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Abstract

We prove two-sided inequalities between the integral moduli of smoothness of a function on RY / T4 and
the weighted tail-type integrals of its Fourier transform/series. Sharpness of obtained results in particular
is given by the equivalence results for functions satisfying certain regular conditions. Applications include
a quantitative form of the Riemann-Lebesgue lemma as well as several other questions in approximation
theory and the theory of function spaces.
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1. Introduction

This paper studies the interrelation between the smoothness of a function and the growth
properties of Fourier transforms/coefficients. Let us first recall the classical Riemann-Lebesgue
lemma: | f,| — 0 as |n| — oo, where f € L'(T?). Its quantitative version, the Lebesgue type
estimate for the Fourier coefficients, is well known [34, Volume I, Chapter 4, Section 4] and

* This research was partially supported by the MTM 2011-27637, RFFI 10-01-00564, RFFI 12-01-00169, and 2009
SGR 1303.
* Corresponding author.
E-mail addresses: dvgmail@mail.ru (D. Gorbachev), stikhonov@crm.cat (S. Tikhonov).

0021-9045/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jat.2012.05.017


http://www.elsevier.com/locate/jat
http://dx.doi.org/10.1016/j.jat.2012.05.017
http://www.elsevier.com/locate/jat
mailto:dvgmail@mail.ru
mailto:stikhonov@crm.cat
http://dx.doi.org/10.1016/j.jat.2012.05.017

1284 D. Gorbachev, S. Tikhonov / Journal of Approximation Theory 164 (2012) 1283-1312

given by

-~ 1
[ful S @1 <f, m) . feLllT, (1.1)
1

where the modulus of smoothness w; (f, §), of a function f € L?(X) is defined by

1 <p<oo, (1.2)

_ l
o (8= swp |3 o,

and
ALy =AY A f ), Anf(x) = flx+h) — f(x).

As usual, F < G means that F' < C G; by C we denote positive constants that may be different
on different occasions. Also, F < G means that F < G < F.
For the Fourier transform, the estimate similar to (1.1) can be found in, e.g., [31]

IFE S w <f E) . feL'RY, (1.3)

where the Fourier transform is given by
& = / fx)e** dx, &eR7. (1.4)
R4

However, unlike (1.1) the inequality (1.3) cannot be extended for the range p > 1 (see
Section 7.2).

Very recently, Bray and Pinsky [6,7] and Ditzian [13] (see also Gioev’s paper [17]) have
extended the Lebesgue type estimate for the Fourier transform/coefficients. We will need the
following average function. For a locally integrable function f the average on a sphere in R? of
radius ¢ > 0 is given by

1
Vi f(x) :=—/ fy)dy withVil=1,d=>2.
me Jyy—x|=t

For ! € N we define

l
Viif(x) = (21);(—1>1< )th(x)

I
Theorem A. Let f € LP(Rd),d >2and1 < p<2,1/p+1/p' =1.Thenfort >0,l €N,

201 7 4 e
([R [minct, 116D 7©)1] dé) SIF=Viaflp 1<p=2 (1.5)
and

sup [min(1, 116)% | F©1] S 1.F = Vi F - (1.6)

EeRd
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Similar results were also proved for moduli of smoothness of functions on R and T4 (see [13]).
In the rest of the paper we will assume thatt > 0,/ € N, and

GC0p =1f = Vi flp, 0 =2, (1.7)
ifd > 2 and

G (f0p =or(f,0)p, =1 (1.8)
ifd =1.

The main goal of this paper is to extend inequalities (1.5) and (1.6) in the following sense.
First, we prove sharper estimates by considering the weighted L? norm of min(1, ¢|§ DO F(€)],
that is,

min D" F@1], S0, p=g (1.9)

with the certain weight function u. Then varying the parameter g gives us the better bound from
below of {2(f, t). In particular, if g = p’ we arrive at (1.5) and (1.6).

Second, we prove the reverse inequalities showing how smoothness of a function depends on
the average decay of its Fourier transform:

D(f.0p S |mindt, i)™ F©) a<p. (1.10)

Li(u)

Third, we define the class of general monotone functions and prove that for this class the
equivalence result holds:

2(f.0)p = [minct, 16" 7@ (111

LP(u)

Note that for p = 2, this follows from (1.9) and (1.10) in the general case (see also [6,17]).

The paper is organized as follows. In Section 2, we prove inequalities (1.9) and (1.10) when
1 < p < 2and p > 2 respectively. In Section 3 we study inequalities (1.9) and (1.10)
in the case of radial functions and we show that, with a fixed p, the range of the parameter
q is extended. In Section 4 we deal with the general monotone functions. Again, we prove
inequalities (1.9) and (1.10) under wider range of the parameter ¢ than in the case of radial
functions. Moreover, we show equivalence (1.11) in this case. Section 5 studies inequalities (1.9)
and (1.10) for functions on T, d > 1. In Section 6 we obtain the equivalence result of type (1.11)
for periodic functions whose sequence of Fourier coefficients is general monotone. Section 7
considers several applications of obtained results in approximation theory (sharp relations
between best approximations and moduli of smoothness) and functional analysis (embedding
theorems, characterization of the Lipschitz/Besov spaces in terms of the Fourier transforms).

Finally, we remark that inequalities between moduli of smoothness and the Fourier transform
in the Lebesgue and Lorentz spaces were studied earlier in [8,16].

2. Growth of Fourier transforms via moduli of smoothness: the general case

The following theorem is the main result of this section.

Theorem 2.1. Let f € LP(RY),d > 1.
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(A) Let 1 < p <2.Thenfor p < q < p’ we have |E|‘1(1’1/P71/‘1)f(§) € LY9(RY), and

R 1/q
( /R [minct, rign™ga=re=1io) ey | ds) S QD @n

(B) Let 2 < p < oo, [|*0=1/P=VD f(&) € L1RY), ¢ > 1, and max {q, ¢’} < p. Then

~ /g
</]Rd [min(l, tlél)el|§|d(1—1/p—1/q>|f(§)|]q ds) Z(f0),. (2.2)

Remark. Theorem A follows from Theorem 2.1(A) (take ¢ = p "). In part (B) we assume that
for f € LP(R?) the Fourier transform f is well defined and such that |g|¢(—=1/P=1/9) f &) e
L4(R?) for a certain ¢ > 1 satisfying max {q, q } <p.

Proof of Theorem 2.1. We will use the following Pitt’s inequality [3] (see also [18]):

/(|§|‘V|A<s>|)q d§ e / (Ix1? Pd v 2.3
» g S xPlg))" dx) (2.3)

where

1 1 1 1 d
B—y=d|ll————], max0,d| —+—-—-1)t <y < —,
Y2} Y2} q

l<p<gqg<oo. 2.4

Here the Fourier transform g is understood in the usual sense of weighted Fourier inequality
(2.3); see, e.g., [4, Sections 1,2].

