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Abstract

We prove matching direct and inverse theorems for (algebraic) polynomial approximation with doubling
weights w having finitely many zeros and singularities (i.e., points where w becomes infinite) on an
interval and not too “rapidly changing” away from these zeros and singularities. This class of doubling
weights is rather wide and, in particular, includes the classical Jacobi weights, generalized Jacobi weights
and generalized Ditzian–Totik weights. We approximate in the weighted Lp (quasi) norm ∥ f ∥p,w with

0 < p < ∞, where ∥ f ∥p,w :=

 1
−1 | f (u) |p w(u)du

1/p
. Equivalence type results involving related

realization functionals are also discussed.
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1. Introduction

The main goal of this paper is to prove matching direct and inverse theorems for polynomial
approximation with doubling weights w having finitely many zeros and singularities (i.e., points
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where w becomes infinite) on an interval and not too “rapidly changing”. In order to discuss this
further, we need to recall some notation and definitions. As usual, Lp(I ), 0 < p < ∞, is the set

of measurable on I functions f equipped with the (quasi)norm ∥ f ∥Lp(I ) :=


I | f (u)|pdu
1/p.

We say that a function w is a doubling weight on [−1, 1] if w ∈ L1[−1, 1] is nonnegative, not
identically equal to zero, and there exists a positive constant L (the so-called doubling constant
of w) such that w(2I ) ≤ Lw(I ), for any interval I ⊂ [−1, 1]. Here, w(J ) :=


J∩[−1,1]

w(u)du,
and 2I denotes the interval of length 2|I | (|I | is the length of I ) with the same center as I .
Doubling weights, their properties and various approximation results are discussed in a series of
papers [20,21,18,19] by G. Mastroianni and V. Totik. In particular, it turns out that one can obtain
many analogs of theorems for unweighted approximation by considering weights wn which
are certain averages of w depending on the degree of approximating polynomials. Recall (see
e.g. [21]) that wn(x) := ρn(x)−1

 x+ρn(x)
x−ρn(x)

w(u)du, where ρn(x) = n−1(1 − x2)1/2 + n−2. We
refer the reader to [21,18,16] for further discussions of results involving wn . At the same time,
it is clear that averaging removes singularities (and “lifts” zeros) of weights, and so a natural
question is whether or not one can obtain matching direct and inverse theorems for general
doubling weights. This seems to be a very hard question since a general doubling weight can
exhibit some rather “wild” behavior that makes it hard if not impossible to work with (while
proving positive approximation results). For example, doubling weights can vanish on sets of
positive measures as well as they can be “rapidly changing”. Even relatively well-behaved
weights (such as generalized Jacobi weights) can cause difficulties because of the presence
of internal zeros/singularities. For example, see [21] for discussions of difficulties in forming
weighted moduli of smoothness for generalized Jacobi weights, and [19,4] for examples showing
that the original Jackson–Favard estimates are no longer valid for some specific doubling
weights.

Still, if a doubling weight w has only finitely many zeros and singularities inside [−1, 1] and
is not too rapidly changing once one moves away from these points (i.e., if it behaves like wn
there), the matching direct and inverse results are possible (this is the main result of this paper).
Earlier, this type of results was established in [21, Theorem 1.4] in the uniform norm weighted
by generalized Jacobi weights with finitely many zeros in [−1, 1], and in [4, Theorem 3.1] in the
Lp norm (with 1 ≤ p ≤ ∞) weighted by a specific weight having one zero at the origin and
zeros or singularities at ±1 (see also [2,5] for related results). However, we are not aware of any
results of this type for 0 < p < 1. Perhaps, the reason for this is that the usual method seems
to be to first establish the equivalence of the moduli and some related K -functionals, and then
proceed with the proofs. This method cannot work for 0 < p < 1 since it is rather well known
(see [9]) that K -functionals are often zeros if 0 < p < 1.

Our approach is different and is actually somewhat similar to the one used in our earlier
paper [16] where matching direct and (weak) inverse theorems were established for the weights
wn and all 0 < p ≤ ∞. Namely, we derive the equivalence of the moduli and related
“realization” functionals as a corollary of our estimates, and our proofs of direct/inverse theorems
does not rely on this equivalence.

The class of doubling weights W(Z) that we introduce in Section 2 is rather wide and, in
particular, includes the classical Jacobi weights, generalized Jacobi weights and generalized
Ditzian–Totik weights. We approximate in the weighted Lp (quasi) norm with 0 < p < ∞.

For p < ∞, the weighted (quasi)norm is defined as ∥ f ∥Lp(I ),w :=


I | f (u)|pw(u)du
1/p and

∥ f ∥p,w := ∥ f ∥Lp[−1,1],w. We also denote by Lwp the set of all functions on [−1, 1] such that
∥ f ∥p,w < ∞.
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Many of the results presented in this paper are also valid if p = ∞. However, one can
only approximate essentially bounded functions by polynomials if the weights are essentially
bounded. This puts a rather significant restriction on the weights, and the weights having the so-
called property A∗ (see [20,21], for example) are usually considered if p = ∞ instead of a wider
class of doubling weights. This is the main reason why we only discuss the case 0 < p < ∞ in
this paper, and analogous results for p = ∞ and A∗ weights will appear elsewhere.

The paper is organized as follows. In Section 2, we define a class of doubling weights W(Z)
with finitely many zeros and singularities inside [−1, 1] and give several equivalent conditions
guaranteeing that w is in this class. Main part weighted moduli, (complete) weighted moduli as
well as averaged moduli of smoothness are introduced in Section 3. A relation between the de-
grees of local approximation by piecewise polynomials and the main part moduli is established
in Section 4. Lemma 4.2 in this section is the main result that allows us to estimate the degree of
approximation away from zeros and singularities of the weight w. A Jackson type theorem with
doubling weights from the class W(Z) is proved in Section 5. This is the main direct result in
this paper. In Section 6, we discuss several Remez type and Markov–Bernstein type results that
are needed in the proof of the inverse theorems. In Section 7, we prove two crucial lemmas (deal-
ing with cases 1 ≤ p < ∞ and 0 < p < 1 separately) on local approximation of polynomials of
degree < n by Taylor polynomials of degree < r , where r is related to the order of the moduli
of smoothness, and n is the degree of approximating polynomials in Jackson-type estimates. The
inverse results heavily depend on these lemmas. Some preliminary results needed in the proofs
of inverse theorems are given in Section 8. The inverse theorems in cases 1 ≤ p < ∞ and
0 < p < 1 are proved, respectively, in Sections 9 and 10. In Section 11, we obtain realization
type results by proving the equivalence of the averaged and “regular” weighted moduli and ap-
propriate realization functionals. An auxiliary result that is well known in the unweighted case
about a polynomial of near best approximation (in weighted Lp with w from the class W(Z))
being a near best approximant on a slightly larger interval is proved in Appendix A. This result is
needed in the proof of the direct theorem and it could be used to provide an alternative proof of
relations between different moduli with different parameters A (see Section 3). Finally, for read-
ers’ convenience, we repeat the main definitions and list the main notation (or provide references
to appropriate statements/formulas) in Appendix B.

