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Abstract

Democratic systems arise in the context of greedy approximations in Banach spaces. Systems of
translates of a single function are the basis of shift invariant subspaces and are used in the construction
of wavelets and Gabor systems. In this article, we study the democracy in L2(R) of the system of integer
translates of a single function ¢ € LZ(R). Necessary and sufficient criteria are given in terms of properties
of ¥. The problem of finding an (operative) necessary and sufficient condition is still unsolved.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

Democratic systems arise in the context of greedy approximations in Banach spaces. The
greedy algorithm is an important method in numerical mathematics; for more details see the
early work of V.N. Temlyakov [18,17]. At the same time it also points to some interesting
issues in functional analysis. In particular, we would like to emphasize the basic theorem of
S.V. Konyagin and V.N. Temlyakov (see [8]) which states that a basis in a Banach space is
greedy if and only if it is unconditional and democratic. Hence, one could expect (and this is
indeed so) that there are democratic bases which are not unconditional. It is important to mention
that it is often difficult to produce valuable examples of conditional bases (it is good to consult
books by I. Singer [16], J. Lindenstrauss and L. Tzafriri [9], R. Young [20], numerous notions
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and fundamental results that we use here one can find there). We find an interesting direction
in an article by P. Wojtaszczyk [19] where even more general systems than bases are studied in
a similar context. The author studies quasi-greedy biorthogonal systems and develops a method
to construct a wide range of quasi-greedy conditional bases. This partially motivates our work,
since we shall also study that democratic property for general systems and we shall also try to
offer deeper understanding of a particular, but fairly rich class of conditional democratic bases.

Let us comment on the second notion in our title. Systems of translates are recently
again studied thoroughly, from the point of view of various reproducing function systems,
like wavelets, Gabor systems, etc. Very often are the most basic properties of such systems
characterized in terms of some associated system of (integer or other) translates of a function
(or functions); see Ch. Heil and A. Powell [3], as well as [4,15] and the references therein. In
particular, there is a hierarchy of simple and usable conditions that characterize various basis-like
properties of a system of integer translates of a square integrable function (see [5] and, for some
far reaching generalizations, [6]).

The simplicity of such characterizations allows systematic construction of (perhaps
surprisingly) rich families of examples (including also the case of a conditional basis); see [14]
for one such method in the case of wavelets.

There is a natural question to be answered. Consider a system of integer translations of a single
square integrable function on the real line. What are the necessary and sufficient conditions for
such a system to be democratic? Let us emphasize immediately two features of this question.
First of all, the question is not a simple one, even in this, most elementary example among
various systems of translates. As we shall see, in one important subcase, when our system forms
a Parseval frame, the question is most closely related to the L2-norm concentration (see [1,2]
for recent developments and for basic literature on the subject). As a consequence, at this point
we are not able to fully answer our main question, i.e., to offer a characterization of a system
of translates that is given in simple terms which are not difficult to check. Still, we offer several
necessary criteria and several sufficient criteria that meet such standards, and in some subclasses,
like in the continuous case, we provide very elegant characterizations.

The second feature we would like to emphasize, connects nicely to the issue of conditional
Schauder bases, mentioned earlier. We already know that such systems of translates form a
Schauder basis if and only if the periodization of the Fourier transform of the generating function
satisfies the celebrated Muckenhoupt A, condition (see [11,10] for details). We also know
(recall the result of P. Wojtaszczyk) that such systems of translates cannot form conditional,
quasi-greedy, Schauder bases; see [12]. Hence, the only chance to have conditional Schauder
basis of translates with some properties akin to “greediness” is within the realm of democratic,
conditional Schauder bases. As we shall see, even in the case of a system of translates this class
is very rich and exhibits some interesting properties.

We explain some basic details about democratic systems in Section 2. In Section 3 we offer
a quick overview of various known properties of systems of translates. In Section 4 we develop
our theory of democratic systems of integer translates of a single square integrable function on
the real line.

2. Democratic families. Basic properties
We shall work eventually within a particular Hilbert space. However, most properties of

democratic families can be formulated in a much more general space. We take the middle ground
here, which is easily understandable to a mathematician of any background.
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Consider a normed space (X, || ||). For a finite and non-empty family G € X\ {0} we introduce
the notation

>

g

2T

xeg

‘ . 2.1

It is straightforward to check the following properties. If card(G) = 1, then Zg = 1. In general,
0 < Zg < card(G). Already with two vectors one can combine Zg to achieve any value in
[0, card(G)]. For example, G = {—x, x} gives Zg = 0, while G = {x, 2x} gives Zg = 2.
Obviously, if Zg = 0, then G is linearly dependent. The reverse, however, is not necessarily
true. If {Gy, G»} is a non-trivial partition of G, then the triangle inequality gives

DD RININDY 22)

G ) g )
in particular, if g € G and card(G) > 2, then

D<) <) +L (2.3)

G\{g} g G\{g}
Given ) £ F C X \ {0} and n € N such that n < cardF, we define

Dt (n; F) = sup

ger o
card(G)=n (24)
D_(n; F) = inf
GeF
card(G)=n g
It follows from previous observations that D_(1; F) = D*(1; F) = 1 and
<D_(m; F) <D (n; F) <
Furthermore, if k, £ € N are such that k + £ = n, then
D_(k;F) =D (; F) < D_(n; F)
< DY, F) < DY (k; F) + DT (; F). (2.5)

Let us explore some extremal cases first. We have seen already that D_ (n; F) = 0 is possible.
What about DT (n; F) = 0? The following examples and the following lemma describe such a
possibility more or less completely.

