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Measured muscle activation patterns often vary significantly from musculoskeletal model predictions

that use optimization to resolve redundancy. Although experimental muscle activity exhibits both
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inter- and intra-subject variability we lack adequate tools to quantify the biomechanical latitude that

the nervous system has when selecting muscle activation patterns. Here, we identified feasible ranges

of individual muscle activity during force production in a musculoskeletal model to quantify the degree

to which biomechanical redundancy allows for variability in muscle activation patterns. In a detailed

cat hindlimb model matched to the posture of three cats, we identified the lower and upper bounds on

muscle activity in each of 31 muscles during static endpoint force production across different force

directions and magnitudes. Feasible ranges of muscle activation were relatively unconstrained across

force magnitudes such that only a few (0–13%) muscles were found to be truly ‘‘necessary’’ (e.g.

exhibited non-zero lower bounds) at physiological force ranges. Most of the muscles were ‘‘optional’’,

having zero lower bounds, and frequently had ‘‘maximal’’ upper bounds as well. Moreover, ‘‘optional’’

muscles were never selected by optimization methods that either minimized muscle stress, or that

scaled the pattern required for maximum force generation. Therefore, biomechanical constraints were

generally insufficient to restrict or specify muscle activation levels for producing a force in a given

direction, and many muscle patterns exist that could deviate substantially from one another but still

achieve the task. Our approach could be extended to identify the feasible limits of variability in muscle

activation patterns in dynamic tasks such as walking.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Musculoskeletal redundancy (Bernstein, 1967) in biomechanical
models is often addressed through optimizations that identify a
unique muscle activation pattern among many possible. One pop-
ular criterion is minimizing muscle stress (Crowninshield and Brand,
1981) which has been widely applied to predict muscle coordination
in simulations (Anderson and Pandy, 2001; Thelen et al., 2003;
Erdemir et al., 2007). However, measured muscle activity often
varies significantly from these predictions (Buchanan and Shreeve,
1996; Herzog and Leonard, 1991; Thelen and Anderson, 2006; van
der Krogt et al., 2012). We currently lack methods for analyzing
high-dimensional musculoskeletal models that would allow us to
quantify the degree to which muscle activity may feasibly vary for a
given motor task.

The first step to understand the variability in muscle activity
with respect to musculoskeletal redundancy is to identify
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absolute biomechanical constraints on muscle activity for a given
task. In contrast to optimization, this approach seeks to find the
full range of possible solution sets available to the nervous system
(Kutch and Valero-Cuevas, 2011). In particular, identifying the
explicit bounds on muscle activation can reveal whether pre-
dicted or measured muscle activity is due to biomechanical
requirements necessary to perform the task, or because of allow-
able variability in how the task can be achieved. Identifying
feasible bounds of muscle activity can also describe the degree
to which muscle activity may deviate from optimal solutions.

This study was motivated by experimentally-observed inter- and
intra-subject variability during reactive balance control (Horak and
Nashner, 1986; Torres-Oviedo et al., 2006; Torres-Oviedo and Ting,
2007). For example in cats, when producing an extensor force vector
(Fig. 1A, FEXT), knee extensor vastus medialis (VM) was recruited
consistently across animals, but hip and knee flexor medial sartorius

(SARTm) was recruited at different levels across animals (Fig. 1B,
FEXT). Conversely, when producing a flexor force vector (Fig. 1A,
FFLEX), VM recruitment varied across animals but SARTm was
recruited consistently in all animals (Fig. 1B, FFLEX).

Here, we identified feasible ranges of muscle activation during
static force production in a detailed model of the cat hindlimb
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Fig. 1. (A) Experimentally-measured hindlimb endpoint force vectors in cat Bi from Torres-Oviedo et al. (2006). Extensor force vector (FEXT, red) and flexor force vectors

(FFLEX, yellow) were essentially identical across cats. (B) Range of experimental muscle activity for producing FEXT and FFLEX across 3 cats. When producing FEXT, VM was

consistently activated in all animals, whereas the activation level of SARTm varied across animals. For FFLEX, SARTm was activated consistently in all animals and VM was

activated at varying levels across animals. (C) Musculoskeletal model of the cat hindlimb (Burkholder and Nichols, 2004) with seven rotational degrees of freedom (3 at the

hip, 2 each at the knee and ankle) and 31 muscles. In this static model, the pelvis was fixed to the ground and the endpoint, defined at the MTP joint, was connected to the

ground via gimbal joint where moments were constrained to be zero.

