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Abstract

The generalized p-trigonometric and (p, g )-trigonometric functions were introduced by P. Lindqvist and
S. Takeuchi, respectively. We prove some inequalities and present a few conjectures for the (p, g )-functions.
© 2012 Elsevier Inc. All rights reserved.
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1. Introduction

During the past decade, many authors have studied the generalized trigonometric functions
introduced by Lindqvist in a highly cited paper [18]. These so called p-trigonometric functions
p > 1, which agree for p = 2 with the familiar functions, have also been extended in
various directions. The recent literature on these functions includes several dozens of papers;
see the bibliographies of [7,10,17]. Most recently, Takeuchi [22] has taken one step further and
investigated the (p, g)-trigonometric functions depending on two parameters instead of one, and
which for p = g reduce to the p-functions of Lindqvist. See also Edmunds et al. [11].

Drabek and Mandsevich [10] considered the following (p, g)-eigenvalue problem with the
Dirichlét boundary condition. Let ¢, (x) = |x|P~2x.For T,» > 0and p,q > 1

(PpW)) +1pgw) =0, t€(0,7),
u(0) = u(T) = 0.
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They found the complete solution to this problem. This solution is also given in [22, Theorem
2.1]. In particular, for T = m, 4 the function u(¢) = sin, 4(¢) is a solution to this problem with

= g(p — 1) where
1
2 11
Tpg =/ (1—t9"YPdr==B (1 -—, —).
0 q P 9
If p = 2, this eigenvalue-boundary value problem reduces to the familiar boundary value

problem whose solution is the usual sin function. Next, we will give an alternative equivalent
definition of the function sin, 4, which is carried out in two steps: in the first step we define the
inverse function of sin, ,, denoted by arcsin, 4, and in the second step the function itself. For
x € [0, 1], set

X
Fpqx) = / (1 —t)~1P gy
0

Then F) 4 : [0, 1] — [0, 7 4/2] is an increasing homeomorphism, denoted by arcsin 4, and
therefore its inverse

: — -1
sinp g = F, 4,

is defined on the interval [0, 7, 4/2]. Below we discuss also other related functions such as
arccos 4, and arsinh, 4.

For the expression of the function arcsin, 4 in terms of well-known special functions we
introduce some notation. The Gaussian hypergeometric function is the analytic continuation to
the slit plane C \ [1, 0co) of the series

o0 n
F(a,b;c;z) =2 Fi(a,b;c;z) = Z MZ—,
= (c,n) n!

lz] <1,

for given complex numbers a, b and ¢ with ¢ # 0, —1, —2, .... Here (a,0) = 1 fora # 0, and
(a, n) is the shifted factorial function or the Appell symbol

(a,n)=a@+1)a@+2)---(a+n-—1)
forn = 1,2, .... The hypergeometric function has numerous special functions as its special or
limiting cases; see [1].
For Rex > 0, Rey > 0, we define the classical gamma function I'(x), the psi functionyr(x)
and the beta function B(x, y) by

I _ ' _ 'y
F(X)—/O et dt, W(X)——F(x), B(x,y)——F(ery),

respectively.
For x € I = [0, 1] the function arcsin, , considered above can be expressed in terms of the
hypergeometric function as follows

* 11 1
arcsing 4 X = / = tq)_l/pdt =xF (—, — 14— xq) .
0 P 4q q
We also define arccos, 4, x = arcsin, 4((1 — xP)l/4y (see [11, Proposition 3.1]), and

x 1 1 1
arsinh, 4 x = / A+t VPt =x F (—, — 14— —xq> .
0 P q q
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Their inverse functions are

sinp 4 : (0, 7p.4/2) — (0, 1), cospq : (0, p4/2) — (0, 1),

1 1 11
sinhy, 4 : (0, mp 4) — (0, 1), Mp g = mF (1,;; 1+c_1;§>'

The significance of these expressions for this paper lies in the fact that we can now apply the vast
available information about the hypergeometric functions to the functions arcsin, ; and sin, 4.

When p = ¢ these (p, g)-functions coincide with the p-functions studied in the extensive
earlier literature such as in [7,10,17,6,8], and for p = g = 2 they coincide with familiar
elementary functions.

The main result of this paper is the following theorem which refines our earlier results in [6].