Let us write inequality (2.3) with change of parameters g < fip < q,B < —y. Let
€177 F(€) € L(R?), then

. 1/q » 1/p
([ (Iél_ylf(f)l)qd‘é) Z(/ (Ix1P1£ (o)1) dX) , (2.5)
R4 R4

where

l<qg=<p<oo. (2.6)

The case of d > 2

Then by (1.7), 2 (f. )p = I f — Vi.i fll p, 6 = 2. Let us write the left-hand side in (2.1) and
(2.2) as

[ = Hmin(l,t|g|)21h(g)Hq, h(E) = |g[40-1/P=1D| Fig)).

In [9, Corollary 2.3, Theorem 3.1], it is shown that for f € LP(RY, 1 < p <oo,t>0,and
integer /,

If = Viifllp, < Ki(f, A, 12, < Ri(f, A, 12, 2.7
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where
Ki(f, A2, = inf{ll f — gll, + 7 1A'l p: Alg € LP(RY)},

32
2
ox;

the Laplacian is given by A = %22 + -+
1
20y . 21 I
Ri(f, A1) p = I1f = Rutp(Dlp + 17 1A R16 (Nl p,s
A=1/t, b=d+2.
Here (see [9, Section 2])

Riip(H)@) = (Goip* ), Garp(x) =29Gp00),
G1.p(&) = np(ED,

where

mps) =1 —s"h, s=[& >0,

and
[Re16(H]7®) = mptIEDF &), R
[/ = Rip(H]E) = [1 = mpClED] F &), ~
(4" Rot(H ] 7® = D16 [Retn (D] E) = (<1l s (16D F©).
Also,

1Gr ()l = I1Giplli < oo
Taking into account that, for b > 0,
M) ~1=bs?, s =0, mpl) =0, s=1,
we obtain
I — n1.p(s) < min(l, 2, s>0.
Changing variables b <> b + 1 gives
min(1, s)zz

Therefore,
1= [minc1 16D h&) | = |[1 = mat1eD + @l moien] ne)|

Define
h€) = [1 = np@lED] @), haE) = @lED b tIEDAE).

Note that both /1 and &, are non-negative. For non-negative functions we have
At + hallg < llhillg + lIh2llg, 1 =<g < oo.

This, (2.13), and (2.14) yield

= 1—mpr1() =1 =1 =52 mp(s) = 1—np0s) + 2 nip(s).

1287

(2.8)

(2.9)

(2.10)

@2.11)

2.12)

(2.13)

(2.14)

(2.15)



1288 D. Gorbachev, S. Tikhonov / Journal of Approximation Theory 164 (2012) 12831312
1= [l D] 1T @)1
+ e n e mpaeni |
or, by (2.10),
1= [ [ = ReasD] @
w2 e[ AR ) @] (2.16)

Now to prove (A), we assume that p < ¢ and we use (2.16) and Pitt’s inequality (2.3) with
B =0.Inthiscase y =d (% + é — 1) and y > 0 (see (2.4)). The latter is ensured by ¢ < p’.

Then |£]¢0=1/P=1/0) £ (&) € L4(R?) and
IS f=Ruin(f) ||p + 1% HAIRA,z,b(f)Hp-

Combining this with (2.7), and (2.8) we get (A).
In part (B) we assume that g < p. Inequality (2.2) follows from (2.16) and inequality (2.5)
for 8 = 0. In this case, by (2.6), y =d (% + % — 1) and max{0, y} < 0, i.e., y < 0. The latter

is ¢ > p’ or, equivalently, ¢’ < p.
The case of d = 1

According to (1.8), we have (2(f,t), = w;(f,t), and & = 1. The proof of key steps is
similar to the proof in the case of d > 2. The only difference is the realization result [14] given
by

wy(f, t)p

X

inf (I = gllp + 21" 11,:8" € Ex N LV (®))
]
If =gl + g0, »=1/1,

where E, is the collection of all entire functions of exponential type A and g, € E, is such that

If—gullp S En(f)p = inf | f —gllp.
g€E,,

X

Since [g" 1, < 1Hg\" ||, 1 < p < oo, where H is the Hilbert transform [29, Chapter 5], then
wi(f,1)p = ILf — gallp + 11 Digall p, where Dy = (id/dx)" for evenl and D; = —i H (id /dx)!
for odd .

Let x5 := x[0,2]. As Hille and Tamarkin [20] showed, if S (f) is the partial Fourier integral
of f,1i.e.,

[SL(HI7E) = . (15D F &), 2.17)

we have

1S2(Op SHFlp, 1< p<oo.
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Then (see also [28]) g, can be taken as S).(f), thatis, | f — Sa (), S Ex(f)p. Therefore, for
l <p<oo,

o1 (f,0p = 1 f = i Ol + 2 ISV O], =< 1F = S DI + 1 IDSHI, . (2.18)
where
[SVNHT®) = (i) % (EDFE).  [DSUHITE =€l (EDFE.  (2.19)
For s > 0 we have min(1, s)! = 1 — x1(s) + s’ x1(s) and xi(ts) = x,(s), which gives
min(1, ts) =1 — x;.(s) + 5) 3. (). (2.20)
This, (2.15), (2.17), and (2.19) imply
1= |min(1, gDl =07 Fee|
= |[1 - %00 + @' xaep]ier == fen|
= ier=rmven —oagpnf©l| + e ) v fel|

= ==y = s+ et s oorel] e

which is an analogue of (2.16). Then as in the case of d > 2 we continue by using Pitt’s
inequality (2.3) and its corollary (2.5) with § = 0 and d = 1. This concludes the proof of
thecased =1. 0O

3. Growth of Fourier transforms via moduli of smoothness: the case of radial functions

Theorem 2.1 was proved under the condition 1 < p < g < p/ < c0o(A)and 1 <
max {q, q' } < p < 0o (B). When d > 2 these conditions can be extended if we restrict ourselves

to radial functions

S ) = fo(lx]).
The Fourier transform of a radial function is also radial, f(&‘) = Fy(|&]) (see [25, Chapter 4])
and it can be written as the Fourier—Hankel transform

Fo(s) = |8971] /O fo®)jajp—1(st)e=1 ar,

where j, () = I'(a + 1)(t/2) ™% J, (¢) is the normalized Bessel function (j,(0) = 1), > —1/2.
Useful properties of J, can be found in, e.g., [1, Chapter 9]; see also [18] for some properties
of jy.
Theorem 3.1. Let f € LP(R?) be a radial function and d > 2.

-1
(A) Let 1 <p§q<oo.Then,f0rp§%,q<ooor%<p§2,p§q§ (ﬁ—%> ,

. 1/q
(/R [min(t, elg ) 101710 F el | ds) SIF = Viafllp-
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~ -1
(B) Let 2 < p < oo, [E[40-1/P=1/9) f(£) € LIR?), ¢ > 1 and max {q,d (4 - 1) } :
p. Then

R 1/q
( fR [minct, gngraa=e=vo fgyl | ds) R =Viifllp:

Remark. 1. Formally, when d = 1 conditions in Theorems 3.1 and 2.1 coincide. However, note
that no regularity condition was assumed in Theorem 2.1.

2. The range of conditions on p and g in Theorem 3.1 is wider than the corresponding range
in Theorem 2.1 for d > 2.

Indeed, in Theorem 2.1(A) we assume the following conditions: 1 < p <2and p < g < p’.

