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Abstract

Due to the avascular nature of articular cartilage, solute transport through its extracellular matrix is critical for the maintenance and

the functioning of the tissue. What is more, diffusion of macromolecules may be affected by the microstructure of the extracellular matrix

in both undeformed and deformed cartilage and experiments demonstrate diffusion anisotropy in the case of large solute. However, these

phenomena have not received sufficient theoretical attention to date.

We hypothesize here that the diffusion anisotropy of macromolecules is brought about by the particular microstructure of the cartilage

network. Based on this hypothesis, we then propose a mathematical model that correlates the diffusion coefficient tensor with the

structural orientation tensor of the network. This model is shown to be successful in describing anisotropic diffusion of macromolecules

in undeformed tissue and is capable of clarifying the effects of network reorientation as the tissue deforms under mechanical load.

Additionally, our model explains the anomaly that at large strain, in a cylindrical plug under unconfined compression, solute diffusion in

the radial direction increases with strain.

Our results indicate that in cartilage the degree of diffusion anisotropy is site specific, but depends also on the size of the diffusing

molecule. Mechanical loading initiates and/or further exacerbates this anisotropy. At small deformation, solute diffusion is near isotropic

in a tissue that is isotropic in its unstressed state, becoming anisotropic as loading progresses. Mechanical loading leads to an attenuation

of solute diffusion in all directions when deformation is small. However, loading, if it is high enough, enhances solute transport in the

direction perpendicular to the load line, instead of inhibiting it.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Articular cartilage is a structurally inhomogeneous,
anisotropic soft tissue covering the load-bearing surfaces
of diarthrodial joints (Hunziker, 1992; Mow and Ratcliffe,
1997). Mechanically, cartilage shows strong nonlinear and
anisotropic characteristics (Wu and Herzog, 2002; Jurvelin
et al., 2003; Wang et al., 2003; Huang et al., 2005; Lei and
Szeri, 2006).

The inhomogeneous and anisotropic nature of cartilage
influences not only its mechanical but also its transport
properties. Leddy and Guilak (2003) investigated diffusive
transport of 3–500 kDa dextrans in porcine articular
e front matter r 2007 Elsevier Ltd. All rights reserved.
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cartilage. They observed that the diffusion coefficient
varied throughout the thickness of the cartilage for all
sizes of dextran; however, the severity of such variation was
size dependent. Leddy et al. (2006) demonstrated signifi-
cant anisotropic diffusion of macromolecules (500 kDa
dextran) in the surface zone. During compression, the
anisotropy of solute transport might be triggered or
escalated due to the ever-changing inhomogeneity and
anisotropy of the microstructure (Dunlop and Quinn,
2002; Leddy et al., 2006).
Although experimental results amply demonstrate ani-

sotropy of diffusion of neutral solutes in cartilage, the
causes of this anisotropy are largely unknown. The
proteoglycan-water gel is generally believed to provide
resistance to solute transport in cartilage primarily through
its fine porous structure (Maroudas, 1970, 1976; Torzilli
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et al., 1997; Nimer et al., 2003). Solute transport in
cartilage is also found to be size dependent (Roberts et al.,
1996; Nimer et al., 2003).

Even though proteoglycan content is an important factor
in determining solute transport, the proteoglycan mole-
cules require a stabilizing solid matrix to exert their full
transport-limiting effect. Aggrecan proteoglycans attached
to a hyaluron backbone are entangled with collagen
fibers (Mow and Ratcliffe, 1997). The highly cross-linked
collagen network immobilizes the glycosaminoglycans
(GAGs). Netti et al. (2000) stated that GAG concentration
is not the only factor that accounts for the resistance to
macromolecule transport in soft tissues. They proposed
that the collagen also affects macromolecule transport by
binding and stabilizing the GAG components. That is, the
collagen–proteoglycan bonds are identified as the main
culprit in restricting solute mobility. Leddy et al. (2006)
also hypothesized that anisotropy of diffusion is size
dependent and is related to the collagen structure.

Theoretically, Han and Herzfeld (1993) studied the
hindrance on the self or tracer diffusion of macromolecules
in concentrated solutions and found that both aggregation
and alignment of the background protein attenuated
hindrance of globular protein. However, anisotropy of
solute diffusion due to the microstructure of cartilage and
compression of the tissue has not been fully explained.
Previous theoretical studies on solute transport in cartilage
(Mauck et al., 2003; Ferguson et al., 2004; Zhang and
Szeri, 2005), viewed the tissue as an isotropic material.

