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Abstract 

Population-based modeling of the lumbar spine has the potential to be a powerful clinical 

tool.  However, developing a fully parameterized model of the lumbar spine with accurate 

geometry has remained a challenge. The current study used automated methods for landmark 

identification to create a statistical shape model of the lumbar spine.  The shape model was 

evaluated using compactness, generalization ability, and specificity.  The primary shape modes 

were analyzed visually, quantitatively, and biomechanically.  The biomechanical analysis was 

performed by using the statistical shape model with an automated method for finite element 

model generation to create a fully parameterized finite element model of the lumbar spine.  

Functional finite element models of the mean shape and the extreme shapes (±3 standard 

deviations) of all 17 shape modes were created demonstrating the robust nature of the methods.  

This study represents an advancement in finite element modeling of the lumbar spine and will 

allow population-based modeling in the future. 
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1. Introduction 

Population-based modeling has been used to meaningful effect in biomechanics by capturing 

the influence of anatomical variation in many body regions (Bischoff et al., 2014).  There are 

several potential applications of this method in the lumbar spine from evaluating the effects of 

degeneration on biomechanics to pre-clinical evaluation of devices.  However, in the lumbar 

spine, developing a fully parameterized model with realistic geometry has remained a challenge 

(Dreischarf et al., 2014). A new method for automated landmark identification in the lumbar 

spine (Campbell and Petrella, 2015), in concert with statistical shape modeling (SSM), has 

potential to address this challenge.  Creation and evaluation of a SSM of the lumbar spine for use 

in population-based finite element (FE) modeling was the focus of the current study. 

SSM uses principal component analysis (PCA) to determine the primary modes of variation 

in shape among a training set of specimens (Dryden and Mardia, 1998; Jolliffe, 2002). There are 

numerous applications of SSM in biomechanics from improving registration in medical imaging 

applications to creation of FE models (Sarkalkan et al., 2014).  Recently, the first SSM of the full 

lumbar spine was published (Rasoulian et al., 2013), but the primary application of that model 

was medical imaging segmentation. To our knowledge, no lumbar SSM has been previously 

reported for use in biomechanical analysis or FE modeling. 

SSM has been successfully used with FE modeling and probabilistic methods to study how 

shape influences results in the knee, tibia, femur, and radius (Bischoff et al., 2014; Laz and 

Browne, 2010).  Single bone SSMs have generally been used to study how shape influences 

fracture risk (Bryan et al., 2010, 2009; Querol et al., 2006).  In the knee, motion and contact 

forces have been studied in relation to changes in shape and alignment of the different bones 

(Baldwin et al., 2010; Fitzpatrick et al., 2011; Rao et al., 2013).  
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In the lumbar spine the influence of geometry on biomechanics has primarily been studied 

using simplified FE models based on primitive shapes that can be more easily parameterized and 

modified but do not realistically represent the complex geometry found in real subjects (Meijer et 

al., 2011; Niemeyer et al., 2012).  Particularly in the facet joints, the complex natural shape can 

be important to biomechanical outcomes (Holzapfel and Stadler, 2006).  One of the greatest 

challenges in creating a parameterized lumbar spine model, with a SSM or other method, is 

capturing the variation in facet joint shape while maintaining proper facet joint articulation and 

alignment.  Dreischarf et al. (2014) pointed out that “incorporating all the main geometric 

parameters of the lumbar spine into a statistical approach would require a fully parameterized 

model. The development of such a model; however, has proven to be notoriously difficult.” In 

addition to realistically representing the complex anatomy, to be used effectively in a population-

based simulation framework, such a model must also be robust. That is, parametric variations of 

the model, especially at the extremes of the shape space, must exhibit articulating facet joints 

(i.e. no initial penetration) and produce functional FE models.  The overall goal of the current 

study was to develop and evaluate a parametric, automated, and robust FE model of the lumbar 

spine. A SSM was created and evaluated for use in parameterizing anatomical shape. A fully 

automated algorithm (Campbell and Petrella, 2015) was then used to construct FE models of 

virtual specimens instantiated from the SSM, and the relationship between shape modes and 

biomechanics was investigated for all principal components of shape variation represented in the 

SSM. 