If p < in Theorem 3.1(A) conditions are p < ¢ < oo. If 2d_ p < 2, then

2d
d+1° d+1

1 _1
(d%l - %) > p’. Thus, the conditions p < g < (d%l - %) are less restrictive than
p=<q=p.

In its turn, in Theorem 2.1(B) we assume that 2 < p < oo and max{q,q'} < p.If

~1 -1
qg < 2,then p > ¢’ andmax{q,d(%—é) } = d(%—ql) < ¢q. If 2 < g, then

—1 —1
max {q, d (% - %) } = ¢g. Hence, we get max {q, d (% — %) } < max {q, q’}~

Proof of Theorem 3.1. The proof is similar to the proof of Theorem 2.1 but we use Pitt’s
inequality for radial functions. We also remark that for a radial function f, functions f —
R;.1.5(f) and A'R; ;1 ,(f) are radial as well.

De Carli [11] proved Pitt’s inequality for the Hankel transform. In particular, this gives
inequality (2.3) for radial functions. As it was shown in [11], in this case the condition on y
is as follows

d d+1 1 1 d
———;— fmaxj{—, <y <-—, l<p<g<oo. 3.1
q 2 P q q

Therefore, (2.5) for radial functions holds under the condition
d d+1 11 d
——L+max{—,—/}§—ﬂ<—, l<g<p<oo. (3.2)
p 2 p p

We will use (3.1) and (3.2) with f = O and y = d (% +1- 1),
To show (A), we assume (3.1), that is, the following two conditions hold simultaneously
d=1,1_d d-1,1 _d
2 p-p 2 9" " p

If d > 2, the first condition is equivalent to p < 2. If p < %, then the second condition is

-1

qg <oo.If % < p <2, then respectively g < (d%l — %
Let us verify all conditions in (B). We assume (3.2), or, equivalently,
d d+1 1 d d+1 1
g_¢+l 1 0, a_¢+l 1 0.

P 2 q P 2 p
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If d > 2, the second inequality is equivalent to the condition p > 2. The first inequality

d+l 1

can be rewritten as p > d ( 5 q) . Since also p > ¢, we finally arrive at condition

-1
max { q,d (% — %) } < p,under which needed Pitt’s inequality holds. [

4. Growth of Fourier transforms via moduli of smoothness: the case of general monotone
functions

The following equivalence holds for p = 2 (see [6,13,17] and Theorem 2.1(A), (B)):

. 1/p
<AJMMM@WM@HP&> < Q(f.0)p, 1)

where ((f, t), and 6 are given by (1.7) and (1.8).

In this section we show that similar two sided inequalities also hold for 2d

—d+l<p<00

provided f is radial, nonnegative and regular in a certain sense.
. —~d
4.1. General monotone functions and the GM~ class

A function ¢(z),z > 0, is called general monotone (p € GM), if it is locally of bounded
variation on (0, 0co), vanishes at infinity, and for some constant ¢ > 1 depending on ¢, the
following is true

/Ooldw(u)lﬁfmwdu<oo, z>0 (4.2)

e U

(see [18]). Any monotone function vanishing at infinity satisfies the GM-condition. Note also
that (4.2) implies

o0
lo(u)|
lo(2)] 5/ ——du. (4.3)
z/c U
In particular, the latter gives, for any b > 1,
o0 bu
lp()| < / u! (/ lp@I dv> du. (4.4)
z/(bc) u/b v

We will also use the following result on multipliers of general monotone functions.

Lemma 4.1. Let ¢ € GM and a function a(z) be locally of bounded variation on (0, 00) such
that lim,_,o «(z) = 0 and

cu
/ lda()| < le@)], u>0.
0
Then o1 = ap € GM.

Proof. By definition of GM, it is sufficient to verify

h=/wwwwn5/wﬁﬂﬂﬁm z>0. 45)

e u
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First,
o0 o0
1 5[ lo(u)| |da(u)| +f le(u)| ldo(u)| =: I + I,
Z Z

and, by (4.3), we get

11=/ |<o<u>||da<u>|§/ (//"%””w) \da(u)|
_ /°° ( / | da(u)|> oy
z/c z v

To estimate I», using

la(u)| =

a(z)—i—/ da(v)

u
Sle@l+ | lda@)], u>z,
Z

and condition (4.2), we have

ns |oz<z>|/oo dg)] +f;° (/ |da<v)|) dg)|
<l <>|foowd +/Z°°<fvoo|dgo<u)|)|da(v>|
<l <>|/Oo L, /ZOO (/jo |(piu)|du> da ()|
— o <)|foo el //OO <f da ()I) el

Therefore, since
V4
< / der(w),
0
we arrive at

1< 11+125/ <|a(z>|+/ \dat ()|) @l ,
z/c z

5// (/ \dar ()|) eI,

Finally, the integral condition on « concludes the proof of (4.5). O

la(z)| = ‘/ da(v)
0

Let GM d, d > 1, be the collection of all radial functions f(x) = fo(|x|), x € R¢, which are
defined in terms of the inverse Fourier—Hankel transform

|S4=1)

e Fo(s) jayr—1(zs)s? ™  ds, (4.6)

fo(z) =

where the function Fyp € GM and satisfies the following condition

1 00
/ sV Fo(s)| ds +/ s¥@=D/2 14 Fy(s)| < . .7
0 1
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Applying Lemma 1 from the paper [18] to Fp, we obtain that the integral in (4.6) converges in the
improper sense and therefore f((z) is continuous for z > 0. In addition, Fj is a radial component
of the Fourier transform of the function f, that is, f (&) = Fo(|&]), & € R4,

. . —d
Let us give some examples of functions from the class GM .

Example 1. Let f € C(RY) N LP(R?), where 1 < p < 2d/(d + 1) ford > 2 and p = 1 for
d = 1, be aradial positive-definite function such that Fp € GM. Then f € GM ‘ Indeed, fis a
continuous function vanishing at infinity and fz 0 [25, Chapter 1]. From continuity of f at zero
we get f € L'(RY) [25, Corollary 1.26], i.e., fooo s4 1 Fy(s)| ds < oo. Since any GM-function
Fy satisfies ([18, p. 111])

o0 o
/ 57 |dFo(s)] 5/ s NFy(s)lds, o >0,
1 1/c

then, using (d — 1)/2 — 1 < d — 1, we get
1 00 [}
/ s Fo(s)| ds +/ s¥4=D2 14 Fy(s)] < / s Fo(s)|ds < oo.
0 1 0

Therefore, condition (4.7) holds, that is, f € GM d. As an example of such function we can take
f @) = (14 |x]*)~@+D/2 and the corresponding Fy(s) = cqe ™.

Example 2. Take f(x) = japo(|x|) (ford =1, f(x) = Si%). Then Fy(s) = cx1(s) € GM and
condition (4.7) holds, i.e., f € (/7.1\\/10[. Moreover, we have (see, e.g., [18])

—(d+1)/2

Jap) =<1, 0<z=<l, ljap@I| Sz z>1,

and

—(d+1)/2

o0
ljap2(2)| 2z ZE€ U [pa2.k + & pajri1 — €],
k=1

where py x denote positive zeros of the Bessel function Jy, infy> (pd/g,kﬂ — pd/z,k) > 3e > 0.
This implies f € LP(RY) if p > 2.