Example 2.6. (a) Let F = {—x, x} for some x € X \ {0}. Then D_(1; F) = DT (1; F) = 1
and D_(2; F) = DT (2; F)=0.

(b) Let X = R3. Take x1 = (1,0,0) and find x, so that ||x2]| = 1 and ||x; + x2|| = 1; for
example xy = ( 7 5 ,O) satisfies these properties. Take F = {x1, x2, —(x1 + x2)}. Then
D_(;F)=DT(;F)=D_(2;F)=DT(2; F)=1land D_3; F)=DT3; F) =0

(c) The nth-roots of unity (i.e., F = {exp(ZX); k = 0,1,...,n — 1} in (C,|])) give us
simple examples of the phenomenon illustrated in (a) and (b). Observe D_(n — 1; F) =
Dtm—1;F)=1land D~ (n; F) = DT (n; F) = 0.



108 E. Herndndez et al. / Journal of Approximation Theory 171 (2013) 105-127

(d) Observe that in general for a finite F we have

D_(card(F); F) = DV (card(F); F) = Z 2.7
f

Observe also that for n < card(F) it is possible to have D_(n; F) = 0; take, for example,
F = {x, —x, 2x}. Compare this with the following result. [

Lemma 2.8. If n < card(F), then D (n; F) > 0.

Proof. For n = 1 the statement is always true. Consider n € N\ {1}. Since n < card(F)
we can find n — 1 mutually distinct vectors in F. Let us fix some choice of such vectors
X1,...,X—1 € F.Since n < card(F), we can find two vectors yi, y2 € F \ {x1, ..., Xn—1}
such that y; # y;.

Suppose now, to the contrary, that D™ (n; F) = 0. Then it would follow

{ETRIS N P U R CT PO PR )
which implies Hi_i\l = H;_i\l Take any k € {1 — 1}, replace x; with y; and keep y>. Then,
using 0 =3 .\ |y, Weobtain Hy 1= H_ Since k was arbitrary, we proved that
I S L |
Iy~ Wetll el
Hence, using 0 = >, . ., we obtain n - m = 0, which is not possible, since

yeFCXx\{0}. O
Let us now define the main notion of this article.

Definition 2.9. A non-empty family F € X \ {0} is democratic if there exists D > 0 such that

(g H € F, G and H finite, card(G) = card(H) = Z Z)

Using Lemma 2.8 we immediately obtain the following:
(n < card(F), D_(n; F) =0 = Fisnot democratic). (2.10)

Obviously, if n = card(G) = card(H) in Definition 2.9, then D_(n; F) < min{} g, > 3/} <
max{) g, >y} < D™ (n; F) and both bounds can be approximated with min{) ¢, >}
and max{}_g, > 5/} arbitrarily close. Using (2.7) and 3, = 1 we obtain the following
straightforward equivalence:

B+ F C X\ {0} is democratic
D*(n; F)

< sup {
In particular, if card(F) € {1, 2}, then F is always democratic. Furthermore, for democratic
systems the smallest constant that satisfies the defining relationship is exactly the supremum
taken in (2.11). In particular, if D satisfies Definition 2.9 for some system F, then D > 1.
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In this article we shall be interested only in countable families. Let us first describe the case
of finite F, which, as we shall see, will not be otherwise of a particular interest to us. In this case
we only have finitely many subfamilies, so Lemma 2.8 and (2.11) easily imply the following
characterization.

Proposition 2.12. A non-empty and finite family F C X \ {0} is democratic if and only if

D_(n; F) >0,
foreveryn € {1, ..., card(F) — 1}. If this is the case then we can take D in Definition 2.9 to be
Dt (n; F
D= DT )

max
I<n<card(F) D_(n; F)
(with an obvious interpretation for card(F) = 1).

Since for a finite F we can have min instead of inf in the definition of D_ (see (2.4)), we
obtain the following result.

Corollary 2.13. If 0 # F C X is finite and linearly independent, then F is democratic.

Observe that in Example 2.6(a) and (b) we have examples of finite democratic families which
are not linearly independent.

Let us now turn our attention to the most interesting case for us, the case of infinite and
countable family F, i.e., the case when F C X \ {0} and card(F) = Ry. Obviously (see (2.11))
such a family is democratic if and only if

+
D(F) = sup {% c N} (2.14)

is finite (observe that in general D(F) € [1, +00]).
This tells us that for democratic families F we can take any sequence (G,:n € N) of
subfamilies G, C F, with card(G) = n, for every n € N, and we will have

1
(H C F, card(H) =n = m ; < D(F) Z) (2.15)

Hence, in analyzing infinite and countable democratic families we are primarily interested in “the
order of growth” of ) £, with respect to n, where F,, € F, card(F,) = n.
Example 2.16. Consider X = H], where H is a Hilbert space.

(a) If {ex: k € N} C H is a Riesz basis with constants 0 < A < B < 400 (see [7] or [20] for
definitions and basic properties), then

2
A ek
Zcard .
g = Zg Zg lec]
< B Z - = —card(g)

ex eg
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for every finite G C {ex: k € N}. Hence, F = {ex: k € N} is democratic, and

\/g- Vi< D_(m; F) < DY F) < \/g Vn. (2.17)
In particular, if F is an orthonormal basis, then A = B = 1 and

D_(n;: F) =DV (n; F) = /n. (2.18)
Hence, the most typical behavior that we can expect is that “the order of growth” of ) 7, 1s

N

As we shall see, our translation systems are going to exhibit this same “rate of growth”.
Therefore, we shall not go deeper into the study of abstract democratic systems, despite the fact
that there are some interesting results there. As an illustration, let us at the end of this section
provide some academic examples which show that neither linear independence nor “the rate of
growth” of \/n are necessary features of democratic systems in general.