2. Doubling weights with finitely many zeros and singularities

Let w be a doubling weight on [−1, 1] such that w(z) = 0 or w(z) = ∞ only at finitely
many points z. Moreover, we assume that w(x) “does not rapidly change” when x is “far”
from these points z. These assumptions certainly limit the set of the weights that we consider
since there are doubling weights that vanish on sets of positive measures and, at the same time,
there are “rapidly changing” positive doubling weights. However, many important weights, such
as generalized Jacobi weights or the so-called generalized Ditzian–Totik weights, satisfy this
property (see Example 2.7 for their definitions).

We now make everything precise in the following definition noting that, throughout this
paper, if y < x , then [x, y] := [y, x] (and not ∅ as it is sometimes defined). We also denote
ϕ(x) := (1 − x2)1/2, ρ(h, x) := hϕ(x)+ h2 and note that ρn(x) := ρ(1/n, x).

Definition 2.1. Let M ∈ N and Z := (z j )
M
j=1, − 1 ≤ z1 < · · · < zM−1 < zM ≤ 1. We say that

a doubling weight w belongs to the class W(Z) (and write w ∈ W(Z)) if, for any ε > 0 and
x, y ∈ [−1, 1] such that |x − y| ≤ ρ(ε, x) and dist


[x, y], z j


≥ ρ(ε, z j ) for all 1 ≤ j ≤ M ,
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the following inequalities are satisfied

c∗w(y) ≤ w(x) ≤ c−1
∗ w(y), (2.1)

where the constant c∗ depends only on w, and does not depend on x, y and ε.

Remark 2.2. The condition that dist

[x, y], z j


≥ ρ(ε, z j ), for all 1 ≤ j ≤ M , guarantees that

[x, y] ∩ Z = ∅.

Note that the set Z is where w can have zeros or singularities, but we do not actually require
that it happens at all points in Z . In other words, we do not exclude the possibility that w is “well
behaved” at some/all points in Z . We also note that the set Z is considered fixed throughout this
paper, and so we refer to it in various theorems without redefining it (unless a statement/example
is given for a specific Z in which case it will be explicitly stated). Also, note that the moduli of
smoothness that we define below in Section 3 depend on Z and so, in particular, all constants in
our estimates involving moduli will depend on M , but we are not explicitly stating this in every
statement.

It is convenient to denote

Z j
A,h :=


x ∈ [−1, 1]

 |x − z j | ≤ Aρ(h, z j )

, 1 ≤ j ≤ M,

Z A,h := ∪
M
j=1 Z j

A,h,

and

I A,h :=

[−1, 1] \ Z A,h

cl
=


x ∈ [−1, 1]
 |x − z j | ≥ Aρ(h, z j ), for all 1 ≤ j ≤ M


.

Also,

D := D(w) := pmin

|z j − z j−1|

 1 ≤ j ≤ M + 1

,

where z0 := −1, zM+1 := 1 and pmin(S) is the smallest positive number from the set S of
nonnegative reals.

Note that the condition dist

[x, y], z j


≥ ρ(ε, z j ), 1 ≤ j ≤ M , in Definition 2.1 is

equivalent to [x, y] ⊂ I1,ε.
Throughout this paper, (xi )

n
i=0 is the Chebyshev partition of [−1, 1], i.e., xi = cos(iπ/n),

0 ≤ i ≤ n. For 1 ≤ i ≤ n, we also denote Ii := [xi , xi−1],

ψi := ψi (x) :=
|Ii |

|x − xi | + |Ii |
and χi (x) := χ[xi ,1](x) =


1, if xi ≤ x ≤ 1,
0, otherwise.

We need the following facts about the Chebyshev partition and the weights wn (the facts
without references are verified by straightforward, if cumbersome, computations).

• ρn(x) ≤ |Ii | ≤ 5ρn(x) for all x ∈ Ii and 1 ≤ i ≤ n.
• |Ii |/3 ≤ |Ii+1| ≤ 3|Ii | for all 1 ≤ i ≤ n − 1.
• If α ≥ 2, then

n
i=1 ψi (x)α ≤ c for all −1 ≤ x ≤ 1, and

 1
−1 ψi (x)αdx ≤ c|Ii | for all

1 ≤ i ≤ n.
• For all x, y ∈ [−1, 1], ρn(y)2 ≤ 4ρn(x)(|x − y| + ρn(x)).
• For any c0 > 0 and x ∈ [−1, 1], the interval [x − c0ρn(x), x + c0ρn(x)] has nonempty

intersection with at most m intervals Ii , 1 ≤ i ≤ n, where m is some natural number
that depends only on c0. This follows from Proposition 4.1 whose proof we postpone until
Section 4.

• For any doubling weight w, if n ∼ m, then wn(x) ∼ wm(x), for all x ∈ [−1, 1].
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• For any doubling weightw and n ∈ N, wn(x) ∼ wn(y) if |x−y| ≤ c∗ρn(x), with equivalence
constants depending only on c∗ and the doubling constant of w (see [21, (2.3)]).

• For any doubling weight w, n ∈ N, 1 ≤ i ≤ n, x ∈ [−1, 1] and y ∈ Ii , wn(x) ≤

cψi (x)−swn(y) and wn(y) ≤ cψi (x)−swn(x), where constants c and s ≥ 0 depend only
on the doubling constant of w (see [16, Lemma 2.5]).

We also mention that defining Ii ’s to be closed causes some ambiguity at the boundaries of
these intervals since any two adjacent intervals in this partition have a nonempty intersection.
Hence, when we make statements of type “let x ∈ [−1, 1] and let µ be such that x ∈ Iµ”, this is
ambiguous if x = x j for some 1 ≤ j ≤ n − 1, since there are actually two intervals containing x
(namely, I j and I j+1). To remedy this problem, we use the convention that, if x belongs to two
adjacent (closed) intervals, we always choose the right interval as the one containing x .

We are now ready to discuss several conditions that are equivalent to the statement that a
doubling weight is in the class W(Z).

Lemma 2.3. Let w be a doubling weight. The following conditions are equivalent.

(i) w ∈ W(Z).
(ii) For any n ∈ N and x, y such that [x, y] ⊂ I1,1/n and |x − y| ≤ ρn(x), inequalities (2.1) are

satisfied with the constant c∗ depending only on w.
(iii) For some N ∈ N that depends only on w, and any n ≥ N and x, y such that [x, y] ⊂ I1,1/n

and |x − y| ≤ ρn(x), inequalities (2.1) are satisfied with the constant c∗ depending only on
w.

(iv) For any n ∈ N, A, B > 0, and x, y such that [x, y] ⊂ I A,1/n and |x − y| ≤ Bρn(x),
inequalities (2.1) are satisfied with the constant c∗ depending only on w, A and B.

(v) For any n ∈ N and A > 0,

w(x) ∼ wn(x), x ∈ I A,1/n,

where the equivalence constants depend only on w and A, and are independent of x and n.

Proof. Clearly, (i) ⇒ (ii) (one just needs to pick ε = 1/n), and (ii) ⇒ (iii). Also, (iv) ⇒

(i). Indeed, note that the statement of Definition 2.1 becomes vacuous if ε >
√

2 (since
ρ(ε, z j ) > 2). Hence, assuming that ε ≤

√
2 we pick n = ⌊2/ε⌋ ∈ N, A = 1 and B = 4.

Then 1 < nε ≤ 2, Aρn(z j ) ≤ ρ(ε, z j ) and Bρn(x) ≥ ρ(ε, x), and so if [x, y] ⊂ I1,ε and
|x − y| ≤ ρ(ε, x), then [x, y] ⊂ I A,1/n and |x − y| ≤ Bρn(x).