Our hypothesis is that (i) resistance to solute diffusion in
cartilage results from a reduction of the cross-sectional
area available to the solute due to the presence of the solid
matrix, and (ii) this reduction of pore cross section is
modulated by the geometry of the collagen and GAG
networks. The proteoglycan network is immobilized
with the collagen network (Tepic et al., 1983). We will
find it beneficial to borrow from Tepic et al. (1983)
and study the influence of the collagen and GAG networks
by investigating the influence of a single, ‘equivalent
network’.

The present study attempts to build a general model that
correlates the diffusion coefficient tensor with the cartilage
network orientation tensor. The model also describes
collagen and GAG reorientation and the corresponding
variation of the diffusion coefficient tensor as the tissue is
mechanically loaded. By combining the diffusion coeffi-
cient tensor with the governing equations of Zhang and
Szeri (2005, 2007), we investigate the effect of both inherent
and loading-induced microstructure anisotropy on solute
diffusion.
2. Methods

2.1. Governing equations

We envisage the tissue as a mixture of three intrinsically incompressible

phases, an inviscid fluid (superscript w), a neutral solute (superscript f) and
a hyperelastic, porous, solid matrix (superscript s), with a collagen fiber

network (superscript c) embedded in the matrix. It is assumed, therefore,

that the mechanical behavior of the tissue can be characterized by the

conservation equations of mixture theory (Atkin and Craine, 1976;

Bowen, 1980; Mow et al., 1980; Rajagopal and Tao, 1995).

2.1.1. Balance laws

Neglecting inertia and body force, the linear momentum equation for

the mixture can be expressed as

div T ¼ 0, (1)

where T is the Cauchy stress of the mixture.

The collagen and GAG networks strongly influence the mechanical

properties of the tissue. The charged, interdigitated GAG molecules resist

compression; their contribution to the mechanical properties of the tissue

is reflected in the compressive properties of solid matrix. The tensile

properties of the tissue, on the other hand, are characterized by the

stress–strain conditions in the collagen fibrils. The total stress of the

mixture consists of the stress in the fluid Tw, the solute stress Tf, the matrix

stress Ts, and the fiber stress Tc (Section A, Supplement):

T ¼ Ts þ Tw þ T f þ Tc. (2)

We hypothesize that the collagen and GAG networks influence not only

the mechanical properties of the tissue but also its transport properties, as

will be discussed in the sequel.

The balance of linear momentum for water makes use of Darcy’s law

fw
ðtw � tsÞ ¼ �k grad p; (3)

where tw; ts are velocity of fluid and solid, respectively and k is the

permeability tensor.

Anisotropic permeability was observed in statically loaded middle zone

cartilage explant by using both direct (Reynaud and Quinn, 2006) and

indirect (Jurvelin et al., 2003) measurements. Soltz and Ateshian (2000)

found the radial permeability to differ from axial permeability in the

surface zone. They suggested that the difference was due to microstructure

organization. Quinn et al. (2001) established a theoretical model for

compression-induced anisotropic permeability. As the computations

carried out in this study are for statically loaded cartilage, the expression

of permeability will not alter solute concentration. However, we do

account for the change in porosity with stress through Eq. (8).

In computations performed under dynamic conditions (Zhang and

Szeri, 2007), we assumed isotropy. The permeability k, then a scalar,

changed with porosity and, indirectly, with strain, according to

k ¼ k0 exp M
fw
� fw

0

1� fw

� �� �
. (4)

Lai and Mow (1980) derived this constitutive equation for permeability

from one-dimensional experiments. Here fw
0 is the volume fraction of the

interstitial fluid in the undeformed tissue.

Eqs. (3) and (4) are part of our diffusion/convection model that is

proposed under both static and dynamic conditions. However, the

computations we report on in the present paper are for statically strained

cartilage only. Under equilibrium conditions there is no fluid flow; thus

Eqs. (3) and (4) are not utilized and the poroelasticity of cartilage becomes

irrelevant within the context of the present computations.