Example 2.19. Take x # 0 and consider F = {n - x:n € N}. Then, D_(n; F) = DT (n; F) =
n, F is democratic and D(F) = 1. Observe that F is “highly” linearly dependent. [

Example 2.20. Take an orthonormal basis {ex: k € N} in a Hilbert space H. Take a vector x # 0
with the property that (—n)ﬁ is not equal to any Zekeg er, with G C {ex} being finite. For
example, x = e; — ey has such a property. Let

F={nx:neN}U/{e:k € N}
Then F contains a democratic system (with “growth” /n) and
D_(n; F)>0, VmnelN.
However, the system F is not democratic, since
D_(mF)<n=) <) =n=DnF)
Gn Ho
where G, = {ey,...,ey}and H,, = {x,2x,...,nx}. 0O

3. Systems of translates. Basic properties

In this section we offer a quick review of basic results about systems of translates we intend
to study here. For definitions, proofs and details we refer the reader to [15,11,5].

Let € L*(R) and consider Fy = {Tiy:k € Z}, where Ty (x) = ¥y(x — k), x € R.
It is known that, for every ¥ # 0, F is linearly independent. The system Fy has interesting
properties within the principal shift invariant space generated by v, i.e.,

() = span(Fy).

It turns out that these properties are given in terms of the periodization function

py® =Y [WE+hI> £eR, 3.1

keZ
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where 1:0\ denotes the Fourier transform of 1. The following picture provides the set of all ¥ # 0,
depending on various properties of Fy, within ().

1 a
2 b
35 Cp
3nB CNB
4p dp
dnp dys
53 €p
.
ONB ENB

BZ:33U4BU5BUCBUCZBU€B

x:=zpUznpg € {3,4,5,¢,d, e}

Let us provide a legend for the figure. It represents a set of all ¢ % 0 and its partition into
various subclasses based on the properties of Fy, within (y).
All classes on the left, named by numbers, have the property that

[{€: py (€) = 0}] > 0, (3.2)

where |A| denotes the Lebesgue measure of A. All classes on the right, named by letters, have
the property

py >0 ae. 3.3)

In particular, for all these classes, Fy is Ez—linearly independent. See [16] for many results
on various levels of linear independence. Observe that convergence for such systems is
not necessarily unconditional and for some properties (£2-linear independence, Schauder
basis) the order of vectors matters. In all such situations we assume that 7Z is ordered as
{0,1,—1,2,—2,...}. We just learned recently that an open problem whether (3.3) characterizes
£2-linear independence has been resolved positively by S. Saliani [13]. For Besselian classes this
is known for some time [14], and we shall see in the next section that democratic systems are



112 E. Herndndez et al. / Journal of Approximation Theory 171 (2013) 105-127

always Besselian. Recall that F, is a Besselian system if and only if there exists 0 < B’ < 400
such that

py < B ae. (3.4)
In our figure we have that 7 is a Besselian system if and only if

Y eBULU2UaUb. 3.5)

After describing “vertical” and “diagonal” divisions in our figure, let us turn to the
“horizontal” one. We start from the bottom.

The lowest part, i.e., the class 5 U e consists of these ¥ 7 0 for which

1

E " X{E:py (£)=0}

is not integrable on the torus T := % (observe that py is 1-periodic on R, i.e., can be considered
as a function on T). This class is still not well understood. We know that ep consists of {-s such
that Fy, is Besselian, Kz—linearly independent, but not minimal (see [16,20] for various results on
minimal systems), while in the ey p case we have same properties except Besselian one. In the
class 55 we have Besselian systems which are not £2-linearly independent and do not allow dual
system in the way we shall explain shortly after.

Obviously then, '(p ¢ 5 Ue if and Ol’lly if
X E:py (§)>0 T . 3

In this case we define the dual function 1Z in L>(R) using

e X{Epy ©)>0}- 3.7

It turns out that 1; € (¥) (actually (1/7) = (y)),

1
Py = —X >0} (38)
1 Py {py >0}

(observe {p@ > 0} = {py > 0}) and
(Tr v, TﬂTf)LZ(R) = /%ezms(lik))({é:pw(éb()} d§, (3.9)
where £, k € Z. In particular,
1
((3.3) and (3.6)) & — e L'(T), (3.10)
Py

and, in this case, Fy and .7-"@ form a biorthogonal system (observe that in (3.9) we then have &y
on the right hand side), which is equivalent to F, being minimal (see [16,5] for details).
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The distinction on the next level is provided by the following criterium. We define that
¥ € 5Ue U4 Ud if there exists a constant 0 < C’ < +00 such that

1 1 1 )
[m /1 pw(g)ds} [II_I /1 py &) M ©=0 "5} ¢ (3.11)

for all intervals / C T. At this point it is still open what exactly is the consequence of the
distinction between classes 4 and 3. However, it is well-known what happens between d and c.
More precisely, under (3.3) the condition (3.11) is equivalent to the celebrated Muckenhoupt A»
condition. As shown in [11], we have

Y €aUbUc & Fy is a Schauder basis for (). (3.12)
Furthermore, if this is the case, then
.7-1; is the dual basis. (3.13)

The distinction on the next level is provided by the following criterium. We define that
¥ € 1Ua U2U b if there exists constant 0 < A’ < B’ < +00 such that

A X{&:py >0} < Py < B X{&:py>0}- (3.14)
Recall that
(3.14) & Fy is a frame for (). (3.15)

Furthermore, the best constants A’, B’ are exactly equal to frame bounds. Since
B/X{p,/,>0} < B/,

it is obvious that such systems are always Besselian. As before, when we add (3.3) we obtain
basis type properties. In particular,

Y € aUb & Fy is a Riesz basis for (v/). (3.16)

Observe that class ¢ consists of such v for which Fy is a Schauder basis, but it is not a Riesz
basis, i.e., ¢ consists of y-s for which F is a conditional Schauder basis. In particular, the class
cp consists of conditional Hilbertian Schauder bases (see [16] or [5] for terminology).