Theorem 1.1. For p,q > 1 and x € (0, 1), we have
(1) x (1 + p(f—iq)) < arcsiny 4 x < min {N%x, (1 —x?)~ VPl },

w \1/P . x \'P
) (W) L(p,q,x) < arsinh, 4 x < (m) U(p.q.x),

where

x4 - 1p <pq +p +qx‘f>‘”"
L — 1 — q 1 -
(P-4 %) max{( P(1+Q)(1+xq)> ) P+ 1) ’

and U(p, q, x) = (1 o« )-q/(p(q+1))

T+x4
Theorem 1.2. For p,q > 1, we have
1/q 1-1/q 1/q
P 1 pg+p—q p 1
W () " alwa) <ma < (555) (41) @ (n9)

2y alqg+4) +38 e
(eq)l/a q° ’

2
1-2 1-2 @/
(2) 277 [Z(4+p) <7y, <2 /”\/%(4+P)+(2V”F(1/4)> :
2 5 1 2 @—1/py*21Ir
3)2 /pﬁ\/; <y < 2T R

where p' = p/(p — 1).

alc,q) =

The area enclosed by the so-called p-circle
Ix|” + |yl” =1

is 7w s see [19]. In particular, mp o =7 = 3.14 - ..
2. Some relations for (p, q)-functions

In this section, we shall prove some inequalities for the functions defined in Section 1.
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Lemma 2.1. Fix p,q > 1l and x € (0, 1).

(1) The functions
(arcsing 4 (xk))l/k, (arsinhp,q(xk))l/k

are decreasing and increasing, respectively in k € (0, 00).
(2) The function

k arcsiny, 4 (x/k)

is decreasing on k € (1, 00).
(3) In particular, for k > 1

Jaresin,, 4 (xk) < arcsing, 4(x) < (arcsin, 4 ¥/x)F,
(arsinh,, , &/x)* < arsinh, ,(x) < Jarsinh,, ,(x%),

arcsinp 4 (x/k) < (arcsinp 4(x))/k.
Proof. Let
X
G(x) =/ gnydt, E=GGY,  fk=E)
0
We get
1 1 _
f = —El/klogEk—2 + %El/k YE'x*log x
EVk E E 1
k_2 —IOgF— Xf—l logx—k .
If g > 1, then

E_1 ("
0

If g is increasing, then

k

E/ E _ k 1 *
—— =g ——= | smdr=o0,
X X 0

so that xk% — 1> 0. Thus f" < 0 under these assumptions.

For the case of arcsin, 4, let g(t) = (1 — t9)~1/P 5o theconditions are clearly satisfied. Next,
for arsinh, 4, we set g(r) = (1 + 17)~Y/P and note that g(r) < 1 for all > 0 and that g is
decreasing and thus conclude that f’ > 0, and the claims in (1) follow. For (2), let

h(k) = k arcsin, , (’Ec) =xF <% 611; |4 é; (%)4> .
We get
o=t @) (G g () =0

and this completes the proof.
The proof of (3) follows from parts (1) and (2). O
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Theorem 2.2. For p,q > 1 and r,s € (0, 1), the following inequalities hold:

(1) arcsinp 4(rs) < \/arcsinp,q(rz) arcsing, 4(s%) < arcsin, 4(r) arcsin, 4(s),

(2) arsinh,, 4 (r) arsinh), 4 (s) < \/arsinh,,,q (r?) arsinh,, 4 (s?) < arsinh,, ,(r s).

Proof. Let i (x) = log f(¢*) where f(u) > 0. Then h is convex (in the C? case) when h” > 0,

i.e. iff
!
y

where y = ¢* and the function is evaluated at y. If f” > 0, then

L po,
y

(f +yf") = (fH%

2. If £ < 0, the reverse holds,
f)?. Suppose

so a sufficient condition for convexity is f/(0)(f' + yf”
so a sufficient condition for concavity is f'(0)(f" + yf”

f(x) =/0 g(t)dr.

)= (
) =(

Then f' = g and f” = g’. One easily checks that / is convex in case g(z) is (1 — #7)~1/9, and
concave for g(¢) equal to (1 + ¢” y~1/4 Now the proof follows easily from Lemma 2.1. [

Lemma 2.3 ([15, Theorem 1.7]). Let f : Ry — R be a differentiable function and for ¢ # 0
define

gy = L)
(fe)e
We have the following

1. if h(x) = log(f(e")) is a convex function, then g(x) is monotone increasing for c, x € (0, 1)
and monotone decreasing for c > 1,x € (0,1) orc < 0,x € (0, 1),

2. if h(x) is a concave function, then g(x) is monotone increasing for ¢ > 1,x € (0,1) or
¢ < 0,x € (0, 1) and monotone decreasing for c, x € (0, 1).