The solute diffusion equation is adopted from Zhang and Szeri (2005),

qc

qt
þ tw � grad c ¼

1

fw divðfwD � grad cÞ. (5)

Here D is the diffusivity (coefficient) tensor and c is the solvent-volume-

based solute concentration, in correspondence with Quinn’s experiments.

2.1.2. Diffusivity tensor

Let Da represent the diffusion coefficient in the unobstructed solvent.

We hypothesize that the diffusivity tensor consists of two components,

both depending on the strain field of the extracellular matrix,

D ¼ Da½f 1ðf
w
ÞI þ f 2ðxÞ�. (6)
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The first component results from the increase in diffusion-channel

tortuosity owing to the presence of the solid matrix, and is dependent

on local strain via the volume fraction through Eqs. (7) and (8). In

contrast, the second component reflects the state of isotropy of the

cartilage network through the network orientation tensor, x, as

determined by the fiber orientation distribution and the strain field,

Eq. (10). The first component is isotropic; however, neither the second

component of the diffusion tensor nor the diffusion tensor itself can be

isotropic in a strained (other than uniformly dilatated) cartilage. The

additional requirement for the isotropy of the second term is a constant

value of the orientation distribution function (see Eq. (S8) of Supplement).

We adopt the Cohen–Turnbull–Yasuda model (Cohen and Turnbull,

1959; Yasuda et al., 1968) to correlate the decrease in the diffusion with an

increase in tortuosity owing to the presence of the matrix. Therefore,

f 1ðf
w
Þ ¼ exp K f 1�

1

fw

� �� �
, (7)

where Kf is a constant that is dependent on solute size.

We chose the Cohen–Turnbull–Yasuda model because it makes solute

diffusion dependent on both the water content of the tissue and the size of

the solute. As the coefficient Kf is proportional to solute size, diffusion of

the large solute is restricted by compression to a greater extent than that of

the small solute. This phenomenon has been demonstrated in the

experiments of Quinn et al. (2001, 2002), and Nimer et al. (2003). Our

previous study (Zhang and Szeri, 2005) compared the predictions of the

Cohen–Turnbull–Yasuda model with the Mackie and Mears model

(Mackie and Mears, 1955) and decided in favor of the former.

The porosity of the tissue also changes during deformation (Zhang and

Szeri, 2005), thus in (7) we substitute

fw
¼ 1� ð1� fw

0 ÞdetC�1=2. (8)

We hypothesized earlier that both collagen and GAG networks

contribute to diffusion anisotropy. However, since the GAG network is

immobilized by the collagen network, we made f2 in Eq. (6) to be a

function of a single ‘equivalent network’ orientation tensor, the latter

depicting the changing geometry of both collagen and GAG networks as

the cartilage is deforming. For expediency, and because no relevant data is

known to us, we assume a simple power dependence for this relationship

in the form

f 2ðxÞ ¼ c1ðxÞ
c2 , (9)

where c1(f
w)X0, c1-0 as fw-1, is a coefficient weighting the importance

of fiber network anisotropy. The fact that the water content of the

cartilage depends on strain through Eq. (8), makes c1 vary from point to

point in the mechanically strained cartilage. We have no local data on

anisotropic diffusion available to us and, therefore, in the computations

we estimate a representative (effective) value c̄1 ¼ const for given

orientation distribution function. The exponent c2 defines ‘sensitivity to

anisotropy’ by simulating the experimental data of Leddy et al. (2006); we

found it to depend on the density of fiber packing and on the size of the

solute (Figs. 1 and 3). Experimental data is needed, however, to investigate

the validity of Eq. (9) and the exact representations of c1 and c2.

To evaluate the diffusivity tensor (6) of the solute in the undeformed as

well as in the deformed tissue, it will be necessary to establish a model for

fiber orientation. This is attempted in Section B of Supplement.

The basic units of collagen are the rod-like tropocollagen molecules,

polymerized into larger collagen fibrils (Clarke, 1971; Eyer, 1980; Mow et

al., 1989). GAGs are also rod-like and are linked at one end to the

proteoglycan core protein (Muir, 1977; Heinegard and Paulsson, 1984;

Quinn et al., 2001). Here we apply the composite cylinder model (Ault and

Hoffman, 1992; Schwartz et al., 1994; Lei and Szeri, 2006) to describe the

orientation of the equivalent cartilage network.