The final distinction comes from the request that A’ = B’ = 1. Hence,

<w € lUa & py = X{p,>0) & Fy is a Parseval frame for (I/f)). (3.17)
In particular,

(W €a & py =1ae. & Fy is an orthonormal basis for (¢)>. (3.18)

This provides the detailed description of our figure, which describes the various properties of
Fy within (). This is also the stage for our paper and we can now turn our attention to the main
question.

4. Democratic systems of integer translates

Given 0 # ¥ € L?>(R), what are the necessary and sufficient conditions for a system Fy to
be democratic? Observe that (1) is a closed linear space, so we are working within the Hilbert
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space (¥) and our system Fy is always linearly independent. Since ||Tx¥|l2 = || ]l2, for all
k € Z, it is enough to study the behavior of

> THP

kel

I' C Z, I finite. 4.1

It is well known (see, for example, [5]) that (i) is isometrically isomorphic to L(T; Dy ), the
space of square integrable functions on the torus, with respect to the measure py (§) d§. The role
of functions Ty is played by the exponentials, so we have

1 2
S| - [L e
2

kel’ kel’
It will be convenient for us to abuse somewhat the notation from Section 2. For I' C Z, I finite,
we introduce the notation

Z Z(és) =Y ¥ £ eR.

kel’

py(§)ds. 4.2)

Obviously, > 1 is a I-periodic function, so it can be (and will be most often) considered as a
function on T.

Let us first prove that the democratic property for systems F;, is equivalent to having “the rate
of growth” of \/n.

Theorem 4.3. Let 0 # ¢ € L>(R). Then Fy is democratic if and only if

> Tklﬂ

kel

=<card(I), I CZ, I finite.

Proof. Suppose first that the given condition is valid, i.e., there exist a constant 0 < D_ <
DT < +o0, independent of I, such that

> Ty < D*y/eard (D),

kel’
forevery I' C Z, I’ finite. In partlcular we obtain
I¥ll2 - v/nD— < D_(n; Fy) < D¥(n; Fy) < ¥ ll2- /n DT
It follows that
su {iﬁg—i‘;;n EN} < g—i < 400,
and we conclude that Fy, is democratic.

Suppose now that Fy is democratic, i.e., 0 < D := D(Fy) < +oo. Forany I' C Z, I’ finite,
we have

D (card(I); Fy)
D

D_\/card(I") <

< D_(card(I'); Fy) <

Ty
Z il |,

kel
< DT (card(I'); Fy) < D - D_(card(I'); Fy).
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Hence, it is enough to show that for every n € N there exists I' = I'(n) such that card(I") = n
and

=n-llyl3 (4.4)

> Tk‘/f

kel’

Indeed, if ¥ has a compact support, say contained in [—2M 2M] for some M € N, then it is
easy to find such I'-s. For n € N take I" = {2M+1 pM+2 2M+ny Qbserve that

supp(Tou+; ) N supp(Tom+e ) =¥
whenever ¢, j € {1 ...,n}, £ # j. Hence,

Z Tklﬂ

kel’

n

2 2
E 1T+ lly =n-ll¥lls.
j=1

For arbitrary ¥ € L?(R), we can approximate i with functions of compact support in an
obvious way to get arbitrary close to (4.4), which is enough to prove this theorem. [

Remark 4.5. As we have seen in Example 2.16, /n is precisely “the order of growth” in Riesz
bases. If we consider our figure in Section 3, then JFy, is democratic for every ¥ € a U b. Hence,
we know exactly what happens within a U b and we shall not explore these two subclasses any
further. O

Obviously, we need much more operative criterium for the democracy property of F
systems. This problem seems to be a difficult one. Let us first take care of the easy part, the
upper bound.

Lemma 4.6. If F is democratic, then there exists a constant 0 < B’ < +00 such that for every
I' CZ, T finite, and for any sequence {ay € C:k € I'}, with |ay| < 1, we have

Zakaw < B'Jcard(I).

kel’

Proof. It is standard to show that it is enough to prove the claim for o € [—1,1]. By
Theorem 4.3 there exists 0 < D' < 400 such that

Z Teyr g Dt /card(I).

kel
For a given I' C 7, I' finite, and a given choice of {ax:k € I'} € [—1, 1], we define
I't=lkel:a >0, :=I\ITT and

N ERE kerl*
K=1-1; kel .

‘We, then, have

Zakalﬂ

kel’

< max

> ey

kel’

2
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m[ 2 T +| ) T }

N

kel'+ 2 kel'~

< max [DJ“\/card(]”r) + Dt /card(I'- )]
er==x1

< max [D+«/§- Veard(I't) + card(F*)]
er==x1

=D™V2. v card(I).

Theorem 4.7. If Fy is democratic, then there exists a constant 0 < B" < 400 such that

py(€) < B", forae & €R.

Proof. Let us denote by Dy the “symmetric” Dirichlet kernel, i.e.,

DyE) = Y & feR.