We get the following lemma by the proof of Theorem 2.2 and applying Lemma 2.3.

Lemma 2.4. Let [ = (0, 1). For p, q > 1 the function
arcsin,, (xk)
g1(x) = %
(arcsiny 4 (x))
is increasing (decreasing) in x € I fork € I (k € R\ [0, 1]), and
arsinh, (x%)
g0 = ——pat
(arsinh, 4 (x))

is increasing (decreasing) in x € I fork € R\ I (k € [0, 1]). In particular, for k € I,

T 1-1/k
(%) /arcsin, 4 (x¥) < arcsin, 4(x)
=17k ) P .
(mp,q) arsinh,, , (x*) > arsinh,, 4 (x).

Both the inequalities reverse for k € R\ [0, 1].
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Lemma 2.5 ([20, Theorem 2.1]). Let f : Ry — Ry be a differentiable, log-convex function and
leta > 1. Then g(x) = (f(x))*/f(ax) decreases on its domain. In particular, if 0 < x <y,
then the following inequalities

o _ (fe)e
flay) = flax)

hold true. If 0 < a < 1, then the function g is an increasing function on R and inequalities are
reversed.

< (f(0)*!

Lemma 2.6. Fork, p,qg > landr,s € (0, 1) withr > s, we have

. k .
arcsing, 4 (s) _ aresing g (s%)
arcsing 4(r) )~ arcsing 4 (rk)’

arsinhp,q(sk) - arsinh, 4 (s) k
arsinhp, ,(r¥) ~ \arsinh, ,(r) /

Proof. For x > 0, the following functions
u(x) = arcsinp 4(e™), v(x) = 1/arsinh, 4 (e™")
are log-convex by the proof of Theorem 2.2. With the change of variables e™* = r the inequal-

ities follow from Lemma 2.5. O

Lemma 2.7 ([16, Theorem 2, p. 151]). Let J C R be an open interval, and let f : J — R be
strictly monotonic function. Let f~' : f(J) — J be the inverse to f then

(1) if f is convex and increasing, then f~' is concave,
() if f is convex and decreasing, then f~" is convex,
(3) if f is concave and increasing, then f~' is convex,
(4) if f is concave and decreasing, then f~' is concave.

Lemma 2.8. Fork, p,q > 1 andr > s, we have
. k . k
(S?“”"’(”) < MaT) e 0,1y,
sinp 4 (s) sinp 4 (s%)

(sinh,,,q(r))k _ sinhy (%)

sinhy, 4(s) ) sinhp 4(s6)’

r,s € (0, 1),

inequalities reverse for k € (0, 1).
Proof. It is clear from the proof of Theorem 2.2 that the functions
f(x) = log(arcsin, 4(e™™)), h(x) = log(1/arsinh, 4(e*))
are convex and decreasing. Then Lemma 2.7(2) implies that
F71o) =log(1/sinpg(e)),  h~'(y) =log(sinhy 4 (e ™)),

are convex, now the result follows from Lemma 2.5. [
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Let f : I — (0, co) be continuous, where [ is a subinterval of (0, co). Let M and N be any
two mean values. We say that f is M N-convex (concave) if

JM(x,y)) = (Z)N(f(x), f(y)) forallx,yel

For some properties of these functions, see [3]. If A(x, y) = (x + y)/2 is the arithmetic mean,
then we see that convex functions are A A-convex.

Lemma 2.9 (/3, Theorem 2.4(1)]). Let I = (0,0),0 < b < oo, and let f : I — (0, 00) be
continuous. Then f is AA-convex (concave) if and only if f is convex (concave), where A is the
arithmetic mean.

Lemma 2.10. For p,q > 1, and r,s € (0, 1), we have

(1) arcsing, g r + arcsing 4 s < 2 arcsing 4 (552),
(2) sinp g r+sinp g s > 2 sin, 4 (52),

(3) arsinh,, ,  + arsinh,, , s > 2 arsinh, 4 (%) ;
(4) sinh,, , r +sinh, , s <2 sinh, , (Z52).