We make the following assumptions: (1) the cartilage fibril is locally

straight and can only support tensile stress, (2) there is no slip between

fibril and matrix, (3) fibril with fibril interaction is negligible (Section B,

Supplement).
We represent fibril configuration by the ‘fibril orientation tensor’

which, in the deformed state, has the form (see Section B, Supplement)

x ¼

ZZ
3

jFN j2
FN � FNCðY;FÞ sin YdYdF. (10)

Note that x / I only whenCðY;FÞ ¼ const (isotropic distribution) and

F / I . If there is deformation other than uniform dilatation, the

orientation tensor remains a general tensor even if the initial orientation

distribution function is a constant. The factor 3 in Eq. (10) renders x ¼ I

when the fibrils are isotropically distributed and the tissue is undeformed.

Introducing Eq. (8) into (7) and (10) into (9), respectively, and

substituting into Eq. (6), we obtain the diffusion coefficient tensor in the

deformed cartilage tissue

D ¼ Da exp K f
ðfw

0 � 1ÞdetC�1=2

1� ð1� fw
0 ÞdetC�1=2

" # !
I

(

þ c1

ZZ
3

jFN j2
FN � FNCðY;FÞ sinYdYdF

� �c2
� ��

. ð11Þ

Here N is the initial fiber direction, CðY;FÞ is the initial orientation

distribution function, F is the deformation gradient and ðY;FÞ are angular
coordinates.

The orientation distribution functions CH, CR, and CV, we employed

for the surface, the middle and the deep zones, respectively, are taken from

Lei and Szeri (2006). The reasoning there is that in first approximation the

collagen fibers are mostly aligned to the surface in the surface zone (Minns

and Steven, 1977), in the middle zone they are randomly distributed

(Weiss et al., 1968), while they are dominantly perpendicular to the

cartilage–bone interface in the deep zone (Aspden and Hukins, 1981;

Clark, 1991). The orientation distribution functions are independent of

water content of the tissue.

2.2. Constitutive equations

There have been numerous macroscopic constitutive models proposed

over the past decade for the mechanical properties of cartilage (Mow et al.,

1980; Holmes and Mow, 1990; Cohen et al., 1998; Oloyede and

Broom, 1991; Soltz and Ateshian, 2000; Nguyen and Oloyede, 2001).

Researchers currently are attempting to develop microstructural models

for this purpose (Soulhat et al., 1999; Li et al., 1999, 2005; Wilson et al.,

2004). Lei and Szeri (2007c) developed a comprehensive microstructural

model to account for poroelasticity, tension–compression nonlinearity,

inhomogeneity, intrinsic viscoelasticity, and anisotropy. Here, we base our

constitutive model on the microstructural model of Lei and Szeri (2006).

This model uses distribution functions to describe the geometric

orientation of the collagen fibrils, making it readily adaptable to different

types of fibril configurations. We also make use of the hyperfoam strain

energy function (Hill, 1978; Lei and Szeri, 2007b).

2.2.1. Solid matrix

The hyperfoam strain energy function (Hill, 1978; Storakers, 1986) is

W ¼
2m
a2

la1 þ la2 þ la3 � 3þ
1

b
ðJ�ab � 1Þ

� �
, (12)

where l1, l2, l3 are the principal stretches, J ¼ det F is the ratio of

deformed to original volume at a point, while the constants m, a and b
relate to the initial aggregate modulus and Poisson’s ratio through

HA0 ¼ 2ðbþ 1Þm; ns ¼
b

1þ 2b
. (13)

The constants a and b define the nonlinearity of the material.

2.2.2. Fibril network

If s represents the effective elastic stress in the fiber of orientation n,

then single-fibril stress in the global coordinate system xi is given by

~T
c

E ¼ sn� n: (14)
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The effective stress of the fibril network can be obtained by weighting

the single-fiber stress with the orientation distribution function (Chou,

1992) and summing over the regions in which the fibers are in tension

(Lei and Szeri, 2006)

Tc
E ¼

Z 2p

0

Z HðFÞ

GðFÞ

~T
c

ECðY;FÞsinYdYdF. (15)

Here H(F), G(F) represent the boundaries of the region in tension relative

to the initial configuration.

The one-dimensional fibril stress s is assumed to depend nonlinearly on

fibril strain as (Li et al., 1999)

s ¼ Ec0 þ
1

2
Ec1 �c

� �
�c. (16)

Here ec is the fibril’s tensile strain and Ec0 and Ec1 are constants.

