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A REMARK ON TWO GENERALIZED ORLICZ-MORREY
SPACES

SADEK GALA, YOSHIHIRO SAWANO, AND HITOSHI TANAKA

Abstract. There have been known two generalized Orlicz-Morrey spaces.
One is defineed earlier by Nakai and the other is by Sugano, the second and
third authors. In this paper we investigate differences between these two spaces
in some typical cases. The arguments rely upon property of the characteristic
function of the Cantor set.

1. Introduction

There does exist two different scales whose names are both generalized Orlicz-
Morrey spaces, which we shall establish in this paper. We first introduce two func-
tion spaces which are are originally considered to extend and supplement Lebesgue
spaces. Orlicz spaces can describe the endpoint cases of the boundedness of clas-
sical operators such as the Hardy-Littlewood maximal operator, fractional integral
operator and singular integral operator. Morrey spaces are mainly used to describe
the precise property of the Riesz potential or the fractional integral operator.

A function Φ : [0,∞) → [0,∞] is said to be a Young function if it is left-
continuous, convex and increasing, and if Φ(0) = 0 and Φ(t) → ∞ as t → ∞.
Let Φ be a Young function. We define the Orlicz space LΦ(Rn) to be the set of
measurable functions such that, for some λ > 0,

∫

Rn

Φ
( |f(x)|

λ

)
dx <∞.

The space LΦ(Rn) is a Banach space when equipped with the norm

‖f‖LΦ := inf
{
λ > 0 :

∫

Rn

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

If Φ(t) ≡ tp, 1 ≤ p <∞, then LΦ(Rn) = Lp(Rn).
Historically, there have been two different expressions of Morrey spaces. We use

the notation Q to denote the family of all cubes in Rn with sides parallel to the
coordinate axes and |Q| to denote the volume of Q.
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• Let λ ∈ [0, 1) and 1 ≤ q <∞. We define the Morrey space Lλ,q(Rn) to be
a Banach space equipped with the norm

‖f‖Lλ,q := sup
Q∈Q

(
1
|Q|λ

∫

Q

|f(x)|q dx
)1/q

.

• Let 1 ≤ q ≤ p <∞. We define the Morrey space Mp,q(Rn) to be a Banach
space equipped with the norm

‖f‖Mp,q := sup
Q∈Q

|Q|1/p
(

1
|Q|

∫

Q

|f(x)|q dx
)1/q

.

One has then

(1.1) Lλ,q(Rn) = Mp,q(Rn), whenever λ+
q

p
= 1

with norm coincidence.
Recently, we are faced with the situation of mixing Orlicz spaces and Morrey

spaces and considered generalized Orlicz-Morrey spaces. One definition of general-
ized Orlicz-Morrey spaces dates back to Nakai’s paper [12]. The other one is from
the paper [19] by Sugano and the authors. Now we describe those definitions.

Let Y be the set of all Young functions Φ such that 0 < Φ(t) <∞ for 0 < t <∞.
If Φ ∈ Y, then Φ becomes absolutely continuous on any closed interval in [0,∞)
and bijective from [0,∞) to itself.

Let G1 be the set of all functions ϕ : [0,∞) → [0,∞) such that ϕ(t) is nondecreas-
ing but that ϕ(t)

t is nonincreasing. For Φ ∈ Y, we denote by Φ−1 : (0,∞) → (0,∞)
the inverse of Φ : (0,∞) → (0,∞).

For Φ ∈ Y let G2 be the set of all functions ϕ : [0,∞) → [0,∞) such that ϕ(t) is

nondecreasing but that, for any s > 0,
ϕ((s+ t)n)

Φ−1(((s + t)/s)n)
is nonincreasing.