Table 1
Muscles included in the hindlimb model and abbreviations.

Name Abbreviation Name Abbreviation

Adductor femoris ADF Plantaris PLAN

Adductor longus ADL Iliopsoas PSOAS

Biceps femoris anterior BFA Peroneus tertius PT

Biceps femoris posterior BFP Pyriformis PYR

Extensor digitorum longus EDL Quadratus femoris QF

Flexor digitorum longus FDL Rectus femoris RF

Flexor hallicus longus FHL Sartorius SART

Gluteus maximus GMAX Semimembranossus SM

Gluteus medius GMED Soleus SOL
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(Fig. 1C; Burkholder and Nichols, 2004; McKay and Ting, 2008). We
identified the upper and lower bounds on muscle activity in each of
31 muscles during endpoint force production in different directions
and magnitudes. Muscles with non-zero lower bounds were classi-
fied as ‘‘necessary’’, whereas muscles with zero lower bounds were
classified as ‘‘optional’’. Muscles were further classified to have ‘‘sub-
maximal upper bound’’ or ‘‘maximal upper bound’’. To examine the
degree to which feasible muscle activation patterns could deviate
from an optimal solution, we compared these bounds to muscle
activation patterns predicted by minimizing muscle stress
(Crowninshield and Brand, 1981), or scaling the pattern required
for maximum force generation (Valero-Cuevas, 2000).
Gluteus minimus GMIN Semitendinosus ST

Gracilis GRAC Tibialis anterior TA

Lateral gastrocnemius LG Tibialis posterior TP

Medial gastrocnemius MG Vastus intermedius VI

Peroneus brevis PB Vastus lateralis VL

Pectineus PEC Vastus medialis VM
Peroneus longus PL
2. Methods

2.1. Musculoskeletal model

The static three-dimensional musculoskeletal model of the cat hindlimb

(Burkholder and Nichols, 2004) included seven rotational degrees of freedom

(Fig. 1C). 31 muscles (Table 1) produced net joint torque t, (7�1), and a resulting

endpoint wrench (force and moment vector) F
,

End (6�1) at the metatarsophalan-

geal (MTP) joint. The MTP was connected to the ground via a gimbal joint (Fig. 1C),

representing the experimental condition of a freely standing cat where the foot

never lost contact or slipped with respect to the ground (Jacobs and Macpherson,

1996). Endpoint moments were constrained to be zero, a conservative approx-

imation of the small moments that can be supported by the contact area of cat’s

foot (McKay et al., 2007). The model defined the mapping from muscle activation

vector e
,

(31�1) to endpoint wrench F
,

End:

RFAFLe
,
¼ t,¼ JTF

,

End , ð1Þ

where J is a geometric Jacobian (6�7), R is a moment arm matrix (7�31) that

maps muscle forces to joint torques, and FAFL is a diagonal matrix (31�31) of

scaling factors based on the active force–length property of muscle (Zajac, 1989).

To approximate the operating region on the force–length relationship curve

commonly observed in habitual postures, all muscles were set to 95% optimal

fiber length (Burkholder and Lieber, 2001; Roy et al., 1997; Sacks and Roy, 1982).

We found matrices J and R for each of 3 cats Bi, Ni, and Ru based on their average

kinematic configuration measured during quiet standing (McKay et al., 2007)

using Neuromechanic software (Bunderson et al., 2012).