2. Materials and methods 

2.1. Statistical Shape Model Creation and Evaluation 
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The statistical shape model (SSM) was based on a training set of 18 cadaveric specimens of 

unknown demographics.  Segmented CT (computed tomography) scans from multiple sources 

were obtained in the form of STL files (stereo lithography) for L1-L5 of each subject. Each 

specimen in the training set was run through a previously published automatic landmark 

identification algorithm (Campbell and Petrella, 2015). The result was a corresponding set of 

6,530 landmarks per specimen (1,306 per vertebra). The highest density of landmarks was on the 

facet joint surfaces to capture the variation in that critical anatomy. 

The landmarks for each specimen were aligned to eliminate variation between specimens due 

to rigid body translation and rotation (Spoor and Veldpaus, 1980).  The vertebrae were left in 

their scanned alignment to preserve the combinations of facet shape and alignment found in the 

training set. Principal component analysis (PCA) was performed on the landmark coordinates 

using standard linear methods based on the covariance matrix (Bischoff et al., 2014; Heimann 

and Meinzer, 2009; Sarkalkan et al., 2014).  PCA produced a set of principal components (PCs) 

each associated with a different mode of shape variation.  The PCs can be used in a linear 

combination with the mean shape to produce any number of virtual specimens exhibiting normal 

anatomical variation. 

The SSM was evaluated using compactness, generalization ability, and specificity.  Common 

methods for calculating these measures may be found in the literature (Heimann and Meinzer, 

2009; Rasoulian et al., 2013; Styner et al., 2003).  Compactness describes the number of modes 

required to represent a given percent of the shape variation. Generalization ability is a measure of 

the SSM’s ability to represent a new specimen that was not part of the training set.  

Generalization was calculated by performing a leave-one-out analysis.  Each specimen in the 

training set was sequentially left out of the SSM, a new shape model was created with the 
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remaining specimens, shape modes were added sequentially, and the parameters of the shape 

model were all optimized to fit the left out specimen.  The result was the average error and 

maximum error, in terms of Euclidian distance, between the corresponding landmarks of the 

optimized virtual specimen and the left out specimen.  Specificity is a measure of the SSM’s 

ability to represent valid specimens.  Shape modes were included in the SSM incrementally and 

200 virtual specimens were randomly generated for each set of shape modes using ±3 standard 

deviations of the PCs included.  Virtual specimens were compared to the closest specimen in the 

training set in terms of minimum average Euclidian distance error. 

2.2. Shape Analysis 

A SSM model produces a set of orthogonal shape modes that describe the variation in the 

shape space of the training set.  All shape modes of the SSM of the lumbar spine were analyzed 

qualitatively, quantitatively, and biomechanically.  For brevity, results from only the first five 

shape modes are reported here.  SSMs are often analyzed qualitatively based on visual inspection 

of the models they produce (Bischoff et al., 2014; Fitzpatrick et al., 2011; Peloquin et al., 2014; 

Rao et al., 2013; Sarkalkan et al., 2014).  The first five shape modes were plotted using ±3 

standard deviations of the PCs and evaluated visually. 

A quantitative analysis of the shape modes was also performed to verify the visual 

assessments and analyze anatomical variation that was not obvious on inspection.  The 

quantitative analysis was accomplished by taking direct anatomical measurements of the mean 

shape and models produced using ±3 standard deviations of each of the PCs.  Since many of the 

landmarks used in the present study to create the shape model had specific anatomical meaning, 

measurements were easily made on each virtual specimen.  Due to the large number of 
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measurements generated, only a subset of relevant measures was reported based on average 

variations, over all five vertebrae (four FSUs) in each virtual specimen.  