Now, we will show that (iii) ⇒ (iv). Let n ∈ N and A, B > 0 be given, and suppose that
x, y are such that [x, y] ⊂ I A,1/n and |x − y| ≤ Bρn(x). Pick m := max {⌈n/min{A, 1}⌉, N }

and note that Aρn(z j ) ≥ ρm(z j ), and so I A,1/n ⊂ I1,1/m . Also, it is not difficult to check
that m/n ≤ max {N , 2/min{A, 1}} =: c∗ and hence ρn(x) ≤ (c∗)2ρm(x) which implies that
|x − y| ≤ B(c∗)2ρm(x) =: Mρm(x).

Hence, in order to complete the proof it is sufficient to show that, for any x, y ∈ [−1, 1] such
that |x − y| ≤ Mρm(x) there are K points yi , 1 ≤ i ≤ K , with K ∈ N depending only on M ,
such that

[x, y] ⊂ ∪
K−1
i=1 [yi , yi+1] and |yi − yi+1| ≤ ρm(yi ), 1 ≤ i ≤ K − 1.

We will use Proposition 4.1. Let (xi )
m
i=0 be the Chebyshev partition of [−1, 1] into m intervals

Ii = [xi , xi−1]. Suppose that x ∈ Iµ, 1 ≤ µ ≤ m, denote

I ∗
:=

1 ≤ i ≤ m

 Ii ∩ [x, y] ≠ ∅


and I∗ :=

1 ≤ i ≤ m

 Ii ⊂ [x, y]

,

and let J := ∪i∈I ∗ Ii .
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If I∗ = ∅, then [x, y] ⊂ Iµ ∪ Iµ±1, and J consists of at most 2 intervals Ii . If I∗ ≠ ∅, then
recalling that |Ii±1| ≤ 3|Ii | and ρm(x) ≤ |Ii | ≤ 5ρm(x), for any x ∈ Ii , we conclude

|J | ≤ 7
∪i∈I∗ Ii

 ≤ 7|x − y| ≤ 7Mρm(x) ≤ 7M |Iν |.

Proposition 4.1 implies that J consists of at most k intervals Ii , where k depends only on M .
We now define yi

j := x j + i |I j |/5, 0 ≤ i ≤ 5, for all j ∈ I ∗, and denote Y := (yi )
K
i=1 :=

∪ j∈I ∗{y0
j , y1

j , . . . , y5
j }, where yi < yi+1, 1 ≤ i ≤ K − 1. Then, K is not bigger than 5k + 1

and depends only on M , [x, y] ⊂ J = ∪
K−1
i=1 [yi , yi+1], and, for each 1 ≤ i ≤ K − 1,

|yi − yi+1| ≤ |I j (i)|/5 ≤ ρm(yi ).
So far, we have verified the equivalence of (i)–(iv).
We will show now that (iv) ⇒ (v).
Let A > 0 and suppose that n ∈ N is such that n > 4(A + 1)/D. This guarantees that

2ρn(x) < D − A

ρn(z j )+ ρn(z j−1)


≤ z j − Aρn(z j )−


z j−1 + Aρn(z j−1)


,

1 ≤ j ≤ M + 1, z j−1 ≠ z j ,

and so [x −ρn(x), x +ρn(x)] has a nonempty intersection with at most one interval from Z A,1/n .

Moreover, if [x − ρn(x), x + ρn(x)] does intersect an interval from Z j
A,1/n with z j ≠ ±1,

then it does not contain ±1. Hence, if x ∈ I A,1/n , then either [x, x + ρn(x)] ⊂ I A,1/n or
[x −ρn(x), x] ⊂ I A,1/n , and without loss of generality, suppose that it is the former (in the latter
case [x − ρn(x), x] ⊂ I A,1/n , the quantity −ρn(x) replaces ρn(x) and the order of integration is
reversed). Then, taking into account that

w ([x − µ, x + µ]) ≤ w ([x − µ, x + 2µ])

≤ L2w ([x + µ/8, x + 7µ/8]) ≤ L2w ([x, x + µ]) ,

we have

wn(x) =
1

ρn(x)

 x+ρn(x)

x−ρn(x)
w(u)du ≤

L2

ρn(x)

 x+ρn(x)

x
w(u)du ≤ L2c−1

∗ w(x)

and

wn(x) ≥
1

ρn(x)

 x+ρn(x)

x
w(u)du ≥ c∗w(x),

where c∗ depends only on w and A.
Hence, (v) is proved for all n ∈ N such that n > 4(A+1)/D. If 1 ≤ n ≤ N := ⌈4(A+1)/D⌉,

then we use the fact that (v) is valid for n = N + 1, I A,1/n ⊂ I A,1/(N+1) and that wn(x) ∼

wN+1(x) with equivalence constants depending only on w and N , to conclude that

w(x) ∼ wN+1(x) ∼ wn(x), x ∈ I A,1/n .

To prove (v) ⇒ (iv), we note that it follows from the doubling condition that, if x, y ∈ [−1, 1]

and |x − y| ≤ Bρn(x), then wn(x) ∼ wn(y) with equivalence constants depending only on B
and the doubling constant of w. Hence, if (v) is valid and x, y are such that [x, y] ⊂ I A,1/n and
|x − y| ≤ Bρn(x), then

w(y) ∼ wn(y) ∼ wn(x) ∼ w(x)

with equivalence constants depending on A, B and the weight w. This verifies (iv). �
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Remark 2.4. We note that if a doubling weight w is in the class W(Z) then, in particular, it is
bounded away from zero and ∞ when x is “far” from Z . In other words,

∀ε > 0 ∃δε > 0 : δε < w(x) < δ−1
ε , for all x such that dist(x,Z) ≥ ε.

This follows from Lemma 2.3(iv) if we pick n = ⌈2/ε⌉, A = 1 and B = 2n2.

We will now show that if a doubling weightw is monotone near points from Z and is bounded
away from zero and infinity on the rest of the interval [−1, 1] then it is in the class W(Z).

We use the usual notation f+(a) := limx→a+ f (x) and f−(a) := limx→a− f (x).

Lemma 2.5. Let w be a doubling weight, and suppose that there exists 0 < α < D/4 such that
w is monotone on (z j − α, z j ) ∩ [−1, 1] and on (z j , z j + α) ∩ [−1, 1] for all 1 ≤ j ≤ M, and
suppose that µ∗ > 0 and µ∗ < ∞, where

µ∗ := min


inf
x∈Sα

w(x), min
1≤ j≤M


w−(z j + α),w+(z j − α)


and

µ∗
:= max


sup
x∈Sα

w(x), max
1≤ j≤M


w−(z j + α),w+(z j − α)


where Sα :=


x ∈ [−1, 1]

 dist(x,Z) ≥ α

.

Then w belongs to the class W(Z).

We use the convention that if a quantity is not defined then it is not present in the set whose
minimum or maximum is taken. Thus, for example, if z1 = −1, then w−(−1 − α) is excluded
from the definition of µ∗ and µ∗ in the statement of the lemma since this quantity is not defined.

Proof. For each 1 ≤ i ≤ M , there exists εi > 0 such that

µ∗/2 ≤ w(x) ≤ 2µ∗,

for all x ∈ ([zi + α − εi , zi + α] ∪ [zi − α, zi − α + εi ]) ∩ [−1, 1].