[k|<N

Then, for u € [—%, %] we obtain, using Lemma 4.6,

Z ekau i Vf

[kI<N

< (B")? - card{k € Z: k| < N}.

Hence, there exists 0 < B” < +00, independent of N, such that

Z 627Tiku Tk w

lkI<N

-/

f Dy — ) py (&) dE.

2
@QN+1)-B" >

2
2

py (§) dé§

eZm’kue—2m'ké

[k|<N

N\

Observe that ||DN||22 = 2N + 1 and that

1Dy —8)2 ]~
PN

is a summability kernel at u. Since we proved that for every u € [—5, %]

1
1D . 2
/2 P = OF | eyae < B

2
-1 1IDwli;

we deduce that py, (1) < B”, for almost every u. [

Remark 4.8. (a) Observe that a necessary condition given in Theorem 4.7 is also a sufficient
one for the upper bound, since, by (4.2), py, < B” a.e. implies
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> Ty

kel’

Hence, it is the lower bound which creates the real problem.
(b) Considering Section 3, observe that Theorem 4.7 proves that if F, is democratic, then F; is
Besselian, i.e.,

Y €BU1U2UaUb.

1 2

2
2
<o [
2 2| I

2

= B" . card(I).

Since (see Remark 4.5) a U b consists of systems which are democratic, the real question is what
happens with

v eBUIU2. O (4.9)

Let us illustrate that the problem of the lower bound is closely connected with the result
of Wiener and Shapiro on concentration inequalities (see [1,2], and references therein). The
important role there is played by functions with positive Fourier coefficients. In particular, such
functions must be symmetric with respect to the origin. Let us first make a calculation which is
very similar to the original Wiener—Shapiro method.

Consider a real-valued function ¢ € L'(T) (for measure-theoretic purposes we identify T
with symmetric interval [—%, %}). If (&) = (&), for a.e. &, then 9(—k) = @(k) € R, for
every k € N. Hence, for such a function we obtain, for every I" C Z, I’ finite,

1 2 1
/ZI Z p&)dE = Z /21 e2ni(k—j)€(p($)d§
2| T jker?—z2
= 9(0) - card(I) + Y 29k — j). (4.10)
jkel’
Jj<k

Let us now symmetrize our periodization function, i.e., for 0 # ¢ € L?>(R) we define

Py (&) + py(=§)
2 9
Clearly, sy € L! (T), sy is 1-periodic, sy = 0, sy (§) = sy (—§), for every & € R, and

sy (£) = £cR. (4.11)

syl = sy iy = lpylipien = ¥ 13
= py(0) =75y (0). (4.12)
Furthermore, observe (see (4.2)) that

2 1 2
2
D Ty =/1 | su@)de, (4.13)
kel’ 2 2| r
and that
Py is bounded above <& sy is bounded above. (4.14)

Using properties of sy with (4.10) and (4.13), one directly obtains the following result.

Proposition 4.15. Let 0 # v € L*(R) such that sy is bounded above. Then Fy is democratic,
i.e., there exists a constant 0 < Dyq such that, for every I' C Z, I finite,
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Ty
Z 1112

kel
if and only if

2
> Dg - card(I),
2

Syk—J)
> 25— > (D — Deard(I"). (4.16)
jkel Sy 0
Jj<k
Obviously, in most cases one cannot consider (4.16) as a “simple and operative” condition, so
we have to explore the lower bound further. Let us first observe that the case Dy = 1 is somewhat
simpler, more accessible, and very much in the spirit of the Wiener—Shapiro result.

Theorem 4.17. Let 0 # € L>(R). Then,
T 2

> ” Jlli > card(I"),

kel 2

forevery I' C Z, I finite, if and only if

Sy(n) >0, foreveryn € N.

Proof. Since ¢ # 0 and sy > 0, we obtain 5y (0) > 0. Observe also that 5y (—n) =5y (n) € R,
for every n € N. Hence, using (4.10) with ||w||22 =7y (0) we obtain

2
T; Sylk—j
Z 14 H = card(I") + Z ZM.
ier Wl |, izt 5y:(0)

Obviously then, if ’s]p (n) = 0, for all n € N, we obtain the desired lower bound.
If, on the other hand, we have (see (4.13)),

2 1 2
ny T 1 /z
2 Wiz, — Sy (0) )1 XF:

sy (§) d§ > card(I),
kel’
then consider [, = {0, n} to obtain

1 2
1 2
@@[;;

sy (E)dE =2 +2
Hence, 5y (n) > 0, and this holds foralln e N. [

Even if sy, does not have positive Fourier coefficients, we can still obtain democratic property.
For example it is enough “to insert” a function with positive Fourier coefficients between zero
and sy, .

,s:// ) > 2 =card([},).
5y (0)

Corollary 4.18. Let 0 # y € L*(R) such that sy is bounded above. If there exists a function ¢
on T with the following properties:
1) 0 < @(&) < sy (§), fora.e §;
(ii) (0) > 0;
(iii) @(—n) = @(n) = 0, for everyn € N;

then Fy, is democratic.
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Proof. By (i) we obtain
2 1

ZTkW 2/7

kel’ 2 2

2

(&) dé,

2 1

se@ds > [

-2

2

r

2

r

and then we apply (4.10). Since @(k — j) > 0, for k # j, we obtain
2

D Tidr| > P(0) - card(D).
kel 2

Since (ii) is valid, we obtain the democratic property. [J

Exactly as in the basic Wiener—Shapiro concentration inequality, one can “insert” a function
@ as above in any interval around zero. The following result is well-known; we comment on its
proof via (4.10) just for our reader’s convenience.