Proof. Let f(x) = arcsinp ;, x and g(x) = arsinh, ;4 x. Then
fE=0=x")"P @) =14 xP)7P

are increasing and decreasing, respectively. This implies that f and g are convex and concave.
Now it follows from Lemma 2.7(1), (3) that f~! and g~! are concave and convex, respectively.
The proof follows from Lemma 2.9. [

For the following inequalities, see [5, Corollary 1.26] and [3, Corollary 1.10]: for all x, y €
(0, 00),

cosh(y/xy) < +/cosh(x) cosh(y),
sinh(,/xy) < y/sinh(x) sinh(y),

with equality if and only if x = y.
On the basis of our computer experiments we have arrived at the following conjecture.

Conjecture 2.11. For p,q € (1,00) and r, s € (0, 1), we have

(1) sinp 4 (V/rs) < \/sing 4(r)sin, 4 (s),
(2) sinhy, 4(y/r's) = \/sinh, 4 (r) sinh, 4 (s).

Remark 2.12. Edmunds et al. [11, Proposition 3.4] proved that for x € [0, 7r4/3,4/4)

2uv!/3
(1+ 4u4v4/3)1/2 ’
Note that in this case ¢ = p/(p — 1). The Edmunds—Gurka—Lang identity (2.13) suggests that

in the particular case ¢ = p/(p — 1) some exceptional behavior might be expected for sin, ;.
This special case might be worth of further investigation.

sing/3 4(2x) = u = sing/3 4(x), v = c084/3 4(x). (2.13)

It seems to be a natural question to ask whether the addition formulas for the trigonometric
functions have counterparts for the (p,g)-functions. Our next results give a subadditive
inequality.
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Lemma 2.14. For p, q > 1, the following inequalities hold

(1) sinp 4 (r +5) < sinp 4(r) +sinp 4(s), 1,5 € (0, 7y 4/4),
(2) sinh, 4(r + ) > sinh,, 4 (r) + sinh,, 4(s), 7,5 € (0, 00).

Proof. Let f(x) = arcsin, 4(x), x € (0, 1). We get
f@)=a—xH=r,

which is increasing; hence f is convex. Clearly, f is increasing. Therefore
fi= 1) =sing ()

is concave by Lemma 2.7(1). This implies that f] is decreasing. Clearly f1(0) = 0, and by
Anderson et al. [4, Theorem 1.25], f1(y)/y is decreasing. Now it follows from [4, Lemma 1.24]
that

filr +5) = fi(r) + fi(s),
and (1) follows. The proofs of part (2) follow similarly. [J
For p,g > 1,x € (0,1) and z € (0, 7 4/2), it follows from Theorem 1.1 that

arsinh, , x < arcsin, 4 x, sin, 4 z < sinh, 4 z.

Lemma 2.15. For p,q > 1,5 € (0,r] and r € (0, 1), we have

) arcsing 4 S < arcsimy, g r

’

s r
arsinh,, , s - arsinh,, 4 r

Y5PA Fsh) ~ e D)
arsinh, 4 s - arsinhp, 4 7

2

3)

s r
Proof. By definition we get
arcsiny, 4 s _ EF(l/p, 1/g; 1+ 1/q;s9) <3S
arcsinp o v r F(1/p,1/q; 1+ 1/q;v9) ~ r
Similarly,
arsinhy,g s s/(L+sD'P F(L1/pi1+1/g:s1/(1+59) _ (s/(l +sq)>“"
arsinh, g r r/(L+r)YVP FQ, 1/p; 1+ 1/q;rd/(1+r9)) = \r/(1+r9)

because F(a, b, ; c; x) is increasing in x. Part (3) follows from [4, Theorem 1.25]. O

3. Proof of the main results
For the following lemma, see [4, Theorems 1.19(10) and 1.52(1), Lemmas 1.33 and 1.35].

Lemma 3.1. (1) Fora,b,c >0,c <a+ b, and |x| < 1,
F(a,b:c;x) =1 —x)"*PF(c—a,c—b;c;x).
(2) Fora,x € (0, 1), and b, ¢ € (0, 00)
ab

F(—a,b;c;x) <1 — —x.
c
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(3) Fora,x € (0, 1), and b, ¢ € (0, 00)
F(a,b;c;x)+ F(—a,b;c; x) > 2.
(4) Leta,b,c € (0,00) and ¢ > a + b. Then for x € [0, 1],
I'c)I'(c —a—Db)
F(a,b;c;x) < :
@biex) < 5 ST —b)
(5) For a, b > 0, the following function
Fa,b;a+b;x)—1
f&x) =
log(1/(1 —x))
is strictly increasing from (0, 1) onto (ab/(a + b), 1/B(a, b)).
We will refer in our proofs to the following identity [1, 15.3.5]:
F(a,b;c;2)=(1—2)"F(b,c—a;c; —z/(1 — 2)). (32)