We let ε := min

α/2,min1≤ j≤M εi


and N := ⌈4/ε⌉. Note that N depends only on the weight

w, and that the inequality ρn(x) ≤ ε/2 is satisfied for all x ∈ [−1, 1] and all n ≥ N . Recalling
that

Sα−ε =


x ∈ [−1, 1]
 dist(x,Z) ≥ α − ε


we also note that µ∗/2 ≤ w(x) ≤ 2µ∗, for all x ∈ Sα−ε.

Now, let n ≥ N and let x, y be such that [x, y] ⊂ I1,1/n and |x − y| ≤ ρn(x). We will show
that Lemma 2.3(iii) is valid which implies that w is in the class W(Z). We have the following
cases to consider (for convenience, suppose that x < y):

(a) [x, y] ⊂ Sα−ε,
(b) [x, y] ∩ ([−1, 1] \ Sα−ε) ≠ ∅.

Case (a): µ∗/2 ≤ w(x), w(y) ≤ 2µ∗, and so (2.1) is satisfied with c∗ = µ∗/(4µ∗).
Case (b): Let Ix := [x − ρn(x)/6, x] and Iy := [y, y + ρn(x)/6] and note that Ix,y :=

[x − ρn(x)/6, y + ρn(x)/6] is such that Ix,y ∩ {zi ± α}
M
i=1 = ∅ since

dist(Ix,y, {zi ± α}
M
i=1) ≥ dist([x, y], {zi ± α}

M
i=1)− ρn(x)/6

≥ ε/2 − ρn(x)/6 ≥ ε/2 − ε/12 > 0.



K.A. Kopotun / Journal of Approximation Theory 198 (2015) 24–62 31

Additionally, Ix,y ∩ Z = ∅. Indeed, recalling that ρn(v)
2

≤ 4ρn(u) (|v − u| + ρn(u)), for all
u, v ∈ [−1, 1], letting u = z j , 1 ≤ j ≤ M , and v = x and noting that |x − z j | ≥ ρn(z j ) because
x ∈ I1,1/n , we have

ρn(x)
2

≤ 4ρn(z j )

|x − z j | + ρn(z j )


≤ 8|x − z j |

2,

and so |x − z j | > ρn(x)/3 for all 1 ≤ j ≤ M .
Also, taking into account that y ∈ I1,1/n which implies |y − z j | ≥ ρn(z j ) we have

ρn(x)
2

≤ 4|y − z j |

|x − z j | + |y − z j |


≤ 4|y − z j |


|x − y| + 2|y − z j |


≤ 4|y − z j |


ρn(x)+ 2|y − z j |


,

which implies that ρn(x) < 6|y − z j | for all 1 ≤ j ≤ M .
Therefore, Ix,y ∩ {zi , zi ± α}

M
i=1 = ∅, and so w is monotone on Ix,y .

It follows from the properties of doubling weights (see [20, Lemma 2.1], for example) that
c0w(Ix ) ≤ w(Iy) ≤ c−1

0 w(Ix ) (since |Ix | = |Iy | ∼ |Ix,y |) with the constant c0 depending only
on w.

Now, if w is nondecreasing on Ix,y , then

w(x) ≤ w(y) ≤ 6w(Iy)/ρn(x) ≤ 6c−1
0 w(Ix )/ρn(x) ≤ c−1

0 w(x),

and if w is nonincreasing on Ix,y , then

w(y) ≤ w(x) ≤ 6w(Ix )/ρn(x) ≤ 6c−1
0 w(Iy)/ρn(x) ≤ c−1

0 w(y).

This verifies Lemma 2.3(iii), and the proof is now complete. �

Corollary 2.6. Let w be a doubling weight, and suppose that w is piecewise monotone with
finitely many monotonicity intervals, i.e., let T := (ti )K

i=0, K ∈ N, be such that −1 = t0 < t1 <
· · · < tK−1 < tK = 1 and w is monotone on each interval (ti , ti+1), 0 ≤ i ≤ K − 1. Moreover,
assume that µ∗ < ∞ and µ∗ > 0, where

µ∗
:= max


w(ti ), w±(ti )

 0 ≤ i ≤ K , ti ∉ Z


and

µ∗ := min

w(ti ), w±(ti )

 0 ≤ i ≤ K , ti ∉ Z


(with the convention that max{∅} = min{∅} := 1, w−(−1) := w(−1) and w+(1) := w(1)).
Then w belongs to the class W(Z).

Taking into account characterization of (piecewise) monotone doubling weights (see e.g. [3])
and Lemma 2.5, it is now relatively easy to check that many well known weights are not only
doubling but are also in W(Z) for some Z .

Example 2.7. The following are examples of doubling weights from W(Z) with Z = (zi )
M
i=1,

−1 ≤ z1 < · · · < zM−1 < zM ≤ 1.

• Classical Jacobi weights:

w(x) = (1 + x)α(1 − x)β , α, β > −1, with M = 2, z1 = −1 and z2 = 1.

• Generalized Jacobi weights:

w(x) =

M
j=1

|x − z j |
γ j , γ j > −1.
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• Generalized DT weights (see e.g. in [2, p. 134]):

w(x) =

M
j=1

|x − z j |
γ j


ln

e

|x − z j |

Γ j

, γ j > −1, Γ j ∈ R.

(Note that if these weights are defined with γ j = −1,Γ j < −1, for some j’s, then they
will be in L1 but will not be doubling. For example, w(x) = |x |

−1(1 − ln |x |)−2 is not
doubling since, for example, for sufficiently small t > 0, w([0, t]) ∼ (1 − ln t)−1 and
w([t, 2t]) ∼ (1 − ln t)−1(1 − ln(2t))−1 and so w([0, t])/w([t, 2t]) → ∞ as t → 0+, which
cannot happen for doubling weights.)

Remark 2.8. Of course, there are doubling weights which are not in any W(Z) classes.
Doubling weights that vanish on sets of positive measures (see [24, Chapter I, Section 8.8]
for an example) are an illustration of this. Also, there are doubling weights which are not A∞

weights (see e.g. [20, Section 5] for the definition) and which do not vanish anywhere (see [14],
[24, Chapter I, Section 8.8] or [20, Section 2]), and one can use the same construction for any Z
to build a doubling weight w which will not be in W(Z).

Remark 2.9. It is clear that if w is a doubling weight from W(Z) and w0 is such that 0 < c1 ≤

w0(x) ≤ c2 < ∞, x ∈ [−1, 1] (in particular, if w0 is a strictly positive continuous function on
[−1, 1]), thenw0w is a doubling weight from W(Z). This immediately implies that the so-called
generalized smooth Jacobi weights (see e.g. [1,22]) are doubling weights from W(Z).

Remark 2.10. Recall (see [24, Chapter V]) that, for 1 ≤ p < ∞, a weight w is said to be in Ap
if 

1
|I |


I
w(x)dx


·


1
|I |


I
w(x)−p′/pdx

p/p′

≤ A < ∞, 1/p + 1/p′
= 1,

for all intervals I ⊂ [−1, 1]. It was shown in [24, p. 196] that all Ap weights are doubling, and
we remark that there are doubling weights from W(Z) that do not belong to Ap (with a fixed p).
For example, w(x) = |x |

γ belongs to Ap, p > 1, if and only if −1 < γ < p − 1, and it is a
doubling weight from W(Z), for any γ > −1 and any Z containing 0.