Definition 1.1. Let Φ ∈ Y.
(1) Let ϕ ∈ G1. For a cube Q ∈ Q define the (ϕ,Φ)-average over Q of the

measurable function f by

‖f‖(ϕ,Φ);Q := inf
{
λ > 0 :

ϕ(|Q|)
|Q|

∫

Q

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

We define the generalized Orlicz-Morrey space Lϕ,Φ(Rn) to be a Banach
space equipped with the norm

‖f‖Lϕ,Φ := sup
Q∈Q

‖f‖(ϕ,Φ);Q.

(2) For a cube Q ∈ Q define the Φ-average over Q of the measurable function
f by

‖f‖Φ;Q := inf
{
λ > 0 :

1
|Q|

∫

Q

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

Let ϕ ∈ G2. We define the generalized Orlicz-Morrey space Mϕ,Φ(Rn) to
be a Banach space equipped with the norm

‖f‖Mϕ,Φ := sup
Q∈Q

ϕ(|Q|)‖f‖Φ;Q.
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The space Lϕ,Φ(Rn) generalizes Lλ,q(Rn) while the space Mϕ,Φ(Rn) generalizes
Mp,q(Rn). Unlike (1.1), these two generalized Orlicz-Morrey spaces are different
in some typical cases. We establish the difference between them, which is the focus
of this paper.

Remark 1.2. By the definition we have, for any t > 0,

‖χ[0,t]n‖Lϕ,Φ =
1

Φ−1(ϕ(tn)−1)

and

‖χ[0,t]n‖Mϕ,Φ =
ϕ(tn)

Φ−1(1)
,

where χE stands for the characteristic function of a set E ⊂ Rn. We see also that
ϕ satisfies the doubling condition: ϕ(2t) ≤ C0ϕ(t) for t > 0.

We now verify a simple relation between these two scales.

Claim 1.3. Suppose that Φ ∈ Y and ϕ ∈ G2 satisfy Φ ◦ ϕ ∈ G1. If there exists a
constant C > 1 such that, for any a, t > 0,

(1.2) Φ(a)Φ(C−1t) ≤ Φ(at) ≤ Φ(a)Φ(Ct),

then we have a norm equivalence

‖f‖LΦ◦ϕ,Φ ≈ ‖f‖Mϕ,Φ .

Proof. It is known that, for any Young function Φ,

(1.3) ‖f‖LΦ ≈ inf
{
λ+ λ

∫

Rn

Φ
( |f(x)|

λ

)
dx : λ > 0

}
.

It follows from (1.2) and (1.3) that, for any Q ∈ Q,

ϕ(|Q|)‖f‖Φ;Q ≈ ϕ(|Q|) inf
{
λ+

λ

|Q|

∫

Q

Φ
( |f(x)|

λ

)
dx : λ > 0

}

≈ inf
{
λ+

λ

|Q|

∫

Q

Φ
(
ϕ(|Q|) |f(x)|

λ

)
dx : λ > 0

}

≈ inf
{
λ+ λ

Φ(ϕ(|Q|))
|Q|

∫

Q

Φ
( |f(x)|

λ

)
dx : λ > 0

}

≈ ‖f‖(Φ◦ϕ,Φ);Q,

which yields the proof. �

Let ϕ(t) ≡ t and Φ(t) ≡ t2 + t3. Then the space Lϕ,Φ(Rn) is isomorphic to the
Orlicz space L2(Rn) ∩ L3(Rn). It follows that, for any a, t > 0,

Φ(at) = (at)2 + (at)3 ≤ (a2 + a3)(t2 + t3) = Φ(a)Φ(t).

This enables us by an argument similar to Claim 1.3 that

(1.4) L2(Rn) ∩ L3(Rn) ⊂Mψ,Φ(Rn),

when ψ satisfies ψ(t)2 + ψ(t)3 = t for t > 0. The following theorem disproves that
equality (1.4) holds.

Theorem 1.4. There is no pair of functions ϕ ∈ G2 and Φ ∈ Y such thatMϕ,Φ(Rn)
is isomorphic to L2(Rn) ∩ L3(Rn).
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For a locally integrable function f on Rn the Hardy-Littlewood maximal operator
M is defined by

Mf(x) := sup
x∈Q∈Q

1
|Q|

∫

Q

|f(y)| dy.