2.2. Target endpoint forces

Five experimentally-derived force vectors in each cat measured during postural

responses to translational support perturbation (Torres-Oviedo et al., 2006) were

used as target endpoint force vector directions (Fig. 1A). These force vectors

represented the active response of the cats following perturbation, measured as the

change in the ground reaction force from the background level, averaged over the

postural response period 150–200 ms following the perturbation (Jacobs and

Macpherson, 1996), where only small angular deviations in joint angles (r21) are
observed (Ting and Macpherson, 2004). To examine biomechanical constraints across

force magnitudes, we scaled each force vector from 0 to the maximum feasible level

that could be produced by the model, identified using linear programming. We found

the muscle activation pattern e
, MAX that maximized force magnitude:

e
, MAX : Find e

,
s:t: JðRFAFLe

,
Þ:ðJT F

,

ExpÞ J is maximized, while ðRFAFLe
,
Þ � ðJT F

,

ExpÞ ¼ 0, ð2Þ

where the cross product constraint in Eq. (2) ensured the preservation of force

direction. Activation of each muscle was constrained between 0 and 1, and

endpoint moments were constrained to be zero. The maximum feasible force in

direction of the experimental force vector is given by:

F
,

MAX
EXP ¼ RFAFL

e
, MAX

JTF
,

Exp

F
,

Exp: ð3Þ

2.3. Lower and upper bounds on muscle activation

We used linear programming to identify the lower bound (eLB
m ) and the upper

bound (eUB
m ) on the feasible activation level of each muscle as the magnitude (a) of each

of the target endpoint force vectors was scaled from 0 to 1 (Eqs. (4) and (5)). Grid

spacing Da¼0.1 was used from a¼0.0 to 0.9, and grid spacing Da¼0.02 from a¼0.9

to 1.0 because initial tests revealed rapid changes for higher values of a. For each

muscle and each value of a, the lower and upper bound was identified as follows:

eLB
m : Find e

,
s:t: 9em9 is minimized, while RFAFLe

,
¼ aJT F

,
MAX
Exp ð4Þ

eUB
m : Find s:t: 9em9 is maximized, while RFAFLe

,
¼ aJT F

,
MAX
Exp ð5Þ

Each muscle was classified as necessary or optional based on whether, and at

what force magnitude the muscle became biomechanically required to generate



Fig. 2. (A) Two representative target endpoint force directions for cat Bi: FEXT (red, top row) and FFLEX (yellow, bottom row). (B) Identified feasible range of activation as a

function of normalized force magnitude (a) for five muscles in cat Bi: GRAC, PT, SART, SOL and VL. Feasible range (shaded) is defined by the difference between the lower

bound (eLB
m , bottom trace) and the upper bound (eUB

m , top trace). Muscles with zero lower bounds were categorized as optional (OPT), e.g. GRAC, PT, SOL for FEXT, and GRAC,

SOL, for FFLEX. Muscles were categorized as necessary (NEC) if lower bounds were nonzero at any force level, and further subdivided into categories of becoming necessary

gradually, e.g. SART for FEXT and FFLEX; only near maximal force, e.g. PT for FFLEX; or always, e.g. VL for FEXT. Muscles were also classified as having maximal (MUB) upper

bounds e.g. PT, SART, SOL for FEXT and PT, SART, for FFLEX; or having sub-maximal (SUB) upper bounds, either monotonically, e.g. GRAC for FEXT and VL for FFLEX;

nonmonotonically, e.g. GRAC for FFLEX; or conditionally, e.g. VL for FEXT and SOL for FFLEX. The vertical line indicates the experimental force levels at which most muscles had

zero lower bound and were practically ‘‘optional’’; of the muscles shown, only VL for FEXT was truly ‘‘necessary’’. Feasible ranges were wide in general, where activity of a

muscle could deviate substantially from the solutions predicted by either minimizing muscle stress (dots), or scaling the pattern required for maximal force (dashed lines).

Note that neither strategy predicted the recruitment of optional muscles.
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endpoint force, corresponding to a nonzero lower bound. Similarly, we classified

muscles as having sub-maximal upper bound or maximal upper bound based on

whether the upper bound was less than or equal to full activation. Considering all

combinations of animals, muscles, bounds, endpoint force vectors, and levels of a
resulted in 13,206 separate linear programming calls.