3. Moduli of smoothness

As usual, for r ∈ N, let

∆r
h( f, x, S) :=


r

i=0

r

i


(−1)r−i f (x − rh/2 + ih), if [x − rh/2, x + rh/2] ⊂ S,

0, otherwise,

be the r th symmetric difference. Note that S can be a union of (disjoint) intervals. Also, let
∆r

h( f, x) := ∆r
h( f, x, [−1, 1]).

Main part weighted modulus of smoothness is defined as

Ωr
ϕ( f, A, t)p,w := sup

0<h≤t

∆r
hϕ(·)( f, ·, I A,h)


Lp(I A,h),w

.

Note that, for small A and h, I A,h consists of M − 1, M or M + 1 intervals depending on
whether or not w has a zero/singularity at ±1.
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It is clear that moduli Ωr
ϕ are not sufficient to characterize smoothness of functions (the main

part weighted modulus is obviously zero for any piecewise constant function f with jump points
at Z ), and we define the (complete) weighted modulus of smoothness as

ωr
ϕ( f, A, t)p,w := Ωr

ϕ( f, A, t)p,w +

M
j=1

Er ( f )Lp(Z j
2A,t ),w

, (3.1)

where

Er ( f )Lp(I ),w := inf
q∈Πr

∥ f − q∥Lp(I ),w

and Πr denotes the set of all algebraic polynomials of degree < r (see e.g. [11, (1.11)],
[4, (2.4)], [21, (1.19)] and [12, Chapter 11] for similar definitions). Note that these moduli can
be defined as ωr

ϕ( f, A, B, t)p,w with 2A in the sets Z j
2A,t replaced by B. It is possible to show

that ωr
ϕ( f, A, B, t)p,w are equivalent for different A and B provided B > A and t is small (if

0 < p < 1), and we did not investigate the question of equivalence of these moduli in the case
B ≤ A. It will be shown in Section 11 that moduli (3.1) (as well as the averaged moduli (3.2)
defined below) are equivalent for all positive A and all t > 0 (if 1 ≤ p < ∞) or 0 < t < t0, for
some t0 > 0 (if 0 < p < 1). Note, however, that we cannot use this equivalence in the proof of
the direct theorem (which would have simplified it considerably) since we derive it as a corollary
of several results, the direct theorem being one of them.

We define the averaged main part weighted modulus and the (complete) averaged weighted
modulus of smoothness, respectively, as

Ωr
ϕ( f, A, t)p,w :=


1
t

 t

0


I A,h

w(x)|∆r
hϕ(x)( f, x, I A,h)|

pdxdh

1/p

=


1
t

 t

0

∆r
hϕ(·)( f, ·, I A,h)

p

Lp(I A,h),w
dh

1/p

and

ωr
ϕ( f, A, t)p,w := Ωr

ϕ( f, A, t)p,w +

M
j=1

Er ( f )Lp(Z j
2A,t ),w

. (3.2)

The following properties of these moduli immediately follow from the definition:

(i) Ωr
ϕ( f, A, t)p,w ≤ Ωr

ϕ( f, A, t)p,w and ωr
ϕ( f, A, t)p,w ≤ ωr

ϕ( f, A, t)p,w,
(ii) Ωr

ϕ( f, A, t2)p,w ≤ Ωr
ϕ( f, A, t1)p,w and ωr

ϕ( f, A, t2)p,w ≤ ωr
ϕ( f, A, t1)p,w if t1 ≥ t2,

(iii) Ωr
ϕ( f, A, t2)p,w ≤ (t1/t2)1/p Ωr

ϕ( f, A, t1)p,w and ωr
ϕ( f, A, t2)p,w ≤ (t1/t2)1/p ωr

ϕ( f, A,
t1)p,w if t1 ≥ t2,

(iv) Ωr
ϕ( f, A1, t)p,w ≤ Ωr

ϕ( f, A2, t)p,w and Ωr
ϕ( f, A1, t)p,w ≤ Ωr

ϕ( f, A2, t)p,w if A1 ≥ A2
(since I A1,h ⊂ I A2,h).

We will also need the following auxiliary quantity (“restricted averaged main part modulus”
would be a proper name for it) which will be quite helpful in our estimates:

Ωr
ϕ( f, t)Lp(S),w :=


1
t

 t

0


S
w(x)|∆r

hϕ(x)( f, x, S)|pdxdh

1/p

,

where S is some subset (a union of intervals) of [−1, 1] (that does not depend on h).
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Note thatΩr
ϕ( f, t)Lp(I A,t ),w ≤ Ωr

ϕ( f, A, t)p,w.

We also remark that since I A,h consists of a number of disjoint intervals when h is small, it
is possible to define a main part modulus taking supremum on each of these intervals. In other
words, one can define

Ω∗r
ϕ ( f, A, t)p,w :=

M
j=0

sup
0<h≤t

∆r
hϕ( f )


Lp(J

j
A,h),w

,

where z0 := −1, zM+1 := 1, and J j
A,h’s denote components of I A,h , i.e.,

J j
A,h :=



z j + Aρ(h, z j ), z j+1 − Aρ(h, z j+1)


, if 1 ≤ j ≤ M − 1,

−1, z1 − Aρ(h, z j )

, if j = 0 and z1 ≠ −1,

zM + Aρ(h, z j ), 1

, if j = M and zM ≠ 1.

It is obvious that Ωr
ϕ( f, A, t)p,w ≤ Ω∗r

ϕ ( f, A, t)p,w, and it is less obvious that this inequality can
be reversed for any f ∈ Lwp , 0 < p < ∞. Hence, we note that Ω∗r

ϕ could replace Ωr
ϕ everywhere

in the proofs below, and so using Corollaries 11.1 and 11.2 we could actually show that these
moduli are equivalent (in the case 0 < p < 1, t would have to be small). However, we are not
discussing this further.

4. Degree of local approximation

Proposition 4.1. Let n ∈ N and suppose that, for some 1 ≤ µ ≤ n, Iµ ⊂ J , where J ⊂

[−1, 1] is an interval such that |J | ≤ c0|Iµ|. Then there exists m ∈ N depending only on
c0 (and independent of n) such that J has a nonempty intersection with at most m intervals
Ii , 1 ≤ i ≤ n.

Proof. If n = 1, the statement is obvious, and so we assume that n ≥ 2. Because of symmetry,
we may assume that 1 ≤ µ ≤ ⌈n/2⌉. Now let 1 ≤ i ≤ n, and compare the distance from xi to xµ
to the length of the interval Iµ. Using the estimates x/10 ≤ sin x ≤ x, 0 ≤ x ≤ 7π/8, we have

|xi − xµ|

|Iµ|
=

sin [(i + µ)π/(2n)] sin [|i − µ|π/(2n)]
sin [(2µ− 1)π/(2n)] sin [π/(2n)]

≥
|i2

− µ2
|

100(2µ− 1)
≥

|i − µ|

200
.