In order to analyze the influence of each shape mode on variation in the anatomical 

measurements, a percent contribution parameter was calculated as follows: 
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∑       
 
   

       (2) 

 

where n is the number of the mode of interest; Measure is the anatomical measurement or other 

output variable associated with the ±3 standard-deviation extreme shape of that mode; Rangen 

represents the total range of the Measure for mode n; and N = 17 is the total number of modes 

calculated. 

Biomechanical analysis of the SSM was conducted by running FE simulations with auto-

generated models based on the mean virtual specimen and each of the 17 shape modes using ±3 

standard deviations of the PCs.  A total of 35 FE models (L1-L5) were created using the SSM in 

conjunction with the previously published automated FE generation method (Campbell and 

Petrella, 2015).  The details of the FE model including mesh convergence, direct validation for a 

single specimen, and indirect validation for the 18 subjects used in the SSM training set are 

described in a separate publication (Campbell et al., 2016).  One generalized set of material 

properties was used for all of the simulations to isolate the influence of anatomical variation 

(Table 1).  All of the simulations were run in Abaqus Standard v6.14-5 (Simulia, Johnston, RI, 

USA).  For each virtual specimen modeled, a 7.5 N m pure bending moment was applied in 
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directions of flexion, extension, left and right lateral bending, and left and right axial rotation.  

For each of the 210 simulations, values of rotation, disc pressure, and facet force were recorded.  

In order to analyze the contributions of each shape mode to the biomechanical output, the 

%Contribn given by (2) was calculated. 

3. Results 

3.1. SSM Evaluation 

The SSM was evaluated using measures of compactness, generalization ability, and 

specificity.  Figure 1 shows the results for compactness.  The first shape mode accounted for 

nearly 60% of the shape variation in the lumbar spine.  Eight modes were required for the SSM 

to capture over 90% of the shape variation and 12 modes were necessary to capture over 95% of 

the variation.  For generalization ability the average Euclidian distance error decreased from 3.65 

mm (±0.63) with one shape mode to 2.78 mm (±0.45) with 16 modes.  The maximum error 

decreased from 13.9 mm (±2.7) with one mode to 13.1 mm (±2.0) with 16 modes.  The 

specificity measure was calculated by evaluating how close specimens from the training set were 

to virtual specimens.  The average error increased as the virtual specimens got more complex due 

to addition of higher-order shape modes.  The average error with 1 mode was 3.11 mm (±0.47) 

and the average error with 17 modes was 3.76 mm (±0.64). 

3.2. Shape Analysis 

Analysis of lumbar spine shape variation was performed with qualitative visual assessment, 

quantitative analysis, and biomechanical analysis.  Figure 2 illustrates the first five modes of 

shape variation in the SSM.  Mode 1 appears to be a scaling mode with effect on lordosis, disc 

height, and the angle of the transverse processes in the frontal plane.  Mode 2 appears to 
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primarily affect lordosis and disc height without scaling.  Mode 3 appears to primarily influence 

the depth of the vertebral bodies.  Mode 4 appears to affect the length and width of the vertebrae 

with minimal effect on height.  Mode 5 appears to mainly influence the posterior spinous process 

height and transverse process width. 

The quantitative analysis of shape variation was performed by comparing the shape modes to 

average anatomical measurements on the virtual specimens.  The quantitative measurements 

provide details about the changes in shape that are not easily visualized.  Table 2 provides 

anatomical measurements for the mean shape and the percent contribution of each shape mode to 

each measurement.  The results show that Mode 1 has the largest percent contribution to 9 of the 

21 anatomical measures evaluated.  The quantitative analysis confirmed that Mode 1 contributed 

most to scaling, disc height, lordosis, and transverse process frontal plane angle (as shown in 

Figure 2).  Mode 2 contributed primarily to lordosis and disc height, only slightly less than Mode 

1.  Mode 3 controlled variation in end-plate depth without change in end-plate height (again, 

visible in Figure 2), and it also exhibited a similar contribution to end-plate width.  Mode 3 

contributed the greatest to variation in inferior facet curvature.  Mode 4 was the largest 

contributor to spinous process length and canal depth.  Mode 4 was also the largest contributor to 

superior and inferior facet card Ax angle, which could not be easily appreciated in Figure 2.  