For j = 1, 2, . . ., let Φ(t) ≡ t(log max(e, t))j and M j be the j-fold composition of
M . It is known (see [21]) that one has the norm equivalence on a finite ball B ⊂ Rn

‖f‖LΦ(B) ≈ ‖M jf‖L1(B).

However, this equivalence does not hold on Rn. By the use of the generalized
Orlicz-Morrey space Mϕ,Φ(Rn), we can prove the following a generalization:

Proposition 1.5 ([19, Lemma 3.5]). Let ϕ ∈ G1, Φ(t) ≡ t(log max(e, t))j, 1(t) ≡ t
and M j be the j-fold composition of M . Then we have a norm equivalence

‖f‖Mϕ,Φ ≈ ‖M jf‖Mϕ,1 .

Let p(t) ≡ t1/p, p > 1, and LlogL (t) ≡ t log max(e, t). A simple calculation
shows that, for any a, t > 0,

LlogL (at) = (at) log max(e, at) ≤ a log max(e, a) · (et) log max(e, et)

= LlogL (a) LlogL (et).

This enables us by an argument similar to Claim 1.3 that

(1.5) Lψ,LlogL (Rn) ⊂Mp,LlogL (Rn),

when
ψ(t) ≡ t1/p log max(e, t1/p).

The following theorem disproves that the equality (1.5) holds.

Theorem 1.6. There is no pair of functions ϕ ∈ G1 and Φ ∈ Y such that Lϕ,Φ(Rn)
is isomorphic to Mp,LlogL (Rn). Here, p(t) ≡ t1/p, p > 1, and LlogL (t) ≡
t logmax(e, t).

According to our best knowledge, it seems that the generalized Orlicz-Morrey
space Lϕ,Φ(Rn) is more investigated than the generalized Orlicz-Morrey space
Mϕ,Φ(Rn). The space Lϕ,Φ(Rn) is investigated in [4, 5, 6, 7, 8, 9, 10, 12, 13,
14, 15, 17], and, the space Mϕ,Φ(Rn) is investigated in [1, 2, 3, 19].

The letter C will be used for constants that may change from one occurrence
to another. Constants with subscripts, such as C0, C1, do not change in different
occurrences. By A ≈ B we mean that c−1B ≤ A ≤ cB with some positive constant
c independent of appropriate quantities.

2. Proof of Theorem 1.4

Assume to the contrary that there exists such a pair. That is, for all f ∈
L2(Rn) ∩ L3(Rn) we have

(2.1) ‖f‖Mϕ,Φ ≈ ‖f‖L2∩L3.

Then, by Remark 1.2, we must have for all t > 0

(2.2) ϕ(tn) ≈ ‖χ[0,t]n‖Mϕ,Φ ≈ ‖χ[0,t]n‖L2∩L3 ≈ max(tn/2, tn/3).
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Let us now use the characteristic function of the Cantor set: Fix 0 < κ ≤ 1/10.
Define, inductively, a sequence of the sets {Ej}∞j=0 by

E0 := [0, 1]n, Ej :=
⋃

e∈{0,1}n

((1 − κ)e + κEj−1).

Observe that (see, for example, [18]) Ej is made up of 2jn cubes of sidelength κj .
Let us set

Fj = κ−jEj , j ∈ N.
Observe now that Fj is made up of 2jn cubes of sidelength 1.

We first verify that

(2.3) ‖χEj
‖Φ;[0,1]n = ‖χFj

‖Φ;[0,κ−j ]n .

Indeed,

‖χEj
‖Φ;[0,1]n = inf

{
λ > 0 :

∫

Ej

Φ
(

1
λ

)
dx ≤ 1

}

= inf

{
λ > 0 : κjn

∫

Fj

Φ
(

1
λ

)
dx ≤ 1

}

= ‖χFj
‖Φ;[0,κ−j ]n .