Lower and upper bounds identified at a¼0 were considered as a special case

because they do not depend on direction of the endpoint force vector and reveal

the feasible muscle activation patterns associated with zero net torque produc-

tion, which we call the physiological null space.
2.4. Comparison to predicted solutions from suggested neural strategies

We compared the feasible range of individual muscle activity to solutions for

muscle activation patterns identified by (1) minimizing muscular stress

(Crowninshield and Brand, 1981) in the form of sum-squared muscle activation

(Thelen et al., 2003) and (2) scaling the muscle activation pattern for the maximal

task (Valero-Cuevas, 2000). For the minimum stress strategy, muscle patterns e
, min

were identified for each level of a via quadratic programming as follows:

e
, Min: Find e

,
s:t:

X31

m ¼ 1

e2
m is minimized, while RFAFLe

,
¼ aJT F

,
MAX
Exp ð6Þ

For the scaling strategy, e
, MAX identified in Eq. (2) was scaled proportional to a.
3. Results

3.1. Bounds on muscle activation during endpoint force production

The feasible range of muscle activity for each muscle changed
non-uniformly as force magnitude a increased from zero to
maximal in a given target endpoint force direction (e.g. Fig. 2B,
shaded region). This range was defined by the difference between
the lower bound (Fig. 2B, bottom trace) and upper bound (Fig. 2B,
top trace) at a given a. In each animal, similar patterns of the
feasible range of muscle activity was identified across muscles
and force directions. Therefore, two force directions are used for
detailed illustration of the results: an extensor force FEXT (Fig. 2A,
red) and a flexor force FFLEX (Fig. 2A, yellow).

Most muscles had zero lower bound for all force magnitudes
(eLB

m ¼0 for all a) and were classified as optional (OPT). Muscles for
which lower bound became nonzero for some a were classified as
necessary; they were either always necessary (NECalways: eLB

m 40
for all a), or became gradually necessary as a increased (NECgrad:
eLB

m 40 at 0ocoao1), or became necessary only at the max-
imum force level (NECabrupt: eLB

m 40 only at aE1). Across cats,
7177% of muscles were optional for the generation of FEXT, and
58%—but not the same muscles—were optional for generation of
FFLEX (Table 2). For example, in cat Bi (Fig. 2B), GRAC, PT, SOL were
OPT for FEXT, and GRAC, SOL, VL were OPT for FFLEX. VL was
NECalways for FEXT, SART was NECgrad for both FEXT and FFLEX, and
PT was NECabrupt for FFLEX.

Less than 1/3 of muscles had an upper bound of one for all
force magnitudes and were classified as having maximal upper
bound (MUB: eUB

m ¼1 for all a). Muscles with upper bound less
than one for some range of a were classified as having sub-
maximal upper bound conditionally (SUBcond: eUB

m o1 for 0oaoc

or coao1). Muscles for which the upper bound was always less
than one were classified as having sub-maximal upper bound
(eUB

m o1 for all a), but were further categorized based on whether
the upper bound changed monotonically (SUBmono) or non-
monotonically (SUBnon). Across cats, 3273% of the muscles had
maximal upper bound for generating FEXT, 2272% had sub-
maximal upper bound for generating FFLEX (Table 3). For example,
PT, SART, SOL were MUB for FEXT, and PT and SART were MUB for
FFLEX in cat Bi (Fig. 2B). VL was SUBcond and GRAC was SUBmono for
FEXT, whereas SOL was SUBcond, VL was SUBmono, and GRAC was
SUBnon for FFLEX.

Muscle classification in terms of the lower and upper bounds
depended on the target endpoint force direction (Tables 2 and 3).
In total, 20 muscles in Bi, 20 in Ni, 19 in Ru, showed different



Table 2

Muscle classification in terms of lower bound (eLB
m ) behavior.