Substituting Eqs. (14) and (16) into Eq. (15), we obtain the stress for the

fibril network

Tc
E ¼

Z 2p

0

Z HðFÞ

GðFÞ
FN � FN Ec0 þ

1

2
Ec1 �c

� �
� �cCðY;FÞ sin YdYdF ð17Þ

In summary, Eqs. (1), (S4), (3), (5), (11), (12) and (17) compose our

model for neutral-solute transport in cartilage with microstructure.

3. Discussion of results

We implement the formulation in the finite element code
ABAQUS. Axisymmetric elements CAX4P and CAX4 are
used to model the solid matrix and the fiber network,
respectively. The two elements share the nodes. Soil
consolidation procedure is employed to solve Eq. (1), and
heat transfer procedure to solve Eq. (5). The parameters
needed to simulate solute diffusion in cartilage, including
microstructural effects, are m, a, b, k, C, Ec0 , Ec1 , f0; D0,
Kf, c1, c1. No experimental data are available to estimate all
parameters; thus the value or range of some must be
assumed.

We examine the validity of our model by comparing its
predictions with experimental data for neutral-solute
diffusion in both undeformed and deformed cartilage
tissue. We perform two simulations (see Section C of
Supplement)

3.1. Diffusion in unloaded tissue

A considerable number of unidirectional measurements
of solute diffusion in undeformed cartilage have been
reported in the literature (Maroudas, 1971, 1976; Allhands
et al., 1984; Schneiderman et al., 1995; Roberts et al.,
1996). However, only scant attention has been paid to
multi-dimensional diffusion or to diffusion anisotropy.
Leddy et al. (2006) discussed experiments on full thickness
(all three zones) cartilage explants from femoral porcine
condyles. In these experiments, the explants were soaked in
concentrated solutions of 3 or 500 kDa dextrans for a
period of 3 days prior to the diffusion tests.

To illustrate the performance of our model, we first
compare its predictions with data from Leddy et al. (2006)
in Fig. 1. For the computations the unstrained diffusion
coefficient of the 500 kDa dextran in the surface zone of the
cartilage, D0z ¼ 12 mm2/s, was taken from Leddy and
Guilak (2003). Leddy demonstrated the anisotropy she
had observed by displaying the mean ratio of diffusion
coefficients parallel and perpendicular to the primary fiber
direction. Though very useful, this information is insuffi-
cient for us to estimate all parameters in the model and
need to assume some. We guess fiber orientation s.d.
(standard deviation) sc ¼ 0.5 and tissue porosity f0

w
¼ 0.8.

Other parameters, obtained through curve-fitting (Lei and
Szeri, 2007a) to the 500 kDa data, are Kf ¼ 17.3,
c1 ¼ 0.000141 and c2 ¼ 16.5, 13.8 and 2.3, respectively, in
the surface, middle, and deep zone of the cartilage. The
value of c2 changes as expected. As the transport medium
changes from the surface to the deep zone, we expect c2 to
vary with depth as fiber density varies throughout the
thickness of the tissue (Comper, 1991). Moreover, collagen
fibers in the deep zone are widely spaced compared with the
surface zone (Hwang et al., 1992; Jeffery et al., 1991),
leading to a lesser effect on the diffusion coefficient here
compared to the other two zones. Therefore, c2 in the deep
zone is expected to be smaller than it is for the surface zone.
For diffusing the 3 kDa dextran, the model parameters are
Kf ¼ 7.1, c1 ¼ 0.000141 and c2 ¼ 5.6, 4.2 or 2.1 respec-
tively, in the surface, middle, and deep zone of the
cartilage.
Solute diffusion can be significantly affected by the fiber

network configuration. Fig. 2 shows the ratio of radial
diffusivity to axial diffusivity versus fiber orientation s.d.
for 3 and 500 kDa dextran in cartilage with horizontally
distributed fiber network. Three kilodaltones dextran
diffusion is not affected by the variation of fiber network
configuration, whereas 500 kDa dextran is greatly influ-
enced by the fiber orientation s.d. As s is varied from 0.1 to
1.5, i.e. the geometry changed from a horizontally
organized to a more random network, the anisotropy
diminishes.
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Table 1

Predicted aggregate modulus, Poisson’s ratio and permeability for Quinn’s

experiment

Aggregate modulus HA0 (MPa) 0.78 0.89470.293a

0.4–0.9b

Poisson’s ratio, nS 0.41 0.39670.023a

0.13–0.45b

0.30–0.42c

Permeability, k (� 10�15m4/N s) 8.5 9.873.9d

aAthanasiou et al. (1991).
bMow and Guo (2002).
cLi et al. (2003).
dHuang et al. (2005).
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Fig. 4. Effect of compressive strain on radial diffusivity.