Mode 5 was the largest contributor to spinous process posterior height.  The maximum 

contributions to multiple measurements were made by modes higher than the five shown in 

Table 2 – Modes 6, 11, and 12 had the largest contributions to three of the four facet curvature 

metrics. 

The biomechanical analysis of the SSM was conducted by running FE simulations with a 

model auto-generated from the mean shape of the SSM and models based on extreme variations 
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(±3 standard deviations) in each of the 17 shape modes.  All 35 FE models based on the SSM 

exhibited articulating facet contact surfaces with no initial penetration.  Figure 4 illustrates the 

results for rotation, disc pressure, and facet force for the first five shape modes.  The results 

demonstrate that, in most cases, all of the first five shape modes have some effect on lumbar 

biomechanics.  Although, in many cases the shape modes do not have an equal effect in both 

directions from the mean.  In fact, for axial rotation the facet forces almost all decrease relative 

to the mean shape.  The different shape modes generally had different effects with each bending 

direction for rotation and facet force.  However, the effect of each shape mode on disc pressure 

was fairly consistent in each of the bending directions. 

The effect of each shape mode on the biomechanics of the lumbar spine can be evaluated by 

examining the percent contributions shown in Table 3.  The results show that Mode 4 contributed 

the most to the variation in biomechanics for 3 of the 8 output metrics.  Modes 1 through 4 

contributed a similar amount to extension rotation.  Modes 2, 4, and 5 all contributed to flexion 

rotation.  Mode 1 contributed the most to rotation and facet forces in axial rotation.  Modes 2 and 

4 contributed the greatest amount to rotation and facet forces in lateral bending.  Mode 4 

contributed the most to disc pressure over all bending directions.  Mode 14 contributed the most 

to facet forces in extension. 

4. Discussion 

The current study successfully demonstrated the use of a SSM combined with automated 

methods for landmark identification and FE model generation to create a fully parameterized FE 

model of the lumbar spine.  Functional FE models of the mean shape and the extreme shapes (±3 

standard deviations) of all 17 shape modes were created.  While all 17 shape modes would likely 

not be included in practical use of the shape model, this study demonstrates that the methods are 
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robust even at the boundaries of the shape space (±3 standard deviations) for all 17 modes.  This 

study represents an advancement in FE modeling of the lumbar spine and will empower 

population-based modeling in future work. 

The lumbar spine SSM was evaluated for compactness, generalization ability, and specificity.  

The first eight shape modes accounted for over 90% of the shape variation which is in the range 

of other models of the knee and spine (Baldwin et al., 2010; Peloquin et al., 2014; Rao et al., 

2013; Rasoulian et al., 2013).  Rasoulian et al. (2013) reported compactness, generalization, and 

specificity for a lumbar shape model.  However, they separated modes of shape and pose 

variation in their model while these parameters were combined in the current study.  Therefore, 

direct comparison of our results to theirs may not be appropriate. 

The difference in strategy for addressing pose between the current study and the SSM of 

Rasoulian et al. is an important topic in SSM (Bischoff et al., 2014).  When a shape model is 

intended to represent the shape of multiple structures as well as their relative positions, shape and 

pose can be handled together or separately.  The choice may depend on the application of the 

SSM.  In medical imaging and segmentation it has been recommended that shape and pose be 

treated separately (Gorczowski et al., 2010; Rasoulian et al., 2013).  The application in 

Gorczowski et al. (2010) was to study autism by analyzing various structures in the brain, in 

which case it may also be more useful to analyze shape and pose separately.  In the lumbar spine 

Rasoulian et al. (2013) argued that shape and pose should be handled separately because they are 