Example 3. Let Fy(s) € GM and |£]90-1/P=1/D Fy(1g]) € LI(RY), 1 < g < p < o0, j—fl <

p. Then, using statement (A.1) below, condition (4.7) for Fy holds, f is defined by (4.6), and
f € GM*NLP(RY). The fact that f € L?(R¥) follows from Pitt’s inequality (4.8) (take f = 0).

4.2. Two-sided inequalities

Theorem 4.1. Let f € GM N LP(RY),d > 1.
(A)Ifszandl<p§q<oo,then

R 1/q
( /R [minct, rlgn™ea=re1o) e | ds) S U0

(B) If |g|70-VP=1/D (&) € L1RY), 1 < g < p < 00, 24 < p, then

R 1/q
( [, [minct,igp g i=tr=to fey | dé) 2 U0,
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Remark. Conditions on p and g in Theorem 4.1(A), (B) are less restrictive than corresponding

—1
conditions in Theorem 3.1. It is clear for (A). Since % <d (—d;rl — %) , conditions ¢ < p
-1
and —dzfl < p in Theorem 4.1(B) are weaker than max {2, q.d (# _ ql) } < p, which is

the corresponding condition in Theorem 3.1(B).

In the case of p = g Theorem 4.1 gives the following equivalence result.

Corollary 4.1 If f € GM* NLP(RY),d = 1, f 2 0, 24 < p < o0, then

R » 1/p
( /H;{ [ minc 1igp™ 11027 e dé) = 2(f.0)p.

Example. Take f(x) = jg/2(|x|) (see Example 2). By Corollary 4.1, for 0 < ¢ < 1 and

2d
AT <p< 00, we have

S 0p = |minc 16D €102 D] <.

4.3. Weighted Fourier inequalities

To prove Theorem 4.1, we will use several auxiliary results from the paper [18].

Letd = 11 < p.g<oo,p—y=d(1—-%-1). g0) = gollxD, and §(&) = Go(l&]).
(Al)Ifgoe GM, p <gq,and
d d+1 d
_—— —,.,. — y<_’
q 2

then the following Pitt’s inequality holds [18, Theorem 2 (A)]
liE72®], < lxPe,.
Then changing variables g <> f p < q,and B < —y, we get

~ d d+1 d
s, < e e, o - T <f < a=p “8)

Here f(£) = Fo(l€]) and Fy € GM. Note [18, Section 5.1] that the condition |&|~” f (&) €
L7 (R%) implies condition (4.7).

(A.2)Let go € GM, gop > 0 and gy satisfy condition (4.7). Then if ¢ < p and
d d+1

g 2
then [18, Theorem 2(B)]

llE78®], 2 IIxPe], .
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Again, changing variables g < f, p < ¢,and B < —y, we arrive at

d d+1

[k sel, 2 g7 F©l,. - <=p r=q. (4.9)

Here f(£) = Fo(|€]) > 0 and Fy € GM.
From (A.1) and (A.2) (see also [18, Theorem 1]), for a non-negative GM-function Fy
satisfying condition (4.7), we have

[P o] <irel,. g <p <o (4.10)

(A.3) Let go > 0. For z > 0 we get (see [18, formula (53)])

b 2b
/OO - </ " go(v) dv) du 5/ C/Zu(d—l)/Z—l
z/(bc) u/b v 0
u
X (/ v(d—1>/2|G0(v)|dv)du, (4.11)
0

where 1 < b < pg/.1.

(A.4) The following inequality was shown in [18, pp. 115-116]

. u v P 1/p
[/ yYpdp/g—dp—1 ([ p@d=D/2-1 </ z(d_l)/2|G0(Z)|dZ> dv) du:|
0 0 0

. Va g d+1
< (/ [IxI77 18017 dx) . ———— <V.q=p.
R q

2
Noting u~P+dr/a=dp=1 — y=PP=d=1 and changing variables g < f, p < ¢, < —y, we
obtain
9] u v q 1/q
|:/ udv—d-1 (/ pd=1/2-1 </ z(d_l)/2|f0(1)|d2) dv) du:|
0 0 0
P » \YP 4 d+1
S IPifo) dx) o ————<-Bp=q. (4.12)
Rd p 2

4.4. Proof of Theorem 4.1 in the case d > 2

Lett > 0, f € GM* N LP(RY), f(x) = fo(lx]), and F(§) = Fo(|]). Note that Fy € GM.
We use notations from the proof of Theorem 2.1.
First, we prove (B). Let |£|¢0=1/P=1/9) £ (£) ¢ L9(R?). We have
1= |min(1 16D 0P T |
= Jigiamr=vo -] iF@If

+ |l PR g DI T = 1+ b
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Then inequalities

X

cu min(cu,1/t)
t21/ UZZ_lm,b_1(lv) dv < t2lf U2l—1 dv
0 0

min(1, ctu)2l <1 —=np(tu), b>1,

[1—mplED] F(&) is a

GM-function. Using Pitt’s inequality (4.8) for f =0and y =d (% + ql - 1) yields

/O (1 = nip )|

X

and Lemma 4.1 imply that the function [1 — nz,h(ts)] Fo(s)

I= | [ = R (D] ©] 2 = ReanDI, @13)

for
= = 4.14
Poayr 127 (4.14)

Since n;5(s) = 0 when s > 1, then (5)? 1. (ts) = min(1, ts)?' 1 (¢s). This and (2.10) give
D' [ A Rup (N | © = mptes) min(1, 19)? Fo(s), 5 = [€].

Also, since 17 (t|€]) = Gy 5.5 (€), then
(D' AR () = Grap xh,  h(E) =min(1, 1|E)Y Fo(I&]).
Using Young’s convolution inequality, we obtain
AR (D] < 16 1sI I, = NGl Al < 1l
We remark that
min(1, ts)* Fy(s) € GM. (4.15)

This follows from the estimate
cu min(cu,1/t)
f |d min(1, rv)%| < tzlf V=1 qv =< min[(ctu)®, 1] =< min(1, ru)%,
0 0

and Lemma 4.1.
Using again Pitt’s inequality (4.8), we have

1= iR 2kl 2 | A R D) - (4.16)
4q p
Adding estimates (4.13) and (4.16), we get
1 = Vil = | f = Russ (D], + 0 |4 Russ(n)| Sniv150

This and (4.14) give the part (B) of the theorem.
Let us now prove the part (A). If p < dz—fl, the proof follows from Theorem 3.1. Suppose

F(&) = Fo(l&]) = 0. By [9, Lemma 3.4],
[f = Vi f]7@) =11 — mit1ED] (&),
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where the function m; (s) satisfies for d > 2 the following conditions

0<C1s2[§1—m1(s)§C2521, 0<s <m, 0<m(s) <vgy <1, s>m.
This gives
1 —my(s) =< min(1, s)%, s>0. 4.17)

Define h(x) = f(x) — Vi f(x) and its radial component by Ay := Gy. Using (4.11) for the
non-negative function go(s) = [1 — my(ts)] Fo(s), we obtain

00 bu
J(2) = / u™! (/ Mdv) du
z/(bc) u/b v
2bc/z u
< / ud=b/2=1 (/ v(d_l)/2|ho(v)|dv> du. (4.18)
0 0

Using (4.17), we get
00 bu : 21
1, tv)* F
J(2) < / u™! ( min(l, 1v)” Fo(v) dv) du, z>0
z/(bc) u/b v
where, by (4.15), min(1, tv)? Fy(v) € GM. Therefore, (4.4) for z > 0 yields

min(1, 12)% Fo(z) < J(2).