Corollary 4.19. Let 0 < 8 < 3 and I' C Z finite. Then

3]
r

Proof. Consider a function

P5(x) = (1 - %)
+

as a 1-periodic function. Observe that @s(—n) = @5(n) > 0, Ps(0) = § and

1 2 1 2
> > ®
r

card(I") = /f dg¢ > /‘71 1—s,51(8)
-3 |'T -3

2
> e |T©
-2 r

dé&.
Apply (4.10) to obtain the result. [

2
)
§-card(I') < / d& < card(1).
-8

dg

D=

Bl

The following conditions are only sufficient, but they qualify as “simple and operative”.

Corollary 4.20. If there exist positive constants 0 < Do, D; < +0oand 0 < § < % such that

(1) sy (§) < Dy, fora.e. &;
(i) sy (&) = Dy, for a.e. & € [-6, 5],

then Fy is democratic.

Proof. Directly from Corollary 4.19, since
2 5
Z sy d& > /
)

r
2
dé > Dy -8 -card(I’). O

s
>DO/
-5

2
Syr d%’

1

Dy -card(I") > /‘2]
2

>

r
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Let us turn our attention to necessary conditions. As we already observed it is the lower bound
that presents the problem and we need to study the estimates of the form

I

2

2
sy (&) d& > const. - card(]).

r

Obviously, we are facing a large variety of sums | ), |. However, we can emphasize at least
some significant ones. Since all functions involved in | ) | are unimodular, without loss of
generality we can always assume that

min(I") = 0, 4.21)

and we shall do so in the following discussion.
One typical sum | ) | occurs when there are “no gaps” between terms, i.e., when

N—-1
Y () =DyE) =) (4.22)
r k=0

the case of “one-sided” Dirichlet kernel.

Theorem 4.23. Let 0 # ¢ € L%(R) such that sy is bounded above. There exists 0 < Cp < +00
such that

1
f DN (&) sy (€)dE > CoN,  forany N € N,

[N]

if and only if

inf ig fﬁ sy(E)dE = C) >0 (4.24)

O<e<3

with C(/) depending only on Cy and ||sy ||co. In particular, condition (4.24) is necessary for a
system Fy to be democratic.

Proof. Suppose first that (4.24) is valid. Then

; "
[ Bv@lsi@ds > [ Buefsee e
. ]

2N
Wo— (1 \p , [

>/ 1 |Dy T |"sy (§) d& > const. N Sy (E)dk
— 2N 2N

1
1 N
= N(const. —1/ sw(é)dé) > const. N.
238 I

Suppose now that there exists Co, a positive constant, such that, for every N € N,

1
/ | B (&) sy (€) d& > CoN.
2
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Since sy is bounded above, we have ||sy [c < +00.For L, N € N such that N > 2L we have

[vers@a=[  Bvefs@ds [ Bve e

gﬁ N<| S
</ N2s¢(5>ds+||s¢,noof sinzNEP
lEI<% Ljgi<) |sinmé|?
L
< O s@de syl [ s
L le|> & 4l€]

¥ N
_ NZ/ 5y @) dE + sy o 5

2|~

Consider, in addition, L big enough so that L > %. For such an L we obtain

2 % N

CoN < N /st(f)dé-l-COE,
- N
which gives
L
0<L. S0 N[V & ae (425)
<—— < — . .
L 4 oL ).

We claim that (4.25) implies (4.24). Indeed, given 0 < ¢ < %, we can choose L, N € N large
enough with N > 2L so that

e _L (4.26)
- < — <s. .
2N ¢

Since sy = 0, we obtain

1/8 d§>1/fv 2t 1 2L N [7 as
— s > — s =— — - — s
2 ) .Y 2¢ oL 26 N 2L )L
1 L (1 C Co 1
> 2 (= 22) =20 s 4.27)
e N \L 4 8 L

Observe that in our construction we can first choose L large enough and keep it fixed afterwards.
On the other hand, N > 2L we can change freely to adjust for (4.26), with the original L kept in
place. Therefore, (4.27) proves (4.24). O

Of course, one may hope that boundedness of sy, with (4.24) is also sufficient for democracy.
However, this is not so. We thank Professor Aline Bonami for the following counter-example (it
is also given in [2, Remark 3]). We shall briefly recall the example for reader’s convenience and
then comment on it.

Example 4.28. For ¢ = 2, 3,4, ... we define

P [
S\ 287 28]
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Observe that, for every L=23..A = UfiL E; C (0, 1) and define By := (0, 1) \ AL.
Take y such that ¢ = xp, . Hence, py is equal to x, on [0, 1). It can be shown that

1 —~
li lim — Dy (k&)1?dg | =0,
k—il-il—loo<N—1>I}§—loo N /I;L Dy (k5] E)
which shows that F, is not democratic. On the other hand v satisfies (4.24) since, for & > 0,

1 1
—|BL N{—¢, >1—-—. O
7| BL (=&, &)l I

Remark 4.29. (a) Various subintervals within E; in Example 4.28 overlap in a way somewhat
difficult to follow. The density is actually 1, as one can check carefully or adjust the example
into its “dyadic version”, as we do below.