“not necessarily correlated.”  Again, Rasoulian et al. (2013) were using an SSM for medical 

imaging where it is important that the SSM be capable of identifying the same structure in 

multiple poses.  In the current study we have used FE models to study lumbar spine 

biomechanics.  In this application it is most important to create virtual specimens with correctly 
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articulating joints.  There are eight facet joints in the L1-L5 lumbar spine, and the shapes of the 

facet contact surfaces are biomechanically coupled with the poses of the vertebrae.  Therefore, in 

the current study, we chose to treat shape and pose together in the SSM.  This method is 

consistent with many SSMs of the knee where joint contact surfaces are also an important issue 

(Baldwin et al., 2010; Bredbenner et al., 2010; Fitzpatrick et al., 2011; Rao et al., 2013).  The 

high level of robustness of the FE models in the current study support the strategy of treating 

shape and pose together for the application of FE modeling in the lumbar spine. 

The shape modes in the current SSM were analyzed in terms of the biomechanics produced 

by varying each of the shape modes.  The results showed that several of the shape modes 

contributed to similar changes in biomechanical outcomes.  Mode 4, which only accounted for 

6% of the total shape variation, was shown to have the greatest influence on 3 of the 8 

biomechanical metrics studied.  One higher mode (14) was found to have a large influence on a 

specific biomechanical parameter, facet force in extension.  This highlights the fact that shape 

modes representing a relatively small percent of the total variation in lumbar spine geometry 

could have a large effect on biomechanics.  But higher modes may also be affected by noise 

introduced through the imaging and segmentation process.  Researchers may want to consider 

this phenomenon when determining how many shape modes to keep in a SSM model. 

Prior studies used FE models to examine how changes in lumbar spine anatomy influenced 

biomechanics (Meijer et al., 2011; Niemeyer et al., 2012).  While the current study evaluated 

how shape modes influenced anatomy and biomechanics, the current study was not explicitly 

designed to investigate how variations in isolated anatomical measurements influence 

biomechanics.  The SSM intentionally combines variation in anatomical measurements into a 

small number of distinct shape modes.  Using the SSM in a larger population-based probabilistic 
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study, similar to the study design of Niemeyer et al. (2012), would be the appropriate way to 

analyze how individual anatomical measures influence biomechanics. 

While the current automated modeling method was designed to be used for population-based 

FE modeling, there are limitations.  The linear PCA methods used in this study have known 

limitations for accurately capturing shape variations that are strongly driven by bending or 

rotation (e.g., lumbar lordosis).  Ali et al. (2012) found a linear 2D shape model of the lumbar 

spine produced unrealistic geometry when the first mode was varied to three standard deviations 

above the mean. In the present study we did not see geometry distortion at the boundaries of the 

shape space (±3 standard deviations), either through visual inspection or a loss of FE solution 

stability – the latter condition being strongly influenced by mesh distortion and non-conformal 

facet contact associated with distorted geometry.  Based on these observations, we believe that 

the linear PCA methods provided acceptable results in the present study.  However, non-linear 

methods are available (Heap and Hogg, 1996; Heimann et al., 2009; Rasoulian et al., 2013; 

Sarkalkan et al., 2014) and may be more appropriate for generating not only realistic virtual 

lumbar shapes, but, perhaps more importantly, realistic biomechanics from FE models generated 

by SSM. Evaluations of this issue by comparing linear and non-linear PCA methods should be 

addressed in future work. 

The evaluation of the SSM generalization ability showed that the current model does not 

capture some aspects of shape variation in the population and a larger training set would likely 

help improve that. The current methods are also specific to the FE modeling techniques used.  