Further, the latter and (4.18) imply

/- Hmina,t|s|>”|5|d“—”"—”q>|f<s>|Hq

o0
< (/ [zd“—l/f’—l/q) min(, tz)leo(z)]q ! dz)
0
) q 1/q
< (/ [zd(lfl/pfl/q)l(z)] zdldz>
0
o0 2bc/z
/ LA0=1/p=1/0) / L@=/2-1
0 0
" q 1/q
([ v<d—1>/2|h0(v)|dv>du>] zd‘ldz) .
0

Changing variables 2bc/z — z, we obtain

o0 Z
I < / Z—qa’(l—l/p—l/q)—a’—l / u(d—l)/Z—l
~ 0 0
u q 1/q
(/ v<d1>/2|h0(u)|du>du] dz) ) (4.19)
0

Let us now use (4.12) for  =0and y =d (% + é - l). Since, in this case

1/q

N

Z—qd(l—l/p—l/q)—d—l — qu—d—l
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inequalities (4.12) and (4.19) give

1/p
IS (/ Ih(X)I”dX) =|f- Vl,tf”p (4.20)
R4

when %—% < Oand p < g. The latter is dz—_’”_ll < p < q.The proof of (A) is now complete. [J

4.5. Proof of Theorem 4.1 in the case d = 1

We follow the proof of Theorem 2.1. We have

o (fi1)y = inf(llf —gllp+ 18P0, g? € By LP(]R)> S oa=1t

To show the estimate of w;(f, 1), from above, that is, to prove (B), we take g; (x) such that

N 1t~
e =1-we)] Feo. b=s.

Note that the function g, is analogous to the Riesz-type means R), ; ,(f) and satisfies all required
properties (2.9)~(2.12) with [ in place of 2/. In particular, 1 — [1 — (ts)’]i = min(l, 7s)’.
Proceeding similarly to the proof of (B) in the case d > 2, we arrive at the statement (B) in
the case d = 1.

Let us now show (A). Let 2d_

i1 <P =q<ooand fz 0. Equivalence (2.18) gives

(£, 0p = If = Su(DOI, + 1 1D, = 1A,

where h = f = S3(f) + (' D1S;(f). Moreover, h(¢) = [1 - x:.(I&]) + tl£)' x(1€D] F©).
Because of (2.20) and (4.15) with s > 0, we have 2(£) = min(1, ts)' Fo(s) € GM. Using then
(4.9) with 8 = 0, we obtain

wi(f.0p 2 I, Z |61V | = [ming g ig Ve fe | L0

5. Growth of Fourier coefficients via moduli of smoothness: the case of functions on T¢
Let f € Lp(Td), 1 < p < o0o,and

1/q
fim [ rooean met (Rl = (SE)

neZd

In the paper [13, Theorem 4.1] the following was proved

Hmin(l, tlnl)miﬁ\

<
) 2(f,0)p, 1<p<2,

where {2(f, 1), is given by (1.7) and (1.8) with || - ||, = || - Il Lp(Tdy-
The goal of the section is to obtain the generalization of this result which is a periodic analogue
of inequalities (2.1)—(2.2).

Theorem 5.1. Let f € LP(T%),d > 1,1 <q <ocoandy =d (% +1- 1).
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(A) Let 1 < p <2.Thenfor p <q < p’ we have {(1 + |n|)’Vﬁ,} € 19(Z%), and
S (f, 0),. 5.1
sy S A0 5.1)
(B) Ler2 < p < oo, {(1 + n))™" ) € 19(Z%), and max {q, ¢’} < p. Then

| min(1, 11 (1 + )77 | 7|

|min(t i)™ A+ DBl 2 a0, (5:2)

19(24)
The proof of this theorem is similar to the proof of estimates (2.1)—(2.2) from Theorem 2.1.

The key points are Pitt’s inequalities of form

| 2+ 10D 7 1y g0y SUF Moy, 1< p =<2 (5.3)
and

| 5+ 10D 7 10 g0y 2 W FNppgray, 2 =2, (5.4)

under the corresponding conditions on g, as well as the realization results for the K-functionals
in the periodic case (see [13,14]).

Proof of (5.3). Let us show that the proof of (5.3) follows from Pitt’s inequality for functions on
R?. Note that y > 0. Let f, be the function on R? such that f,, = f on (=7, 7]¢ and f, = 0
outside (—, 71]". Then

|y = WFlenerny, Ful6) = /Tdﬂx)eif%zx, §eR,

ﬁ(n) = fAn ne 7%

Further, we use the results from [21, Chapter 3]. For an entire function g of exponential type
oe,o > 0, we have

gz < L+ ) lgllLams. ¢ =1 (5.5)

Note that the function ﬁ is an entire function of exponential type we, wheree = (1,...,1) €
R¢. We cannot use (5.5) since the weight function |£]7Y,y > 0, is not an entire function.
However, it is possible to construct a positive radial entire function of exponential (spherical)
type such that for |£| > 1 this function is equivalent to |§]| ™7 .

We consider

u+i u—i
Kﬁy(u):jv< 2 )jv( 5 ) ueC,2v+1=y=>0,

where j, is the normalized Bessel function. The function ¥, is an even positive entire function
of type 1. Positivity of 1, follows from the fact that all its zeros lie on lines t £ i,¢ € R. The
asymptotic expansion of Bessel functions [1, formula 9.2.1] yields, for |z| — oo,

. Cu .
@ = (cos@—e)+00z™)),  Rezz0,  [Imz| S 1.
Z

This and v/, (0) > 0 give v, () < (1 + |u])7V, u e R.
Let us now consider the radial function ¥, (|§]),& € R4, which is an entire function of
(spherical) type 1, and therefore, of type e. Also,

Yy (€D < (1 + 15D, EeR% (5.6)
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Define g(&) = ﬁ(é)lﬁy(lfl), which is an entire function of type (w + 1)e. Using (5.6), we
get

N 14 R /g
I8z = (Z \f*m)wy(lnl)!q) = (Z |71+ |n|>-V|Q) ,

nezd nezd

R 1/q R 1/q
I8l Lo ey = (/R RG] dé‘) < (fR Gl ndE dé) :

Then by (5.5) and Pitt’s inequality for function on R, we have
| e+ 10D 7 oy = Ngliaqzay < G0+ 2Nl oy S | F®IE | o gy
S ”f*”LP(Rd) = ”f”LP(’]I‘d)'
Thus we have proved Pitt’s inequality (5.3) for the function on T¢. [

Proof of (5.4). The following inequality is a consequence of [22, Theorem 7] and Hardy’s
inequality for rearrangements:

d 1/q
£z, S (Z [ Jak1+ 1)‘7/P/—1|fk|‘1> ., max{q,q'} < p. (5.7)

kezd j=1
The latter immediately gives (5.4). We would like to thank Erlan Nursultanov for drawing our
attention to his result (5.7), which simplifies the proof. [

6. An equivalence result for periodic functions

A complex null-sequence @ = {a,},en is said to be general monotone, written a € GM, if
(see [15]) there exists ¢ > 1 such that (Aay = ax — ak+1)

- o~ la
E |Aay| S E o neN.
k=n k=[n/c]

Theorem 6.1. Let f € LP(T), 1 < p < oo, and
o0

fx) ~ Z(an cosnx + b, sinnx),

n=1

where nonnegative {a,}neN, {bn}nen are general monotone sequences. Then
0 1/p
o (f, 1), < <Zmin(1, vt)lPyP=2 (af —I—b{,’)) . 6.1)
v=1
We will use the following lemma (see [2]).
Lemma 6.1. Let | < p < oo and let Y 2 | a, cos vx be the Fourier series of f € L'(T).