(b) Condition (4.24) is the density type condition. One may feel that positive density is not good
enough, but that one need to require certain level of density to reach the democratic property.
Our adjusted example will show that this is not so. Related to this observe that (4.24) may
achieve its infimum for £ not close to zero, while we want “to measure” precisely density at
zero. Hence, we shall consider (¥ # 0 and ||sy [loc < 00)

&
Ay = liminf— [ &) ge.
N0t 26 J_ [Isylloo

The values of Ay (0) and the infimum in (4.24) may differ. However, (4.24) is valid if and
only if Ay (0) > 0. Furthermore, Ay (0) € [0, 1] and, if Ay (0) = 1, then the liminf in the
definition of Ay (0) becomes the limit. As we shall see, we can have a maximal density
Ay(0) = 1 and Fy may still not be democratic. In other words, “the density at zero”
type condition is closely related to sums ), of the form Dy (&), where almost all mass
is concentrated at zero.

(c) The sums that disprove democracy in Example 4.28 are of the form i)Tv(ké ). Observe that
they have “k peaks” evenly spread with each having roughly % of the total mass.

(d) Observe that Example 4.28 provides ¥ such that py is the characteristic function of a set,
i.e., Fy forms a Parseval frame for (). In other words vy € 1, according to our figure in
Section 3. [

Example 4.30. For k € N we define

k1, . .
— J L 1
b= U<2_k_2-23k’2_k+2-23k>’

j=1

and take A = 32| Ex € (0, 1). Let B := (0, 1) \ A and ¥ € L2(R) be such that § = xj.
Hence, py is the periodization of x5 and, since B is symmetric, py = sy.
Since

f~|DNN<2ks)|2ds >ﬁ|ﬁv<2ks)|2ds
A Ey
2L1.<+2-23k

= |~ 2 1 oE ~
= Z/. |Dy(2°8)| ds=—k<2k—1>/' |Dn(&)]" dt,
= 1 2 1

2k T 223k BEXY;
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we obtain
1> timinf— [ (By@4e)Rds >
N—-oco N JZ
which shows that
1= lim (11m1nf— f |Dy(2*6)|? dg)
k—o00
Therefore,
lim (11m sup — / |DN(2k§)| dé)
k=oo\ Nooo

which shows that F, is not democratic.
Observe that

|AN 10, e)| 1[ 1 1 2 4 }
— < - + + +o s

e 2 .23k T 23ketD) T 23kot2) T 23(kot3)

for some k, € N large enough. Hence,

I 1
|An<o,s>|<1< 1 m)@_&ﬁgzg

e 2.2% T2

1
since s < € <

Eﬂ —£, 8 16
1> 1imM> lim(l——82> =1,

e—0 2¢e e—0

which shows A¢(O) = 1;observe sy < 1. 0O

As we have seen, Theorem 4.23 takes care of the sums of the form 5;;(5), but it is not
sufficient for the democratic property. We can use roughly a fairly similar technique on sums of
the form Dy (k&); we leave the details of the proof as an exercise to our readers.

Proposition 4.31. If F, is democratic, then there exists 0 < Co < 0o such that for every L € N

1

— = Cyp. .
0<1?<% 5 Uf;}(%—%,%+%>w(€)d$ = Co (4.32)
Remark 4.33. Despite the fact that ) can take many different forms, not just DN (&) or
DN (k&), there are some hints to suggest that taking care of these two types of sums may be
sufficient for the democratic property. Unfortunately, at this point we are not able neither to
prove nor to disprove this conjecture. Hence, the question of general and “usable” necessary and
sufficient conditions for democracy remains open. We devote the rest of the paper to the analysis
of some special subclasses of functions. [J

If we have some additional analytic property of either py or sy around 0, we may be able
to obtain very elegant characterizations. Let us illustrate this on a particular class and we leave
other similar versions as an exercise to our readers.
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Let us define the following class

Lim = {y € L*(R) \ {0}: py (0£) = Eg%li Py (€) exist}.

Corollary 4.34. If € Lim, then Fy, is democratic if and only if Fy, is Besselian and
py(0=) + py(0+) > 0. (4.35)

Proof. Let € Lim be such that Fy is Besselian. If (4.35) is fulfilled, then there exists § > 0
such that sy is bounded from below on [, 8] a.e. By Corollary 4.20 Fy, is democratic.

If py (0=) + py (0+) = 0, then py (0=) = py (0+) =0 = lim 5, (£).

Then F, cannot be democratic by Theorem 4.23.  [J

There is an obvious, but sometimes useful, special case.

Corollary 4.36. Let 0 # ¢ € L*(R) be such that Fy is Besselian and sy is continuous at zero.
Then, Fy is democratic if and only if sy (0) > 0.

Consider now our figure from Section 3. We know that if JFy is democratic, then €
1U2UaUbU B. Furthermore, if ¥ € a U b, then Fy is democratic. We shall explore
Y € 1 U2 first. Since then py is bounded from below and above on {py > 0}, the analysis
of the democratic property depends only on the property of the set {py > 0}. Hence, without
loss of generality, we can consider the case of Parseval frames, i.e., ¥ € 1. This is the case
characterized by py = x{p,>0). In particular, these systems are always Besselian and the dual
function J =Y.

We introduce the following notion

11
D .= {A c |:—5 §i| : (Ell// € LZ(R))(}'I/, democratic)pw[ | 1] = XA}~ 4.37)
—22
For A C [—%, %] we denote [—%, %] \ A by A€. Observe that every set A in D has to be
measurable and that “A € D” is really the property of equivalence class (like with functions
Y € L*(R));if A € D and B C [—3, 5] is measurable and [AAB| = 0, then B € D.
Furthermore, it is obvious that D has the hereditary property in the sense

11
<A €eDand AC B C |:_§’ §i| measurable = B € D). (4.38)

In particular, if A, B € D, then A U B € D. The following results and examples are easy
consequences of our previous theorems.