We now claim that, for any j ∈ N,

(2.4) ϕ(κ−nj)‖χFj
‖Φ;[0,κ−j ]n ≈ ‖χFj

‖Mϕ,Φ

and

(2.5) ‖χEj
‖Φ;[0,1]n ≈ ‖χEj

‖Mϕ,Φ .

Indeed, by symmetry of the set Ej and the doubling property of ϕ, we see that

max
k=1,2,...,j

ϕ(κ−nk)‖χFj
‖Φ;[0,κ−k]n ≈ ‖χFj

‖Mϕ,Φ ,

and, hence, we can choose kj ≤ j so that

‖χFj
‖Mϕ,Φ ≈ ϕ(κ−nkj )‖χFj

‖Φ;[0,κ−kj ]n .

A simple geometric observation shows that

ϕ(κ−nkj )‖χFj
‖Φ;[0,κ−kj ]n ≤ ϕ(κ−nkj )‖χFkj

‖Φ;[0,κ−kj ]n ≤ ‖χFkj
‖Mϕ,Φ .

This yields together with (2.1)

‖χFj
‖L2∩L3 ≤ C‖χFkj

‖L2∩L3 .

Thus, we must have kj ≈ j and we have verified (2.4). Likewise (2.5) is achieved.
It follows from (2.1) and (2.4) that

(2.6) ‖χFj
‖Φ;[0,κ−j ]n =

ϕ(κ−nj)‖χFj
‖Φ;[0,κ−j ]n

ϕ(κ−nj)
.
‖χFj

‖L2∩L3

ϕ(κ−nj)
≈ (2κ)nj/2,

where we have used ‖χFj
‖L2∩L3 = 2nj/2 and, by (2.2), ϕ(κ−nj) ≈ κ−nj/2.

Likewise, it follows from (2.5) that

(2.7) ‖χEj
‖Φ;[0,1]n ≈ ‖χEj

‖Mϕ,Φ ≈ ‖χEj
‖L2∩L3 ≈ (2κ)jn/3.

The equations (2.3), (2.6) and (2.7) contradict because 0 < κ < 1/10.
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3. Proof of Theorem 1.6

We need the following lemma.

Lemma 3.1 ([14, Theorem 5.1]). Let Φ,Ψ ∈ Y and ϕ, ψ ∈ G1. Then the following
are equivalent:

(i) There exists a constant A ≥ 1 such that

Φ−1(ϕ(t)−1) ≤ AΨ−1(ψ(t)−1), t > 0,

and ∫ s/A

Ψ−1(ψ(t)−1)

Ψ(t)
t2

dt ≤ A
Φ(s)
s

ϕ(t)
ψ(t)

, (t, s) ∈ E,

where

E :=
{

(t, s) ∈ (0,∞)2 : 2AΨ−1(ψ(t)−1) < s < sup
r>0

Φ−1(ϕ(r)−1)
}
.

(ii) The Hardy-Littlewood maximal operator M is bounded from Lϕ,Φ(Rn) to
Lψ,Ψ(Rn).

Recall that ϕ ∈ G1, Φ ∈ Y, p(t) ≡ t1/p, p > 1, and LlogL (t) ≡ t log max(e, t).
Assume to the contrary that there exists such a pair. That is, for all f ∈

Mp,LlogL (Rn),

(3.1) ‖f‖Mp,LlogL ≈ ‖f‖Lϕ,Φ .

Then, by Remark 1.2, we must have for all t > 0

t−1/p ≈ Φ−1(ϕ(t)−1),

and, hence,

(3.2) ϕ(t)Φ(t−1/p) ≈ 1.

By (3.1) and Proposition 1.5 we also have for all f ∈Mp,LlogL (Rn)

(3.3) ‖f‖Lϕ,Φ ≈ ‖f‖Mp,LlogL ≈ ‖Mf‖Mp,1.