Bi Ni Ru

FEXT FFLEX FEXT FFLEX FEXT FFLEX

ADF OPT OPT OPT OPT OPT OPT

ADL OPT OPT OPT OPT OPT OPT

BFA OPT OPT OPT OPT OPT OPT

BFP NECalways NECgrad NECalways NECgrad NECgrad NECgrad

EDL OPT NECgrad OPT NECgrad OPT NECgrad

FDL OPT OPT OPT OPT OPT OPT

FHL OPT OPT OPT OPT OPT OPT

GMAX OPT OPT OPT OPT OPT OPT

GMED NECabrupt NECalways NECgrad NECgrad NECgrad NECgrad

GMIN OPT OPT OPT OPT NECabrupt NECabrupt

GRAC OPT OPT OPT OPT OPT OPT

LG OPT NECgrad OPT NECgrad OPT NECgrad

MG OPT NECabrupt OPT NECabrupt OPT OPT

PB OPT NECabrupt OPT NECgrad OPT OPT

PEC OPT OPT OPT OPT OPT OPT

PL OPT NECabrupt OPT NECgrad OPT NECabrupt

PLAN OPT OPT OPT OPT OPT OPT

PSOAS NECgrad NECgrad NECgrad NECgrad NECgrad NECgrad

PT OPT NECabrupt OPT NECabrupt OPT NECabrupt

PYR NECgrad NECgrad NECgrad NECgrad NECgrad NECgrad

QF NECgrad NECgrad NECgrad NECgrad NECgrad NECgrad

RF OPT OPT OPT OPT NECgrad OPT
SART NECgrad NECgrad NECgrad NECgrad NECgrad NECgrad

SM OPT OPT OPT OPT OPT OPT

SOL OPT OPT OPT OPT OPT OPT

ST OPT OPT OPT OPT OPT NECabrupt

TA NECabrupt NECgrad OPT NECgrad NECabrupt NECgrad

TP OPT OPT OPT OPT OPT OPT

VI NECabrupt OPT OPT OPT NECgrad OPT
VL NECalways OPT NECalways OPT NECgrad OPT
VM OPT OPT OPT OPT OPT OPT

OPT: eLB
m is always zero; NECalways: eLB

m is always non-zero; NECgrad: eLB
m becomes

non-zero gradually; NECabrupt: eLB
m becomes non-zero abruptly at maximal force

magnitude. Muscle that changed classifications of necessary versus optional across

the two force directions are shown in bold.

Table 3

Muscle classification in terms of upper bound (eUB
m ) behavior.

Bi Ni Ru

FEXT FFLEX FEXT FFLEX FEXT FFLEX

ADF SUBmono SUBmono SUBmono SUBmono SUBmono SUBnon

ADL SUBcond SUBcond SUBcond SUBcond SUBcond SUBcond

BFA SUBmono SUBmono SUBmono SUBnon SUBmono SUBnon

BFP SUBmono SUBnon SUBmono SUBnon SUBmono SUBnon

EDL SUBcond MUB SUBcond SUBnon SUBCond MUB
FDL MUB SUBcond MUB SUBcond MUB SUBcond

FHL SUBcond SUBcond SUBcond SUBcond SUBcond SUBcond

GMAX SUBcond SUBcond SUBcond SUBcond SUBcond SUBcond

GMED SUBmono SUBmono SUBmono SUBnon SUBnon SUBmono

GMIN SUBcond SUBcond SUBcond SUBcond MUB MUB

GRAC SUBmono SUBnon SUBmono SUBnon SUBmono SUBnon

LG SUBmono SUBnon SUBmono SUBnon SUBmono SUBmono

MG SUBmono SUBnon SUBmono SUBnon SUBmono SUBmono

PB MUB SUBcond MUB SUBcond MUB SUBcond

PEC SUBcond SUBcond SUBcond SUBcond SUBcond SUBcond

PL MUB MUB MUB MUB MUB SUBcond

PLAN SUBmono SUBnon SUBmono SUBnon SUBmono SUBmono

PSOAS MUB MUB MUB MUB MUB MUB

PT MUB MUB MUB MUB MUB MUB

PYR MUB MUB MUB MUB MUB MUB

QF SUBcond SUBcond MUB SUBcond SUBcond SUBcond

RF SUBmono SUBnon SUBmono SUBnon SUBcond SUBcond

SART MUB MUB MUB MUB MUB MUB

SM SUBmono SUBnon SUBmono SUBnon SUBnon SUBnon

SOL MUB SUBcond MUB SUBcond MUB SUBcond

ST SUBmono SUBnon SUBmono SUBnon SUBnon SUBnon

TA MUB MUB MUB MUB MUB MUB

TP SUBmono SUBmono SUBmono SUBmono SUBmono SUBmono

VI SUBcond SUBcond SUBcond SUBcond MUB SUBcond

VL SUBcond SUBmono SUBcond SUBmono SUBmono SUBmono

VM SUBmono SUBnon SUBmono SUBnon SUBcond SUBcond

MUB: eUB
m is always one (maximal); SUBcond: eUB

m is sub-maximal only at certain

range of a; SUBmono: eUB
m is always sub-maximal and changes monotonnically;

SUBnon: eUB
m is always sub-maximal and changes non-monotonically. Muscles that

changed classification of sub-maximal upper bound versus maximal upper bound

across the two force directions are shown in bold.
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Fig. 3. Physiological null space, defined as the feasible range at a¼0 in cat Ru.