Example 4.39. (a) If 0 € Int(A), then A € D and A¢ ¢ D. Hence, whenever there is § > 0 such
that (-8, 8) C {py > 0}a.e.and ¢ € 1, then F;, is democratic. On the other hand, whenever
there is 8 > 0 such that (=4, §) € {py = 0} a.e. and ¢ € 1, then Fy is not democratic.
Obviously, then, if 0 ¢ CI(A), then A ¢ D and A° € D. The difficult cases are when
0 € CI(A)\Int(A) in “an essential way” (in the sense that there are no B such that [AAB| =0
and either 0 € Int(B) or 0 € CI(B)).
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(b) If 0 € Int(A U —A), then A € D. For example A = [—5,0] € D, but also A° = (0, 3] € D.
Therefore, the intersection of two sets in D does not have to be in D.
As for an illustration let us emphasize that any set A which contains a.e. any of the following
sets must be in D:

1
05 ) O <_
[0, a] <a >
[-b,0], O0<b<

1
( (b, an ) ) ( by, _an+l)> 5 Z a1 >by>ay>by... 0.
neN neN

On the other hand, even for very small § > 0 and ¢ > 0, set [—l, =51 U [e, %] is not in
D. O

R —

Observe that the density results apply easily to this situation and we obtain
AN (—e¢,
<A €D = liminf A8 o). (4.40)
e\0 2e

Using (4.40) and Example 4.30 we obtain set A with the property A ¢ D and A€ ¢ D. One can
describe these various options using that, for every I' C Z, I finite, we have

szs=/A szu/m 22

r r r
Hence, we obtain directly the following result.

1

card(I') = /71

2

dk.

Proposition 4.41. If A C [—%, %] is measurable, then the following are equivalent:
(a) AeD;
d
(b) infp —JALEI{}) S0
Sue |2 p P dE <1

(© supp card(l")
It is also not difficult to see that
(Ae D& AU(-A) e D). (4.42)

Hence, resolving the democratic property for ¢ € 1 is equivalent to answering the following
question. Given a measurable, symmetric (i.e., —H = H) subset H C [—%, %], what are the
necessary and sufficient conditions on H to satisfy that here exists a constant 0 < Cp < 400

such that
2 1
2
d§ > Co/ |
-2

/H ;(5)

for every I' C Z, I finite.

dé&, (4.43)

2
> ®
r

Remark 4.44. Inequality (4.43) is the well-known concentration inequality for p = 2 (for a
sample of rich literature on the subject see [1,2], and the references therein). The p-concentration
problem has been resolved in the case p = 2. However, our question remains open. There is a
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different approach in (4.43); we fix a set and try to satisfy (4.43) for all I' (with a constant which
does not depend on I"). For the p-concentration problem one usually seeks for some idempotent
function (in terms of convolutions) to satisfy the concentration inequality, i.e., the function may
depend on the set.

We have seen several sufficient conditions and some necessary ones, but not a complete
answer. [

Consider now the case { € B. Roughly speaking the analysis of the democratic property
for a class xp, x = 3,4, 5, will be a combination of conditions for class 1 and yg,y = ¢, d, e;
respectively. Therefore, we shall focus our attention to Y € cg Udp Uep.

Consider € cp first. This means that Fy is a Schauder basis for (i), it is a conditional
basis which satisfies property (H) and does not satisfy property (B) (see [16] for terminology).
The dual function J generates the dual basis f& which is not Besselian; in particular it is
never democratic. What about Fy, ? Can it be democratic? Must it be democratic? The following
example is typical, at least for functions with the limit at zero.

Example 4.45. Let 0 < a < 1 and let v be such that (p1[,|[_l 1])(5) = |£|%; recall that py, is 1-
2°2

periodic. It is not difficult to check that py, satisfies the Muckenhoupt A; condition, which shows
that Fy is a Schauder basis. Since py, is bounded above, but is not bounded below (away from
zero), we have ¢ € cp (this is actually famous Babenko’s example). If we take a € (—%, %)
and define py (&) = py(§ — a), it follows that there exists ¢, € L%(R) with the property
Py, = Py,a (fora = 0,9, = ) and that F,, € cp. Since py 4 is continuous at zero in all

cases, but it is equal to zero only for a = 0, we obtain:

Fo, 1s democratic for a # 0

Fy is not democratic.

Observe a “catastrophic” behavior where we have democratic systems for all small a # 0, but
notfora =0. O

One can adjust numerous examples of the same type, by taking some other continuous
function to begin with, instead of |£|*. There are many (even polynomial) examples which are
going to satisfy the A, condition. They are all going to exhibit the same property; if the value
at zero is not zero, then the system is democratic, otherwise it is not. Completely analogous
types of examples can be adjusted for classes dp and ep. Therefore we can find democratic and
non-democratic systems in all these cases. Unfortunately, we were not able to improve on full
characterization of democracy in neither of these classes. It appears that none of the conditions
(3.3), (3.10) and (3.11), is particularly related to the democratic property.

_ Letus complete this article with observations that in classes cp and dp we have dual functions
¥, but systems ,7-"1; are not Besselian (hence not democratic). Therefore we have the following
result.

Corollary 4.46. Let 0 # v € L*(R) be such that Fy is democratic. If Fy is a minimal system
(in particular, if Fy is a Schauder basis), then .7-'1]/ is democratic if and only if Fy is a Riesz
basis.

Observe that Fy, from Example 4.45 is an example of a conditional Schauder basis where
neither 7y, nor 77 are democratic.
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