(A) If the sequences {a,} and {B,} are such that

o0
Y lAxl S By, veEN, (6.2)
k=v
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then
o0
LfIp <> vP=2pr. (6.3)
v=1

(B) If a = {a,} is a nonnegative sequence, then

00 n p
Z( > ak) n 2 <SG (6.4)

n=1 \k=[n/2]

Proof of Theorem 6.1. First, we remark that since 1 < p < oo it is sufficient to prove that

1
wf (f, ;) = I + b,
p

where

n o
_ ,—Ip py,+Dp=-2 — pPy,p—2
L=n Zau v s I, = ayv s

v=1 v=n+1
o
fx) ~ Zan cosnx, f{ap}peny € GM.

We will also use the realization result for the modulus of smoothness (see [14]), that is,
1 _
wf (f, ;) = fe) =T} +n~ 7| TP 0|7, 6.5)
p

where T, (f) is the n-th almost best approximant, i.e., || f(x) — T, (x)|| » S En(f)p- In particular
we can take 7, as S, = S, (f), i.e., the n-th partial sum of Z,‘:il ag coskx.
Let us prove the estimate of /1 and I from above. Since {a,} € GM, we have

a =) dalS Y T (6.6)
I=v

I=[v/c]
then Holder’s inequality yields

I 5 n —lp Z( Z ])pv(l+l)1?2

v=1 \j=[v/c] J
n L p . p
<n7tp Z( Z _J> p+Dp=2 o p=1 (Z _J)
=1 \j=0v/el =t
a o0
<npp Z(Z ]) +Dp=2 4 Z aj-’jp_2 = I3+ D.
j=n+1

To estimate I, and I3, we are going to use the following inequalities
N

iasﬁi Y an and Z%SZ Z . 6.7)

s=n s=n " m=[s/2] s= 1 m=[s/2]

© | =
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Then by Hardy’s inequality [19], we have

I <n1p2":<z Z ) @+1p-2

j=v 7 m=[j/2]

P
,Sn_lpi( Z am) jlp_2~

j=1\m=[j/2]
Then Lemma 6.1 (B) and (6.5) yield

p
_ 1 1
< fpr|s§;><f>u§swf(f, 5) =ot(nh)
p p p

Further, using (6.6), (6.7), and Hardy’s inequality, we have

00 x P 1 s p
p— s
L3 E jr? E 5 jr? - am
s _n+1 s= [j /cl [s/2]

2n

E vla, cosvx

v=1

I < n'p

J— =0/l 5%,
00 s s
o (M) 2 5e)

s:[n c] m=[s/2] s=2n m=[s/2]

s p
+nlszlp2< Z am) )
s=1 m=[s/2]

The last sum was estimated above. Again, by Lemma 6.1(B) and (6.5),

o0 S p o0 p 1
Z s2( Z am) Zav COS VX a);” (f, —) .
v=n nJp

s=2n m=[s/2]

p
So, we showed that

1
11+12§win(f,;> .
p

To prove the reverse, we use Lemma 6.1(A), the definition of the GM class, Holder’s and
Hardy’s inequalities:

) 5 e p 00 ) p
If=Sally S Y 87 j"‘zgn"‘l(Zm%O +Zj”‘2<Z|Aas|>
j=1 s=n j=n s=I
o p 00 x p
—_ S p— S
st 3 e) (> o)
. j=n

s=[n/c] s=[j/c]
o
S D aljPPSh+h,
j=[n/c]
where f; = 302 (i) |Ads]. Similarly,

n p
E vt a, cos vx
p

v=1

w SO S

n n p
Sty 2 <Z |A(slas)|) :
v=1 s=V
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Further,

N

n n n n n
Y DIPTINED SEPE SNINPS SIS o |Aas|(2m’—1 . )
Vv sS=v sS=v S=v sS=v m=vy

s=

and after routine calculations, we arrive at

n n o

_ a
E |AGs'ay)| < E s'7lag +n E ;m
S=V m=n

s=[v/c]

Using this and Hardy’s inequality, we get n~'? || S,(,l)(f) ||§ < I1 + I. Finally, by (6.5),

1
wf(f, —) ShLh+hL O
n
P

Remark. The partial case of Theorem 6.1 was stated in [26]. Note also that Theorem 6.1 is an
analogue of Corollary 4.1 for the case of d = 1. It would be interesting to obtain a similar result
for the periodic functions of several variables.

7. Discussion and applications
7.1. Riemann—Lebesgue-type results

From Theorem A and [13, Theorem 2.2], one has the following estimate of the Fourier
transform

A ) 1/p . ) 1/p
19! ( / E TP dé) + ( / NGk ds) <0,
[El<1/t 1/t<||

l<p<2. (7.1)

On the other hand, Theorem 2.1 gives (p < ¢ < p/,1 < p <2)

R 1/q
19! ( /|s ) |s|”q+dq<‘—1/f’—‘/q>|f<s>|‘fdé)
<1/t

R 1/q
0 ( / &4 A=1P=1a)| F (g9 d&) S QS D), (7.2)
1/t<|&|

If ¢ = p’ (7.2) reduces to (7.1). The following example shows that (7.2), in general, provides

better estimates than (7.1).

Example. Let f(&) = Fo(l&]),
s—d/p’ 2d

P2 +s5) d+1

Note that Fj is decreasing to zero and therefore Fy € GM. Also, it is easy to see that
1£140-2/P) F(£) e LP(RY). Hence, as in Example 3 (for ¢ = p) we get f € GM" N LP(RY).