Lemma 3.3 (/9, Theorem 2]). For 0 < a < ¢,—00 < x < land 0 < b < c¢, the following
inequality holds

{( bx)_“ b ( bx)a—f}
max{(1— — ,(1—x) l—x+4+ —
c C

< F(a,b;c;x) < (1 —x)~9ble,

Proof of Theorem 1.1. For (1), we get from Lemma 3.1(3), (2)

. 11 1
arcsing g x = x F | —, —; 14+ —;x¢
P q q

11 1
> (2—F(——,—;1+—;xq>>x
P 9 q

P
>x<+pa+w)'

The second inequality of (1) follows easily from Lemmas 3.1 and 3.3(4).

For (2), if we replace b = 1/q,c —a = 1/q,c =1+ 1/q and x? = z/(1 — z) in (3.2) then
we get

now the proof follows easily from Lemma 3.3. [
For the following Lemma, see [2,12,14], [13, Theorem 1], [23], respectively.

Lemma 3.4. The following relations hold,
1/6
() V7 (£)" (8x3 +4x? +x+ ﬁ)

1/6
<I'(1+x) <ﬁ(§)x <8x3+4x2+x+%) , x>0,



1424 B.A. Bhayo, M. Vuorinen / Journal of Approximation Theory 164 (2012) 1415-1426

45
40 K
35
30

25

1 2 3 4 5

Fig. 1. We denote the lower and upper bounds of & .y by low and up.

N 12\ 178
@) (x4 3)' < L <<x—%+(§+s) >  x>0,5€(0,1),

(3) L& D72 ab o g 5 0.

I'(@) — qe-12
1—s
(4) (ﬁ) §%§l,x>0,s€(0,1),

Proof of Theorem 1.2. If weletx =1 —1/p and s = 1/q, then by definition
2I'(x)I'(1 +s)
Mpg = ————
P4 I'(s+x)
By Lemma 3.4(4) we get
2 l/q 2 _ 1-1/q 1/q
—1I'(s) (_p > <Tpg < —1'(s) <—pq tp q) (_p > .
q p—1 q g(p—1) p—1
Now (1) follows if we use I'(1 + x) = x I'(x) and Lemma 3.4(1). From [1, 6.1.18] we get
o I'd/pId/p) _ ZF(I/p)F(l +1/p)
mr pl'2/p) rQ/p)

_ r'A+1/p)
— 72-2/p
=2 ﬁf(l/Z-l—l/p)’

and (2) follows from Lemma 3.4(2) if we take x = 1/p and s = 1/2.
For (3), we see that
2xI(x)> 272 /axI(x)> 2272 /a1 +x)
T ;7 = = =
b-r I'(2x) I'(x)I(1/2+ x) I'(1/2 +x)

and the lower bound follows from Lemma 3.4(2), and the upper bound follows if we replace
b=x+1landa = x + s withs = 1/2in 3.4(3) (see Fig. 1). O

Remark 3.5. For the benefit of an interested reader we give an algorithm for the numerical
computation of sin, , with the help of Mathematica® [21]. The same method also applies to
sinh,, , .

arcsinp[p_, q_, x_] := x * Hypergeometric2F1[1/p, 1/q, 1 + 1/q, x~p]
sinp[p_, q_, y_1 := x /. FindRoot[arcsinp[p, q, x] ==y, {x, 0.5 }].
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In the following tables, we use the values of p = 2.5 and g = 3.

x arcsing 4(x)  arccosp 4(x)  arsinhp 4 (x)
0.0000  0.0000 1.2748 0.0000
0.2500  0.2504 1.2048 0.2496
0.5000  0.5066 1.0688 0.4940
0.7500  0.7887 0.8536 0.7227
1.0000  1.2748 0.0000 0.9262

X sinp 4 (x) cosp 4 (x) sinh), 4 (x)

0.0000  0.0000 1.0000 0.0000
0.2500  0.2496 0.9937 0.2504
0.5000  0.4937 0.9500 0.5063
0.7500  0.7183 0.8309 0.7817
1.0000  0.8995 0.5943 0.1003
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