If xi ∈ J , then |xi − xµ| ≤ |J | ≤ c0|Iµ| and so |i − µ| ≤ 200c0. This implies that J has empty
intersection with all intervals Ii such that min{|i − µ|, |i − 1 − µ|} > 200c0, and so the number
of intervals Ii having nonempty intersections with J is m ≤ 400c0 + 2. �

Recall now that ωr ( f, t, I )p := sup0<h≤t

∆r
h( f, x, I )


Lp(I )

is the usual r th modulus of
smoothness on an interval I , and that the well-known Whitney’s theorem (see e.g. [23, Theorem
7.1, p. 195]) implies that, for any f ∈ Lp[a, b], 0 < p < ∞,

inf
q∈Πr

∥ f − q∥Lp[a,b] ≤ cωr ( f, b − a, [a, b])p.

Lemma 4.2. Let w be a doubling weight from the class W(Z), 0 < p < ∞, f ∈ Lwp , n, r ∈ N,
and let A > 0 and θ > 0 be arbitrary. Also, let

I ∗
:=

1 ≤ i ≤ n

 Ii ∩ Z A,1/n = ∅

,
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and suppose that, for each i ∈ I ∗, the interval Ji is such that Ii ⊂ Ji ⊂ I A,1/n and |Ji | ≤ c0|Ii |.
Then 

i∈I ∗

w(xi )ωr ( f, |Ji |, Ji )
p
p ≤ cΩr

ϕ( f, θ/n)p
Lp(I A,1/n),w

,

where the constant c depends only on r, p, c0, θ, A and the weight w.

Proof. The proof is rather standard (see [6] or [16, Lemma 5.1]). In fact, it is possible to derive
an analog of this lemma as a corollary of [16, Lemma 5.1] by replacing f by a function g which
is identically zero near the points from Z . However, this approach is not shorter, and we do not
immediately get exactly what we need. Hence, we opted for a direct proof even though it is quite
similar to that of [16, Lemma 5.1]. We adduce it here for completeness.

The main idea of the proof is the employment of the inequality (see [23, Lemma 7.2, p. 191])

ωr ( f, t, [a, b])
p
p ≤

c

t

 t

0

 b

a
|∆r

h( f, x, [a, b])|pdx dh, 0 < p < ∞. (4.1)

Proposition 4.1 implies that each Ji has a nonempty intersection with at most m intervals
I j , 1 ≤ j ≤ n, where m depends only on c0. Since |Ii | ∼ |Ii±1| ∼ ρn(xi ), this implies that
ρn(x) ∼ ρn(y) ∼ |Ii | for all x, y ∈ Ji , and so |x − y| ≤ cρn(x), for all x, y ∈ Ji . Hence, since
Ji ⊂ I A,1/n , Lemma 2.3(iv) implies that w(x) ∼ w(xi ), for all x ∈ Ji , where the equivalence
constants depend only on w, A and c0.

Taking this into account and using (4.1) we have, for each i ∈ I ∗,

w(xi )ωr ( f, |Ji |, Ji )
p
p ≤ cw(xi )ωr ( f, c∗

|Ii |, Ji )
p
p

≤ c|Ii |
−1
 c∗

|Ii |

0


Ji

w(xi )|∆r
h( f, x, Ji )|

pdx dh

≤ c


Ji

 c∗
|Ii |/ϕ(x)

0

ϕ(x)

|Ii |
w(x)|∆r

hϕ(x)( f, x, Ji )|
pdh dx,

where 0 < c∗ < 1 is a constant that we will choose later.
Now, |Ii | ∼ ρn(x) ∼ ϕ(x)/n for x ∈ Ji , i ∈ J ∗, where

J ∗
:=

i ∈ I ∗

 Ji ∩ (I1 ∪ In) = ∅

.

Note that depending on whether or not z1 = −1 and zM = 1 the set J ∗ may or may not be the
same as I ∗.

Now, for i ∈ J ∗, taking into account that c∗
≤

√
c∗, we have

w(xi )ωr ( f, |Ji |, Ji )
p
p ≤ cn


Ji

 c
√

c∗/n

0
w(x)|∆r

hϕ(x)( f, x, Ji )|
pdhdx . (4.2)

Suppose now that i ∈ I ∗
\ J ∗ (we have already remarked that this set may be empty depending

on w). Recall that ∆r
h( f, x, Ji ) is defined to be 0 if x ± rh/2 ∉ Ji and, in particular,

∆r
hϕ(x)( f, x, Ji ) = 0 if 1 − |x | < rhϕ(x)/2. Therefore, since ϕ(x)/|Ii | ≤ cnρn(x)/|Ii | ≤

cn, x ∈ Ji , for each fixed x ∈ Ji , we have c∗
|Ii |/ϕ(x)

0

ϕ(x)

|Ii |
w(x)|∆r

hϕ(x)( f, x, Ji )|
pdh ≤ cn


S
w(x)|∆r

hϕ(x)( f, x, Ji )|
pdh,
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where

S :=


h
 0 < h ≤ min


c∗

|Ii |

ϕ(x)
,

2(1 − |x |)

rϕ(x)


⊂


h
 0 < h ≤ c min


c∗

n2
√

1 − |x |
,


1 − |x |


⊂


h
 0 < h ≤ c

√
c∗/n


.

Therefore, (4.2) is valid for i ∈ I ∗
\ J ∗ as well. We now choose c∗ to be such that c

√
c∗ in the

upper limit of the inner integral in (4.2) is less than θ . Since each x belongs to finitely many Ji ’s
by Proposition 4.1, we have

i∈I ∗

w(xi )ωr ( f, |Ji |, Ji )
p
p ≤ cn


i∈I ∗


Ji

 θ/n

0
w(x)|∆r

hϕ(x)( f, x, Ji )|
pdhdx

≤ cn
 θ/n

0


I A,1/n

w(x)|∆r
hϕ(x)( f, x, I A,1/n)|

pdxdh

≤ cΩr
ϕ( f, θ/n)p

Lp(I A,1/n),w
,

and the proof is complete. �

5. Jackson type estimate

The following lemma follows from [16, Lemma 3.1].

Lemma 5.1. Let 1 ≤ i ≤ n, and let ν0, µ ∈ N0 be such that µ ≥ c∗ max{ν0, 1}, where c∗ is
some sufficiently large absolute (positive) constant. Then there exists a polynomial Ti = Ti (n, µ)
of degree ≤ c(µ)n satisfying the following inequalities for all x ∈ [−1, 1]:

|Ti (x)− χi (x)| ≤ cψi (x)
µ

and T (ν)i (x)
 ≤ c|Ii |

−νψi (x)
µ, 0 ≤ ν ≤ ν0,

where constants c depend only on µ.

We are now ready to state and prove our main direct result.

Theorem 5.2. Let w be a doubling weight from the class W(Z), r, ν0 ∈ N, ν0 ≥ r , 0 < p < ∞,
and f ∈ Lwp . Then, there exists N ∈ N depending on r, ν0, p and the weight w, such that for
every n ≥ N, ϑ > 0 and A > 0, there exists a polynomial Pn ∈ Πn such that

∥ f − Pn∥p,w ≤ cωr
ϕ( f, A, ϑ/n)p,w ≤ cωr

ϕ( f, A, ϑ/n)p,w

and ρνn P(ν)n


p,w

≤ cωr
ϕ( f, A, ϑ/n)p,w ≤ cωr

ϕ( f, A, ϑ/n)p,w, r ≤ ν ≤ ν0,

where constants c depend only on r, ν0, p, ϑ, A and the weight w.