L. Zhang, A.Z. Szeri / Journal of Biomechanics 41 (2008) 430–437434
3.2. Diffusion in deformed tissue

To further demonstrate the feasibility of the current
model, we compare its predictions to data under static
loading (Quinn et al., 2002) in Fig. 3. Quinn et al. (2002)
carried out their experiment within the middle zone of the
cartilage, where we assumed random fiber orientation. As
in the previous study (Zhang and Szeri, 2005), the diffusion
coefficient at zero compression, D0 ¼ 40 mm2/s for 40 kDa
dextran, was obtained by fitting Quinn’s analytical solution
to his own experimental data. We assumed the fiber
constants Ec0 ¼ 10MPa, Ec1 ¼ 2000MPa, and the poros-
ity f0

w
¼ 0.8. The other parameters were acquired by fitting

(Lei and Szeri, 2007a) to concentration distribution data at
15%, 31% and 46% static compression: HA0 ¼ 0.78MPa,
a ¼ 1.18, vs ¼ 0.41, k ¼ 8.5e�15m4/N s, Kf ¼ 16.75,
c1 ¼ 0.00018 and c2 ¼ 14.3.
Tissue properties vary greatly among different cartilage
explants. Our parameters were obtained by curve fitting to
actual experimental data and fall within the data ranges we
examined (Table 1). Lei and Szeri (2006) investigated the
variation of Poisson’s ratio with fiber orientation. They
examined four orientation distribution functions: random,
vertical, horizontal and orthogonal (Soulhat et al., 1999).
Under tensile loading when the Poisson’s ratio of the
matrix is set at 0.3, they report 0.44v1241.2, depending on
fiber orientation.
At small-to-medium strain, the data show the diffusion

coefficient in the radial direction gradually decreasing with
strain (Fig. 4). At large strain, however, this tendency is
reversed, the radial diffusion coefficient increases with
increasing strain. This phenomenon can be explained with
the aid of Eq. (11). Two factors regulate solute transport in
cartilage under mechanical compression; one is the increase
of path length due to loss of water; the other is the
variation of pathway due to the deformation of cartilage
network geometry. The cartilage fibers will be realigned
and eventually stretched if the deformation is sufficiently
large (Mow and Guo, 2002). For small solute, a change in
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cartilage network geometry will not influence diffusion.
Diffusion of the large solute, however, will favor the
direction perpendicular to compression, owing to the
decrease in tortuosity in that direction. The two factors
regulating solute transport in cartilage compete with one
another during loading process. The first factor is
dominant at small strain while beyond a certain degree of
static compression, the second factor will dominate and
here diffusion of the large solute will be enhanced.

Fig. 5 illustrates the change of fiber orientation with
strain for horizontally distributed fibers. The length of a
line segment in this figure is proportional to the relative
strength of orientation in the direction of that line segment.
When s-0, o33-0 and all fibers are likely to be directed
along the horizontal. When s-N, o33-o11; thus the
horizontal and vertical directions are equally favored. Note
that here the off-diagonal terms vanish, o22-o11 and
o11+o22+o33 ¼ 1. We compute fiber reorientation
under unconfined compression. The sample utilized in
these computations has radius 1.4mm and thickness
0.2mm. The mechanical properties of the tissue adopted
are as follows: HA ¼ 0.35MPa, vs ¼ 0.38, a ¼ 0.87, Ec0 ¼

16MPa, Ec1 ¼ 5000MPa, Kf ¼ 16.75, c1 ¼ 0.00018,
c2 ¼ 14.3. The result is in qualitative agreement with those
of Alhadlaq and Xia (2004). We carried out the computa-
tion only for horizontally distributed fiber configuration
since the effect of microstructure on solute diffusion is
greatest in the surface zone of the cartilage (Leddy et al.,
2006).
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