamic walking model.

The limit cycle behavior exhibited by our noise free model was
consistent with what would be expected from a central pattern
generator (CPG) driven system, where the primary (i.e., average)
motor patterns are generated by CPG’s in the spinal cord and then
modulated by sensory feedback (Holmes et al., 2006; Pinto and
Golubitsky, 2006; Ijspeert, 2008). The step width controller applied
in our 3D walking model is consistent with a feedback controller
that followed a ‘‘Minimum Intervention Principle’’ approach
(Todorov, 2004; Dingwell et al., 2010), where active control was
applied primarily in the medio-lateral direction where the model
was unstable, while anterior–posterior deviations were ignored
since these could be negated through passive dynamics (Kuo,
1999). Thus, this 3D dynamic walking model appears to accurately
replicate most of the essential features of human walking and the
dynamic stability control that humans use.

The present simulation study extended this previous modeling
and experimental work to investigate actual fall risk over a much
larger range of perturbation magnitudes. Short-term (l�S) local
instability was a predictor for fall risk. However, long-term (l�L)
local instability and orbital stability (maxFM) were not (Figs. 4–6).
Moreover, l�S was an early predictor for fall risk (%FALL) as it started
increasing before %FALL increased. There was no correlation between
long-term divergence exponents or orbital stability and gait varia-
bility (Fig. 7), which agreed with previous experimental research
(Dingwell et al., 2000, 2001; Dingwell and Marin, 2006). The short-
term divergence exponents were however significantly correlated
with gait variability (Fig. 7). This correlation was however driven by
the two outlying points with low l�S for the low gait variability
relative to the grouped similar l�S for the remainder higher gait
variability values. Due to the nonlinearity of this relationship, it is
difficult to interpret the r2 values of this correlation.
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All maxFM values were smaller than 1.0 (Fig. 4). The model was
therefore orbitally stable even for the high jnoise values where the
model fell over in most or all simulations. For the high jnoise values
(jnoiseZ24�10�5), maxFM values were however greater (less
stable) than those for jnoise¼3�10�5. It has to be kept in mind
that fall dynamics were excluded from analysis; for these fall
dynamics state space trajectories would have diverged very quickly
away from the limit cycle and this would lead to very large maxFM

values. Short-term local divergence exponents (l�S) were all posi-
tive and therefore local instability was present in the model,
consistent with previous simulation (Su and Dingwell, 2007) and
experimental studies (Dingwell and Kang, 2007; Dingwell et al.,
2007). The long-term divergence exponents (l�L) were all around
zero and did not change with jnoise, which indicated that the noise
applied to the controller was dampened out quickly.

The methods we used to calculate the local and orbital
stability influenced the outcomes quantitatively. Both methods
would have yielded different quantitative results if more steps
were used in their calculations (Bruijn et al., 2009). To allow
grouping of trials with the same conditions, a consistent number
of steps was used. Trends in the results did not change if more or
fewer steps were used (Fig. 2). Since the aim of this study was to
show the general relationship between fall risk and stability
measures, and not to give exact numerical values, we chose to
use a relatively small number of steps (50) in our calculations.
There was a sufficient number of trials available that each
contained this number of steps to yield statistical precision. To
make valid comparisons of the local divergence exponents at the
different jnoise values, we resampled all data to get a consistent
mean number of samples per stride (England and Granata, 2007).

Orbital dynamic stability (maxFM) changed little and not
continuously with noise amplitude (jnoise) (Fig. 4). This supports
earlier findings by Su and Dingwell (2007). MaxFM was not a good
predictor for fall risk (%FALL), as significant changes in maxFM

occurred too late to predict %FALL (Fig. 4). Experimental studies
however found maxFM to be higher in fall prone older adults than
in healthy subjects (Kang and Dingwell, 2007; Granata and
Lockhart, 2008). As our study only quantified changes in fall risk
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induced by increased neuronal noise, we may conclude that the
increased maxFM in fall prone older adults is caused by other risk
factors that were not included in our model (such as reduced
muscle force and/or response times).

This study extended previous research by Su and Dingwell
(2007). The model in this study differed from that in Su and
Dingwell (2007) as it was 3D and not 2D, because of this it was
inherently unstable and active control was required. Su and
Dingwell (2007) also did not perturb their model as such that it
fell over. Despite these differences and additional complexity, our
study had similar conclusions; short-term local instability (l�S)
increased when the model was perturbed with increasing magni-
tude and orbital stability did not change significantly when the
model was perturbed more. As the model actually fell over in our
study we could directly correlate the stability measures to fall risk
and demonstrated that short-term local dynamic stability (l�S)
was an early predictor for fall risk.

We previously showed that gait variability could significantly
predict fall risk (Roos and Dingwell, 2010). This relationship was
however highly nonlinear and the gait variability measures
largely parallelled changes in fall risk. Therefore, the initial level
of gait variability (depending on a person’s physiology and
external factors) greatly influences the increase in fall risk with
a certain increase in gait variability (Roos and Dingwell, 2010).
Here, we explored whether dynamic stability measures would
better predict fall risk. We found that short-term local instability
predicted fall risk in a different manner than gait variability.
Increases in the short-term local divergence exponents (l�S)
calculated in this study preceeded changes in fall risk. This
suggests that l�S might be more sensitive early predictors of fall
risk. This would make them more useful for early identification of
increased fall risk than gait variability.

The principal contribution of our study was to demonstrate
that short-term local divergence exponents, but not long-term
divergence exponents or maxFM, were good early predictors for
increased fall risk. They could therefore be a very useful tool to
identify older adults who are at high fall risk, thereby allowing the
possibility to enroll them in fall prevention programs before they
actually become frequent fallers. The findings of this study may
however be specific to the model used and it needs further
investigation how these findings translate to humans.
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