While many muscles could be maximally activated, several muscles were limited

in the maximum activation that would allow zero net torque production. Upper

bounds of muscles that produce large torques (e.g. BFP) were typically limited

because of the lower torque-generating capabilities of their antagonists.
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behavior for FFLEX as compared to FEXT. The classification of
muscles was relatively consistent across cats for a given force
direction: for the lower bound, only 3 muscles were categorized
differently across all cats for both FEXT and FFLEX, and for the upper
bound, only 4 muscle were categorized differently across 3 cats
for both FEXT and FFLEX Because the direction of endpoint force
vectors was very consistent (cosy40.998) across cats for both
FEXT and FFLEX, these differences in the categorization were due to
differences in posture.

Regardless of classifications, the feasible range of muscle
activity at physiological levels of force did not identify a clear
pattern of muscle activity necessary to achieve the task. At
experimentally-observed force magnitudes (Fig. 2B, vertical
lines), lower bounds were often zero, suggesting that most
muscles were optional at those force levels. Across animals, aexp

was 0.32, 0.77, and 0.19 in Bi, Ni and Ru respectively for FEXT and
0.12, 0.11, 0.11 for FFLEX.

3.2. Comparison of identified bounds and predictions of neural

strategies

Because of the large feasible range, muscle activity could
deviate substantially from two commonly suggested muscle
coordination strategies. Both solutions fell within the feasible
ranges of muscle activity, and typically near—but not necessa-
rily at—the lower bound. Both the scaling strategies (Fig. 2B,
dashed line) and the minimum stress strategy (Fig. 2B, dotted
line) recruited necessary muscles at the earliest nonzero a even
though the lower bounds on feasible muscle activity were
typically zero at low force magnitudes (e.g. Fig. 2B, SART).
Optional muscles were never selected in either strategy (e.g.
Fig. 2B, GRAC for FEXT and VL for FFLEX). Although the upper and
lower bounds typically converged on a unique solution for
maximum force production (Fig. 2B, bottom row), this was not
always the case in ankle muscles for FEXT (Fig. 2B, top row, PT and
SOL), indicating that redundancy remained even at maximum
force magnitudes. This resulted from low ankle torque
(�0.004 N m) compared to knee torque (�0.5 N m) required to
produce FEXT.
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3.3. Physiological null space at a¼0

Approximately 1/3 of muscles had upper bounds of less than
one for zero net torque production, defining the physiological null
space (Fig. 3). Because the torque generated by each muscle must
be counterbalanced by activation of other muscles, those produ-
cing large torques (e.g. large moment arms and maximum
isometric force) typically had low upper bounds (r0.53) because
of the lower torque-generating capabilities of their antagonists
(Ait-Haddou et al., 2004; Jinha et al., 2006).
4. Discussion

Here, we identified the feasible ranges of individual muscle
activation during endpoint force generation as a way of under-
standing the degree to which biomechanical redundancy allows
for variability in muscle activation patterns. Feasible ranges of
muscle activation were relatively unconstrained across force
magnitudes in a cat hindlimb model (7 non-orthogonal DoFs,
31 muscles). Although we identified muscles that became bio-
mechanically ‘‘necessary’’ at higher levels of force (e.g. nonzero
lower bound), few muscles were found to be truly ‘‘necessary’’ at
physiological force ranges. Thus, biomechanical constraints were
generally insufficient to specify muscle activation levels, demon-
strating that many possible muscle patterns exist that could
deviate substantially from one another. In contrast, the biome-
chanical bounds on muscle activity in finger force generation
(4 orthogonal DoFs, 7 muscles) was shown to be highly constrained,
even at sub-maximal force magnitudes (Kutch and Valero-Cuevas,
2011), demonstrating differences in the biomechanical redundancy
of the cat hindlimb versus the index finger.