Proof. The idea of this proof is similar to that of [16, Theorem 5.3] where a Jackson type theorem
was proved for the weights wn with moduli of smoothness defined like Ωr

ϕ but with [−1, 1]

instead of I A,h . However, there are some difficulties that we need to overcome now in order to
get the right estimates near Z .
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Let A > 0 and ϑ > 0 be given (without loss of generality, we can assume that 0 < ϑ ≤ 1),
and let n ∈ N be sufficiently large (so that each (nonempty) interval [z j , z j+1], 0 ≤ j ≤ M ,
contains at least 10 intervals Ii ), and let (xi )

n
i=0 be the Chebyshev partition of [−1, 1]. Recall

that Ii := [xi , xi−1], 1 ≤ i ≤ n.
For each 1 ≤ j ≤ M , let

ν j := i such that z j ∈ Ii

(recall that, if z j = xi , 1 ≤ i ≤ n, then we pick the right interval containing z j , i.e., ν j = i in
this case).

Now, we modify partition (xi )
n
i=0 by replacing, for each 1 ≤ j ≤ M , the knots xν j and xν j −1

by z j − σ jρn(z j ) and z + σ jρn(z j ), respectively (replacing only one of them if z j is 1 or −1).
More precisely, for some collection of M constants 0 < σ j ≤ 1/10, 1 ≤ j ≤ M , which we will
choose later, definex1 := 1 − σM/n2, if i = 1 and zM = 1,

and xn−1 := −1 + σ1/n2, if z1 = −1.

Now, for all 1 ≤ i ≤ n − 1 wherexi has not been defined yet, we let

xi :=

z j − σ jρn(z j ), if i = ν j , 1 ≤ j ≤ M,
z j + σ jρn(z j ), if i = ν j − 1, 1 ≤ j ≤ M,
xi , otherwise.

We now note that this new partition (xi )
n
i=0 has the same properties as the original Chebyshev

partition (with constants than now depend on σ j ). In particular, if Ii := [xi ,xi−1], then |Ii | ∼

|Ii |, |Ii±1| ∼ |Ii |, ψi (x) := |Ii |/

|x −xi | + |Ii |


∼ ψi (x) and |χ[xi ,1](x)−χ[xi ,1](x)| ≤ cψi (x)

uniformly in x , etc. We now simplify our notation by dropping tilde and keeping in mind that,
from now on in this proof, (xi )

n
i=0 is the modified Chebyshev partition. Hence, z j is now the

center of Iν j (unless z j is −1 or 1 in which case z j is, respectively, the left or the right endpoint
of Iν j ).

It is convenient to denote

I∗ :=

1 ≤ i ≤ n

 i = ν j , 1 ≤ j ≤ M


and I ∗
:=

1 ≤ i ≤ n

 i ∉ I∗

.

For each 1 ≤ i ≤ n, define qi ∈ Πr to be a polynomial of near best approximation of f on Ii
with the weight w, i.e.,

∥ f − qi∥Lp(Ii ),w
≤ cEr ( f )Lp(Ii ),w,

and define Sn to be a piecewise polynomial function such that Sn|Ii = qi , 1 ≤ i ≤ n.
The following is a crucial observation that follows from Lemma 2.3(v) and properties of wn :

w(x) ∼ wn(x) ∼ wn(xi ), for each x ∈ Ii with i ∈ I ∗. (5.1)

Now, using Whitney’s inequality we get

∥ f − Sn∥
p
p,w =


i∈I ∗


Ii

w(x)| f (x)− Sn(x)|
pdx +

M
j=1


Iν j

w(x)| f (x)− Sn(x)|
pdx

≤ c

i∈I ∗

wn(xi )


Ii

| f (x)− qi (x)|
pdx + c

M
j=1

Er ( f )p

Lp(Z j
σ j ,1/n),w
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≤ c

i∈I ∗

w(xi )ωr ( f, |Ii |, Ii )
p
p + c

M
j=1

Er ( f )p

Lp(Z j
σ j ,1/n),w

≤ cΩr
ϕ( f, θ/n)p

Lp(S),w
+ c

M
j=1

Er ( f )p

Lp(Z j
σ j ,1/n),w

,

where S := S(1/n) := [−1, 1] \ ∪
M
j=1 Z j

σ j ,1/n . In the last estimate, we took into account that
Ii ⊂ S(1/n), i ∈ I ∗.

It is easy to check that Sn can be written as

Sn(x) = qn(x)+

n−1
i=1


qi (x)− qi+1(x)


χi (x),

and define

Pn(x) := qn(x)+

n−1
i=1


qi (x)− qi+1(x)


Ti (x),

where Ti = Ti (n, µ) are the polynomials from Lemma 5.1 with a sufficiently large µ (we will
prescribe it later so that all restrictions below are satisfied).

Lemma 5.1 now implies

∥Sn − Pn∥
p
p,w ≤

 1

−1
w(x)


n−1
i=1

|qi (x)− qi+1(x)| · |χi (x)− Ti (x)|

p

dx

≤ c
 1

−1
w(x)


n−1
i=1

∥qi − qi+1∥∞ ψi (x)
µ

p

dx .

Using the Lagrange interpolation formula and [7, Theorem 4.2.7] we have, for all q ∈ Πr and
0 ≤ l ≤ r − 1,q(l)


∞

≤ cψ−r+l+1
i

q(l)


C(Ii )
≤ cψ−r+l+1

i |Ii |
−l−1/p

∥q∥Lp(Ii )
, (5.2)

and so it yields (with l = 0)

∥Sn − Pn∥
p
p,w ≤ c

 1

−1
w(x)


n−1
i=1

∥qi − qi+1∥Lp(Ii )
|Ii |

−1/pψi (x)
µ−r+1

p

dx .

Now, if 1 ≤ p < ∞, since
n−1

i=1 ψi (x)2 ≤ c, we have by Jensen’s inequality
n−1
i=1

|γi |ψi (x)
2

p

≤ c
n−1
i=1

|γi |
pψi (x)

2
≤ c

n−1
i=1

|γi |
p,

and if 0 < p < 1, then
n−1
i=1

|γi |ψi (x)
2

p

≤

n−1
i=1

|γi |
pψi (x)

2p
≤ c

n−1
i=1

|γi |
p.
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Therefore,

∥Sn − Pn∥
p
p,w ≤ c

 1

−1

n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−1w(x)ψi (x)

(µ−r−1)pdx

≤ c


[−1,1]\∪

M
j=1 Iν j

+

M
j=1


Iν j


n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−1w(x)ψi (x)

(µ−r−1)pdx

=: J∗
+

M
j=1

J j .

Hence, since by (5.1), w(x) ∼ wn(x) ≤ cψi (x)−swn(xi ), for x ∈ [−1, 1] \ ∪
M
j=1 Iν j , we have

J∗
≤ c


[−1,1]\∪

M
j=1 Iν j

n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−1wn(xi )ψi (x)

(µ−r−1)p−sdx

≤ c
n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−1wn(xi )

 1

−1
ψi (x)

(µ−r−1)p−sdx

≤ c
n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

wn(xi ),

if (µ− r − 1)p − s ≥ 2, since
 1
−1 ψ(x)

αdx ≤ c|Ii | if α ≥ 2.
Also, for each 1 ≤ j ≤ M , taking into account that |x − xi | + |Ii | ∼ |z j − xi | + |Ii | and so

ψi (x) ∼ ψi (z j ) uniformly for x ∈ Iν j , we have

J j ≤ c
n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−1


Iν j

w(x)ψi (x)
(µ−r−1)pdx

≤ c
n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−1ψi (z j )

(µ−r−1)p


Iν j

w(x)dx

≤ c
n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−1ψi (z j )

(µ−r−1)pρn(z j )wn(z j )

≤ c
n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

wn(xi )|Ii |
−1ψi (z j )

(µ−r−1)p−sρn(z j ).