The current FE model uses rigid vertebrae and endplates, which are reasonable for the loading 

scenarios studied (Campbell and Petrella, 2015; Campbell et al., 2016), but are not appropriate 

for all applications. There are also potential improvements to treatment of the intervertebral disc 
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geometry that may be important for consideration of clinical conditions including substantial 

degeneration.  For example, the current model captures variation in disc height and angle, but 

does not capture the true shape of the annulus and nucleus or their relative volumetric 

proportions.  A recent study reported a SSM of the L3-L4 disc, but it does not capture the shape 

of the nucleus (Peloquin et al., 2014).  The current modeling method also uses the bone surfaces 

of the facets to represent the anatomical shape of the facet cartilage surfaces and their respective 

gaps, but the cartilage thickness is based on generalized measurements (Campbell and Petrella, 

2015; Woldtvedt et al., 2011).  A linked CT and MRI dataset could potentially be used to address 

those limitations.  Finally, the current method uses the as-scanned alignment of the specimens for 

the SSM and FE models.  Our training set of scans came from multiple sources, and consistent 

neutral alignment of all specimens could not be ensured.  While the results of a related validation 

study suggest that the as-scanned alignment produced reasonable biomechanical results 

(Campbell et al., 2016), a training set of consistently aligned specimens scanned in consistent 

neutral alignment would improve the SSM (Rao et al., 2013). 

Future work will focus on expanding the current training set and applying the SSM to 

population-based FE modeling of spine biomechanics.  Although anatomical variation captured 

by the SSM is a central element of a population-based model, material property variation is 

another critical factor that remains a challenge.  However, established probabilistic methods 

(Easley, 2007; Laz and Browne, 2010) allow material properties to be defined by appropriate 

probability distributions that can be inferred from the literature, and systematic material changes 

could be used to tailor a model to specific subpopulations (severe disc degeneration, for 

example).  Other applications of a probabilistic modeling strategy include pre-clinical evaluation 

of new devices, planning and evaluation of surgical procedures, and analysis of the 
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biomechanical impact of anatomical variations.  The methods presented here facilitate the use of 

probabilistic FE tools to study these important lumbar spine topics in the future. 
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Table 1 

Generalized material properties used in the simulations (Campbell et al., 2016). 

 

Fig 1.  Plot of the compactness of the SSM by showing cumulative shape variance as shape 

modes are added to the SSM.  Over 90% of the total variance is captured with 8 modes. 

 

Fig 2.  Appearance of the first five shape modes from the lumbar spine SSM in both a lateral 

view and posterior view. 

 

Table 2 

Mean shape measurement values and percent contributions of each shape mode to various 

anatomical measurements (calculations use all 17 modes but only results from modes 1-5 are 

shown).  Values are shaded darkest (maximum) to lightest (zero) for each row.  Measures were 
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averaged over all bones L1-L5. The Max Mode is the shape mode with the maximum % 

contribution from all modes.  The sum of all 17 contributions add up to 100%.  Bone volume was 

estimated by multiplying the total length, width, and height of each vertebra with respect to the 

recommended ISB coordinate system (Wu et al., 2002).  End-plate depth, width, and height were 

averages of the superior and inferior measurements described by Panjabi et al. (1992).  Canal 

depth and transverse process width were also calculated similar to Panjabi et al. (1992).  

Transverse process angles in the transverse and frontal planes were calculated similar to Semaan 

et al. (2001).  Spinous process length and spinous process angle were calculated as described in 

Di Angelo and Di Stefano (2015).  The spinous process posterior height was calculated using the 

distance between landmarks for the most posterior superior point and most posterior inferior 

point on the spinous process (Campbell and Petrella, 2015).  The facet curvatures were measured 

using two techniques: facet depth from Ahmed et al. (1990) and facet radius from Semaan et al. 

(2001).  The facet card angles Ax and Ay were calculated based on the techniques described by 

Panjabi et al. (1993). 

 

Fig 3.  Results of the biomechanical shape analysis based on FE simulations of the mean shape 

and models based on the first five shape modes.  Simulations were performed in all six primary 

bending directions.  Results are presented for rotation (top), disc pressure (middle), and facet 

force (bottom), averaged over all levels L1-L5. 