Fo(s) =

< p < o0.
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We have

R 1/q
1% ( f |&(0tarda =1/ p=1/ D) F g4 d%‘)
|El<1/t

=~ Va ~2/p+1/
+(/ Iéldq“_””_”q)lf(é)l"dé) = [In@+ 1/0]7/771.
|E|=1/t
Then (7.1) gives

[In@+1/0]"7"" S of.0, p=2,
and (7.2) implies (with g = p)

[In@+1/0]""" Sty p=2

The latter estimate is stronger. Moreover, it is sharp since by Corollary 4.1 we in fact have

@2+ /0] < Q(f. 1) <p<oo. O

2d
d+1
7.2. Pointwise Riemann—Lebesgue-type results

For f € LY(R?) N LP(RY), 1 < p < 2, the Riemann—Lebesgue-type inequality
IFOI S 167 2L 1/1ED, (7.3)

does not hold in general for sufficiently small » > 0.
Note that the case of » = 0 easily follows from the fact that the Hausdorff—Young inequality
||f||,1 S £l holds for all f € LP(R?) ifand only if 1 < p <2and g = p’ (see e.g. [33]).
Let us consider the case of [ > d/2 ford > 2and/ > 1 ford = 1. Ford > 1 we define
@ = X2, where x is the characteristic function of the unit ball. Then ¢ || g <00,q=1,¢=yx%x
and the support of ¢ is contained in the ball of radius 2. We define

fE =" ayn@),  F@) =) apn),

neZd nezd

where

Un(x) = edg(eax)e™™, Yu(€) = P, (& —n)

and positive sequences a, and &, vanish at infinity and |la, [|;1z¢y < oc. The support of the
function v, is the ball of radius 2 ¢, centered at a point n.
We get

ity = ([

which implies
d ’
1fllg = > anen T llelly S an < 0
neZd neZd

for any g > 1. Therefore, f € LY(RY) N LP(RY).

—inx

8,‘f<p(8nx)e

1/q
q d/g’
dx) =& loll,,
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Using (2.7) ford > 2 and (2.18) for d = 1, we get
A0 SN =SuDllp + 7 ND'S(Hp. =1/t
where # =2 and D = Aford >2and 6 = 1and D = d/dx ford = l,mzfm.

Let &, < 1/2. Then supports of functions @ are disjoint and therefore S, (f) =
Z|n|<1v anVn, where N = A 4+ O(1). Hence,

f=SH =) am, D'Si(f)= Y aD'yy.

[n|=N [n|<N

We have
If = Su(Dlp < lglly Y anes’”

[n|>N

and, by Bernstein’s inequality,

d /
ID'Si(Hllp S Y an@en+ D" 1l S 3 (1 + 0D anes’” .
[n|<N |n|<N

Thus,

d/p’ d/p’
A0p S D aned” +1 3 (A + ) anen”
|n|>N [n|<N

Letnow [ > d/6 and
_ d/p _
a = (1+ D7 en” < A+ )7’
whered <o <6landd < B <0l —a +d. Then

o0
Zan SJ/ w0t =gy < oo,
7d 1

Z aHEZ/p’ < /OO u——Brd=1 g, < N-o—B+d
n|>N N
, N
S + D), el 5/ uP1a—Prd=1 gy < .
!

n|<N
Therefore, since N < A = 1/t, we have

Q(f 1), S NP 0 o o (N —BHd | Nebly o y—a—ptd
Moreover, if £ € 74, €] < N, then

F&) = a:p(0) < N™*.
Finally, we get

QS /IED, S GETPH 41817 F &) =< 1617+ F )

and therefore inequality (7.3) does not hold for0 < »x < g —d. O

. —~d . . .
However, let us remark that for functions from the GM " class it is possible to obtain the
pointwise bound of the Fourier transform.
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Corollary 7.1. Let f € GM“ NLP(RY),d > 1, f(§) = Fo(l§]) = 0, and 24 < p < oo. Then

Fo(t) St74P Qi (f,1/1) . (7.4)

Proof. Since f € GM d, using (4.3) and Holder’s inequality, we get

Fos) < /oo Fo@) - _ /oo Fo(uyud—4/p=1/py~d+@+1=p)/p g,
s K

/c u /c
e’} 1/p
< gd/p—d (/ F wyu®=~! du> . (7.5)
s/c
Then using Corollary 4.1, we have
1/t 00
QL (f.0)p = 17 / s/Ptdp=d=1Fl () ds + / sP=A=VFl (5) ds (7.6)
0 1/t

and by (7.5), we finally get

00 l/p ,
Fo(r) < ¢4/p— </, Fg’(u)udp—d—ldu> ST 1, O
C

7.3. Moduli of smoothness and best approximations: sharp relations

The following direct and inverse theorems of trigonometric approximation are well known
(see e.g. [12, p. 210], [10, Intr.]):

1/t
1 (< T 1
i (Z()(v + Y 1Ev<f)p) < wz(f, ;)
V= p

S

S

n 1/q
; (Z(u + 1)4"1E3<f)p) : (1.7)

v=0

where f € LP(T),1 < p < o0,l,n € N, g = min(2, p), T = max(2, p), E,(f), denotes
the n-th best trigonometric approximation of f in L?, and w;(f, §), is the LP-modulus of
smoothness, see (1.2) with X = T.

We remark that (7.7) is the sharp version of classical Jackson and weak-type inequalities
[12, p. 205,208] and it can be written equivalently as follows [10]:

| 1/t
¢ (/ uirlilwlz_l(fs u)p d”) S wi(f, Dp
t

1/q

1
<t (/l uqlle’+](f,u)pdu> ) (7.8)

Constructing individual functions shows [10] that the parameters ¢ = min(2, p) and 7 =
max(2, p) are optimal in (7.7) and (7.8). For functions on [—1, 1] inequalities of type (7.7) and
(7.8) were obtained in [30,10].
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For functions on L? (R?), similar results were also proved for 2 (f, t)p and E,(f),, i.e., the

best L”-approximation by functions of exponential type n (see [10]). For example, an analogue
of (7.7) is given by

1/t
1 (S 1
291’1 (ZOZ TUE;”(f)p) S ‘Ql (f’ 2_n> S
V= p

-1y =1 e gay-

1
20in

n 1/q
(Z 2"“1“E;k(f>p> :
v=0

Below we show that for functions from the class GM d we can completely solve the problem of
description of relationships between (% (f, 1), and E,(f), as well as (2 (f, 1) and {211(f, 1) p.

Theorem 7.1 If f € GM* N LP(RY),d = 1, f = 0, and 24 < p < oo, then

1/p
L du 1
Q(fi0), =< (telp/, u P F (f, wp— +1A(f)y, 0<t< > (7.9)

where A(f)p — || |§-|9l+d(1—2/l’)xl(|§‘|)f(§)”[) S .Ql(f, l)p Inparticulal; we have

1 du 1/p
(telp/t u—ﬁll’()fjrl(f, u)p7>

1/p
1 du
S0y S (r“f’ / w Ol Fwp— |+
t

and

1
20In

1 n 1/p | n 1/p
207 (Z 2 ES, (f),,> <0 (f, 2—) g (Z 29’””E§v<f>p)
v=0 P v=0
1
+2m||f||p. (7.10)

Remark 1. In (7.9) one cannot drop 19! A(f)p. Indeed, consider
FJ(s) = s~ =Dy (s).
Then

1/n 1/n
le(f, Ny =< telp/ selp+d”_d_1F(f(s) ds =< tmp/ s0P gs = 9Py —0lp—1
0 0

Using this,
1 d 1
B u _ ., du _ _
) R B
t u t u

Hence, writing

1/p
1 d
ol —01—1 ol —01 u —6.01, —0l—1
'n /pSQI(f,t)pSf (/t u pQ[Z_](fau)pu) Snt'n /p

we arrive at a contradiction as n — 0.
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Proof of Theorem 7.1. Using Corollary 4.1, we get