The ubiquity of ‘‘optional’’ muscles in both agonist and
antagonists across most force levels highlights the necessity to
understand neural strategies governing selection of muscle acti-
vation patterns. The large space of functionally equivalent solu-
tions is consistent with variations in neural and muscular activity
observed across individuals in a variety of neuromotor behaviors
(Klein et al., 2010; Prinz et al., 2004; Raphael et al., 2010).
Moreover, ‘‘optional’’ muscles were never selected by typical
methods that resolve biomechanical redundancy, e.g. minimizing
stress (Thelen et al., 2003), or scaling patterns that produce
maximal force (Valero-Cuevas, 2000), suggesting that other opti-
mization criteria may need to be considered, such as impedance
(Burdet et al., 2001), stability (Bunderson et al., 2008), fiber
velocity (Walmsley et al., 1978; Prilutsky et al., 1997), metabolic
energy (Alexander, 1989, 2005; Hoyt and Taylor, 1981), or more
likely a combination of multiple goals in interplay (Franklin et al.,
2008; Ganesh et al., 2010; Todorov, 2004). Alternatively, varia-
tions in muscle activation patterns may be due to neural con-
straints of activating muscles in groups (d’Avella, 2006; Hart and
Giszter, 2004; Ting and Macpherson, 2005), or habitual move-
ment patterns (de Rugy et al., 2012). One implication is that
altering the biomechanical properties of a muscle, e.g. via weak-
ening or surgery (Valero-Cuevas and Hentz, 2002; Arnold et al.,
2005; Hicks et al., 2008; Correa et al., 2012), in a highly redundant
system may not affect muscle activation patterns even if the force
generating capabilities of muscles are altered (Scianni et al., 2009;
Damiano et al., 2010).

Despite some limitations in our modeling assumptions, our
estimates of feasible muscle range are likely robust and some-
what conservative. Although we specified nonzero endpoint
moment, specifying a different moment values is not likely to
alter our results. However, allowing a range of small endpoint
moments would increase the set of redundant solutions (McKay
et al., 2007), increasing the feasible range of muscle activity.
Further, individual variations in morphology of each animal
compared to our generic musculoskeletal model (Burkholder
and Nichols, 2004) are not expected to change the basic categor-
izations found. Torque-generating capabilities of muscles based
on 95% optimal fiber length were only altered by �9% to þ3%
when physiological ranges of 80–110% optimal fiber length
(Burkholder and Lieber, 2001) were used, and would not change
significantly if tendon elasticity were included (Biewener et al.,
1998). Finally, the activation-dependent changes in the force–
length relationship (Rack and Westbury, 1969), would alter the
mapping from muscle force to activation, but would only mini-
mally affect the bounds on feasible muscle activation.

Comparing the predicted feasible muscle activation ranges to
experimental data is still difficult due to differences between the
model and experimental conditions. Direct comparisons of EMG
to feasible limits were not possible because a reference level of
muscle force was unknown (but could be estimated by maximum
voluntary contraction). Further, because our technique only
examines the feasible limits of a single muscle, we cannot use
the predictions to identify specific multi-muscle patterns to
perform a given task. The measured EMGs may not correspond
exactly to the muscles or muscle groupings represented in the
model. Finally, for direct comparison to our specific experimental
data, we need to take into account background force for standing,
which requires that the pre-existing force level be considered. For
standing, this would decrease extensor force redundancy,
increase flexor force redundancy, and likely have a small effect
in other directions.

Nonetheless, our approach provides important insight as to the
relative variability allowed for a muscle activity that is applicable
to both static and dynamic tasks. In contrast to the dimension of
the solution space (Bunderson et al., 2008), our approach identi-
fies explicit constraints on muscle activation patterns. The iden-
tified bounds could be used to assess confidence of predicted
muscle activity as well as possible variations when alternate cost
functions or strategies are considered. The feasible muscle range
also quantifies the degree to which measured muscle activity is
expected to be variable or deviate from predictions. An advantage
of our method is that the number of muscles that can be solved is
not limited and can be applied to any high-dimensional muscu-
loskeletal models. Our method could also be extended to analysis
of dynamic tasks (Ackland et al., 2012; Thelen and Anderson,
2006; van der Krogt et al., 2012) that use methods where each
time step of a movement is solved independently, e.g. inverse
dynamics or static optimization (Anderson and Pandy, 2001).
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