 

Table 3 

Percent contributions of each shape mode to biomechanical outputs based on FE model 

simulations (calculations use all 17 modes but only results from modes 1-5 are shown).  Values 

are shaded darkest (maximum) to lightest (zero) for each row.  FE outputs are shown for rotation, 

disc pressure (averaged over all six bending directions), and facet force (corresponding right and 

left facet forces averaged).  The Max Mode is the shape mode with the maximum % contribution 

of all modes.  The sum of all 17 contributions add up to 100%. 
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Bones / Endplates Rigid         

Ligaments Tension Only, Exponential Force-Displacement 

Annulus Fibrosis 
(Holzapfel-Ogden-

Gasser Model) 

Matrix Fibers Anterior Lateral Posterior 

C10 (MPa) 0.25 k1 (MPa) 2 3 5 

k2 190 45 10 

D (1/MPa) 0 
Angle (deg) 26 34.9 43 

Kappa 0 0 0 

Nucleus Pulposus Fluid-Cavity K=2200 MPa       

Facet Cartilage Frictionless, Softened Contact, Linear Pressure-Overclosure, k=100 MPa/mm 
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Measurement Units Mean 
Max 

Mode 

Mode 

1  

Mode 

2  

Mode 

3  

Mode 

4  

Mode 

5  

Bone Volume (mm^3) 273948 1 21% 3% 8% 12% 10% 

End-Plate Depth (mm) 34.3 1 24% 2% 10% 6% 6% 

End-Plate Width (mm) 48.8 1 19% 5% 8% 11% 10% 

End-Plate Height (mm) 27.3 1 27% 10% 2% 10% 9% 

Canal Depth (mm) 20.8 4 3% 9% 8% 13% 11% 

Transverse Process 

Width 
(mm) 84.4 6 7% 6% 2% 11% 12% 

Spinous Process Length (mm) 36.2 4 14% 9% 6% 26% 0% 

Spinous Process 

Posterior Height 
(mm) 15.8 5 11% 2% 2% 11% 14% 

Superior Facet Depth (mm) 3.4 6 3% 4% 3% 3% 3% 

Inferior Facet Depth (mm) 1.60 12 7% 10% 12% 13% 4% 

Superior Facet Radius (mm) 17.8 11 1% 1% 0% 2% 2% 

Inferior Facet Radius (mm) 17.8 3 7% 10% 26% 5% 0% 

Disc Height (mm) 9.7 1 18% 16% 1% 6% 7% 

Lordosis L1-L5 (deg) 24.0 1 20% 20% 2% 7% 5% 

Transverse Process 

Angle Transverse Plane 
(deg) 18.9 1 9% 1% 6% 6% 1% 

Transverse Process 

Angle Frontal Plane 
(deg) -0.6 1 23% 11% 10% 2% 3% 

Spinous Process  

Angle 
(deg) -26.7 7 6% 20% 9% 3% 2% 

Superior Facet  

Card Angle Ax 
(deg) -84.8 4 3% 0% 11% 20% 15% 

Inferior Facet  

Card Angle Ax 
(deg) -83.0 4 4% 4% 10% 13% 12% 

Superior Facet  

Card Angle Ay 
(deg) 52.1 1 20% 13% 13% 16% 3% 

Inferior Facet  

Card Angle Ay 
(deg) 48.2 1 21% 11% 13% 3% 2% 
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Output 

Variable 

Bending 

Direction 

Max 

Mode 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Rotation Extension 4 12% 13% 13% 14% 2% 

Rotation Flexion 2 5% 13% 6% 9% 10% 

Rotation Axial 1 17% 7% 3% 8% 3% 

Rotation Lateral 4 4% 17% 10% 17% 7% 

Disc 

Pressure 

Average 

of All 
4 13% 13% 14% 20% 7% 

Facet Force Extension 14 2% 3% 1% 6% 1% 

Facet Force Axial 1 21% 6% 6% 7% 6% 

Facet Force Lateral 2 14% 20% 3% 18% 8% 

 

 