1/1 00
QF (0, < 1 / sOPTAp=d=1 P (5) ds + / sP=A=1 Rl (5) ds
0 1/t
= Ji1(®) + J2(t)
and
1
_ du
telp/ u Glpglljrl(f’ u)p7
t
1/t u
xteﬂp/ u—or=1 [/ SG(l+l)p+dp—d—1FOp(S)dsi| du
1 0
1/t [e8)
-Hmp/ u?r—1 [/ sdp_d_lF(f(s) dsi| du
1 u
= 11(t) + L(?).
Then
1/t 1 u
L) = tel”/ u—or—1 / —l—/ s9(1+1)”+d”_d_1F(f(s)ds du
1 0 1
1 1/t
= lelp/ s9(l+l)p+dp7d71F0P(s)ds+I@lp/ sOU+Dprdp=d=1pp )
0 1
1/t
x/ u PV quds
s
S i)
and

L)

1/t 1/t 9]
tel”/ w1 / —i—/ sd”_d_lF(f(s)ds du
1 u 1/t

1/t s oo
telp/ sdp—d-1 Fé’(s)/ u?'P=1 qu ds +/ sdp*d*lF(f(s) ds
1 1 1/t

X

S i) + L(0).

Using again Corollary 4.1,

1 1/p
A(f)) = (/O sOPtdp=d=1pP ) ds)

00 1/p
< (/ s4P=4=1 min(1, s)mpFOp(s) ds)
0
= |minc1. gD Fo)| < a0,
Moreover, AP (f), < Ji(t). Thus,

() + L) + P AP (), S D1 (@) + Ja(2).
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To prove the inverse inequality, we first remark that s 7 < f Yl/ "utP gy, 1 < s < 1/(20)
and therefore using (4.10),

1 1/2t
J] (Zt) S t@lpfo Selp_l—dp_d_lFé?(S) ds +t9[pv/l\ S9(1+1)p+dp—d—lFé7(s)

1/t
X / u PV qu ) ds
N

SPAP(F), + L(D).
Also,

o0
h2t) < / siP=A=1El (s) ds
1/1)

1/t 1/t o0
< / sdp_d_lF(f(s) ds + tm[’/ uftr=1 / sdp_d_lF(f(s) ds du
1/(20) 1/(21) u
S L) + L(@).
Finally, to verify (7.10), we apply [10, (5.7) and (5.8)]. O

Using (6.1), we state the analogous result for periodic functions; compare with (7.7) and (7.8).

Theorem 7.2. Let f € LP(T), 1 < p < oo, and

o
fx) ~ Z(an cosnx + b, sinnx),

n=1

where non-negative {ay, }neN, {bnlnen are general monotone sequences. Then

1/p
Ip ! —Ip_ P du 1
w(fit)y < |t u wl+1(f,u)p7 , O<t<§.

t

In particular,

n 1/p
o (f, 1/n)p = (n—”’ Y+ 1)“"1E5’(f)p> :
v=0

where E,(f), is the best LP-approximation of f by trigonometric polynomials of degree v.

Note that similar equivalence results for continuous functions were obtained in [27, Theorems
5.1,5.2].

7.4. A characterization of the Besov spaces

For 1 < p < oo and 7, r > 0, define the Besov space B;’T (Rd) as the collection of functions
f € LP(R?) such that

I\J
I/ Vg ) = 1S oy + (/ (t—) 7) <.

where 0 < r < 61. Similarly we define the Lipschitz space Lip;7 (RY) = B, oo(IR{”l), ie.,
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z(f r)
1 ipr ey = £ 1l Lo ey + sup —2 P 0<r <0l

It turns out that it is possible to characterize functions from the Besov space B), . (R9) in terms
of growth properties of their Fourier transforms.

Theorem 7.3. Letd > 1,1 <t < 00, anddzj:1 <p§t.1ffe(/}.ll\4dﬂLP(Rd)andfz 0,

then a necessary and sufficient condition for f € B;’T (RY) is

00
/ srr—i—dr—dr/p—ng(s) ds <oo ifl<t<o0 (7.11)
0

and

sups" TP Fy(s) < 00 if T = 0. (7.12)
N
Proof. The case of 1 < t < oco. Let first (7.11) hold. By (7.6), we get

1 1 T/p
’ 0 0

00 t T/p
+ f t(r—@l)‘[—l </ s@l[)-‘rdp—d—lFOP(s) ds) dt
1 1
1 00 T/p
+/ A <f sdp_d_lFOp(s)ds) dt.
0 1/t

Then by Holder’s inequality with parameters & = 7/p and o', we get
1
Kl 5 /(; srr+dt—dr/p—lFor(s) ds.
By Hardy’s inequalities (see e.g. [5, p. 124]), we have
o
K, + K3 < / S”J'_dr_dr/p_lFor (s)ds.
1

Hence, if (7.11) holds, f € B!, ,(R?).
Let f € By, [(RY). By (7.5),

00 T/p
Fo(s)® < sdt/p—de <f F yur=~! du) .
s/c

Therefore, making use of this, we have

o o o t/p
/ srt+d‘[7df/p*1Fg(s) ds S_, / sr‘Ef] (/ Fé’(”)udpfdfl dM) ds
0 1 K

1 00 T/p
—l—f sl (/ F(f’(u)udp_””_1 du) ds
0 K
1
< 1 1sy, + 16192 Fe) | /0 " ds.

Finally, since H E140-2/P) F () H <1, (see (4.10)), (7.11) holds.
14
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The case of T = oo. Let first (7.12) hold. Then by (7.6), (7.12) yields

1/t [e¢]
le(f’ t)p /S t@lp/ s0[p—rp—1ds _I_/ S—rp—l ds 5 trp’
0 1/t
ie., f € Lip,(RY).
On the other hand, if f € Lip; (R?), we use (7.5) and (7.6)

o0
F(f(s) < sd_dp/ Fé’(u)u”l”_d_1 du < sd_dpﬂlp(f, 1/8)p < sd—dp=rp,
s/c

whichis (7.12). O
7.5. Embedding theorems

The following Sobolev-type embedding result for the Besov space with the limiting
smoothness parameter is well known: B;,q — L9, r = d(% — l) (see, e.g., [23, (8.2)]). Note
that this embedding is closely related to the sharp Ul’yanov inequa?ities for moduli of smoothness
in different metrics [24], [32, Theorem 2.4]. Theorem 7.3 gives the sharpness of the embedding
result in the following sense.

Corollary 7.2. Letd > 1 and 24 < p <q < oo.If f € GM* N LP(RY) and [ > 0, then

1 1
feB, ®RYH, r=d o — fe LR, (7.13)

Proof. To show (7.13), we combine Theorem 7.3 and || |$|"(1’2/1’)f($)||p = 1 fllp, % <p<
oo (see (4.10)). O

Feng Dai made us aware of the fact that inequalities from Theorems 2.1 and 5.1 for the case
q = p were also proved in the recent work by Zeev Ditzian.
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