It follows by (3.2), (3.3) and Lemma 3.1 that

Φ(t−1/p)t1/ps log(t1/ps) ≤ CΦ(s)

as long as t, s > 0 satisfy t1/ps > 1. Let us set a = t1/ps. Then

Φ(a−1s)a log a ≤ CΦ(s)

for all s > 0 and a > 1. Set a−1s = r. Then

(3.4) Φ(r)a log a ≤ CΦ(ar)

for any a > 1 and r > 0.
Letting r = 1 in (3.4), we have first LlogL (a) ≤ CΦ(a) for a > 1. Using this

inequality with a =
√
t, t > 1, and using (3.4) again with r = a =

√
t, t > 1, we

conclude that
log t · LlogL (t) ≤ CΦ(t), t > 1.

These observations allow us to assume that, for any t > 1,

(3.5) LlogL (t) ≤ Φ(t) and log t · LlogL (t) ≤ Φ(t).
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Let us again use the characteristic function of the Cantor set: Let 0 < κ < 1 be
the solution to the equation

(3.6) κ1/p = 2κ.

Define, inductively, a sequence of the sets {Ej}∞j=0 by

E0 := [0, 1]n, Ej :=
⋃

e∈{0,1}n

((1 − κ)e + κEj−1).

Observe that Ej is made up of 2jn cubes of sidelength κj . Observe also that from
(3.6) for all 0 ≤ k ≤ j

(3.7)
|[0, κk]n ∩ Ej |
|[0, κk]n| = κn(j−k)/p.

We now claim that the quantity

κnk/p‖χEj
‖LlogL ;[0,κk]n

is a decreasing sequence of k = 0, 1, . . . , j. Indeed, in the same manner as in the
proof of Claim 1.3, using (1.3) and (3.7) we have

κnk/p‖χEj
‖LlogL ;[0,κk]n ≈ inf

{
λ+ λκn(j−k)/p LlogL

(
κnk/p

λ

)
: λ > 0

}

= inf
{
λ+ κnj/p log max

(
e,
κnk/p

λ

)
: λ > 0

}
.

This quantity is the solution to the equation

λeκ
−nj/pλ = κnk/p

and becomes a decreasing sequence of k.
By this claim we see that

‖χEj
‖Mp, LlogL = ‖χEj

‖LlogL ;[0,1]n ,

which gives us that

(3.8)
‖χej

‖Lϕ,Φ

‖χEj
‖Mp, LlogL

≥
‖χej

‖(ϕ,Φ);[0,1]n

‖χEj
‖LlogL ;[0,1]n

.

If we can prove

(3.9) lim
j→∞

‖χej
‖(ϕ,Φ);[0,1]n

‖χEj
‖LlogL ;[0,1]n

= ∞,

then (3.8) contradicts (3.1) and proof of the theorem will be finished. Therefore,
we need only verify (3.9).

Without loss of generality we may assume that ϕ(1) = 1. It follows then that

(3.10) ‖χej
‖(ϕ,Φ);[0,1]n =

1
Φ−1(κ−nj/p)

and

(3.11) ‖χEj
‖LlogL ;[0,1]n =

1
(LlogL )−1(κ−nj/p)

.
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For t > 1 let θ(t) :=
( LlogL )−1(t)

Φ−1(t)
. By (3.5) we see that θ(t) ≥ 1 and

t = LlogL (( LlogL )−1(t)) = LlogL (θ(t)Φ−1(t)) ≤ θ(t)2 LlogL (Φ−1(t))

≤ θ(t)2

log(Φ−1(t))
Φ(Φ−1(t)) =

θ(t)2

log(Φ−1(t))
t.

This implies log(Φ−1(t)) ≤ θ(t)2 and

(3.12) lim
t→∞

θ(t) = ∞.

The equations (3.10)–(3.12) read (3.8). This completes the proof of the theorem.
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