Now, using the inequality ρn(x)2 ≤ 4ρn(y) (|x − y| + ρn(y)) we have

|Ii |
−1ψi (z j )

(µ−r−1)p−sρn(z j ) ∼ ψi (z j )
(µ−r−1)p−s ρn(z j )

ρn(xi )

≤ cψi (z j )
(µ−r−1)p−s


|xi − z j | + ρn(xi )

ρn(xi )

1/2

∼ cψi (z j )
(µ−r−1)p−s−1/2

≤ c,

provided (µ−r −1)p − s −1/2 ≥ 0. Note also that we could alternatively estimate this quantity
as follows.
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|Ii |
−1ψi (z j )

(µ−r−1)p−sρn(z j ) ∼ |Ii |
−1


Iν j

ψi (z j )
(µ−r−1)p−sdx

∼ |Ii |
−1


Iν j

ψi (x)
(µ−r−1)p−sdx

≤ c|Ii |
−1
 1

−1
ψi (x)

(µ−r−1)p−sdx ≤ c,

provided (µ− r − 1)p − s ≥ 2.
Combining the above estimates we conclude that

∥Sn − Pn∥
p
p,w ≤ c

n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

wn(xi ).

Now, for each 1 ≤ j ≤ M , let L j := [z j − σ jρn(z j ), z j − c0σ jρn(z j )] and R j := [z j +

c0σ jρn(z j ), z j +σ jρn(z j )] (note that if z1 = −1, then L1 is not defined, and if zM = 1, then RM
is not defined, but these intervals are not needed in these cases), where c0 ∈ (0, 1) is a constant
that we will choose later (it will be 0.9 but we will keep writing “c0” in order not to distract
from the proof). Then, L j ∪ R j ⊂ Iν j , |L j | ∼ |R j | ∼ |Iν j |, and dist(L j , z j ) = dist(R j , z j ) =

c0σ jρn(z j ), for all 1 ≤ j ≤ M .
We continue estimating as follows

∥Sn − Pn∥
p
p,w ≤ c

 
i,i+1∈I ∗

+


i∈I∗

+


i+1∈I∗


∥qi − qi+1∥

p
Lp(Ii )

wn(xi )

≤ c


i,i+1∈I ∗

∥qi − qi+1∥
p
Lp(Ii )

wn(xi )+ c
M

j=1

qν j − qν j +1
p

Lp(Iν j )
wn(xν j )

+ c
M

j=1

qν j −1 − qν j

p
Lp(Iν j −1)

wn(xν j −1)

≤ c


i,i+1∈I ∗

∥qi − qi+1∥
p
Lp(Ii )

wn(xi )+ c
M

j=1

qν j − qν j +1
p

Lp(L j )
wn(xν j )

+ c
M

j=1

qν j −1 − qν j

p
Lp(R j )

wn(xν j −1),

since ∥q∥Lp(I ) ∼ ∥q∥Lp(J ), for any polynomial q ∈ Πr and any intervals I and J of comparable
length which are either next to each other or are such that one interval is a subset of the other one.

Now using Lemma A.1 (that implies that qi ’s are polynomials of near best approximation of
f on intervals which are slightly bigger than Ii ), Whitney’s inequality, (5.1) and the fact that
w(x) ∼ wn(x) ∼ wn(xν j ) for each x ∈ L j and w(x) ∼ wn(x) ∼ wn(xν j −1) for each x ∈ R j ,
we have

∥Sn − Pn∥
p
p,w ≤ c


i,i−1∈I ∗

∥ f − qi∥
p
Lp(Ii ∪Ii−1)

wn(xi )+ c
M

j=1

qν j − f
p

Lp(L j )
wn(xν j )

+ c
M

j=1

 f − qν j +1
p

Lp(L j )
wn(xν j )+ c

M
j=1

qν j −1 − f
p

Lp(R j )
wn(xν j −1)
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+ c
M

j=1

 f − qν j

p
Lp(R j )

wn(xν j −1)

≤ c


i,i−1∈I ∗

ωr ( f, |Ii ∪ Ii−1|, Ii ∪ Ii−1)
p
pw(xi )

+ c
M

j=1

ωr ( f, |Iν j +1 ∪ L j |, Iν j +1 ∪ L j )
p
pw(xν j )

+ c
M

j=1

ωr ( f, |Iν j −1 ∪ R j |, Iν j −1 ∪ R j )
p
pw(xν j −1)+ c

M
j=1

 f − qν j

p
Lp(Iν j ),w

≤ cΩr
ϕ( f, θ/n)p

Lp(S),w + c
M

j=1

Er ( f )p

Lp(Z j
σ j ,1/n),w

,

where S := S(1/n) := [−1, 1] \ ∪
M
j=1 Z j

c0σ j ,1/n (note that S(1/n) ⊂ S(1/n) and so Ωr
ϕ( f,

θ/n)p
Lp(S),w

≤ Ωr
ϕ( f, θ/n)p

Lp(S),w).

Now,

P(ν)n (x) = p(ν)n (x)+

n−1
i=1

ν
l=0

ν
l

 
q(l)i (x)− q(l)i+1(x)


T (ν−l)

i (x),

and so, for r ≤ ν ≤ ν0 (which guarantees that p(ν)n ≡ 0), we have using Lemma 5.1 and estimate
(5.2) ρνn P(ν)n

p

p,w
≤

 1

−1
w(x)ρn(x)

νp


n−1
i=1

ν
l=0

ν
l

 q(l)i (x)− q(l)i+1(x)
 · T (ν−l)

i (x)
p

dx

≤ c
 1

−1
w(x)ρn(x)

νp


n−1
i=1

ν
l=0

q(l)i − q(l)i+1


∞

|Ii |
−ν+lψi (x)

µ

p

dx

≤ c
 1

−1
w(x)ρn(x)

νp


n−1
i=1

ν
l=0

∥qi − qi+1∥Lp(Ii )
|Ii |

−ν−1/pψi (x)
µ−r+l+1

p

dx

≤ c
 1

−1
w(x)ρn(x)

νp


n−1
i=1

∥qi − qi+1∥Lp(Ii )
|Ii |

−ν−1/pψi (x)
µ−r+1

p

dx

≤ c
 1

−1
w(x)ρn(x)

νp
n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−νp−1ψi (x)

(µ−r−1)pdx .

Now, since ρn(x)2 ≤ cρn(xi ) (|x − xi | + ρn(xi )) and |Ii | ∼ ρn(xi ), we haveρνn P(ν)n

p

p,w
≤ c

 1

−1
w(x)

n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

[ρn(xi ) (|x − xi | + ρn(xi ))]νp/2

× |Ii |
−νp−1ψi (x)

(µ−r−1)pdx

≤ c
 1

−1
w(x)

n−1
i=1

∥qi − qi+1∥
p
Lp(Ii )

|Ii |
−1ψi (x)

(µ−r−1−ν/2)pdx,
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and exactly the same sequence of inequalities as above (only the power of ψi is different) yieldsρνn P(ν)n


p,w

≤ cΩr
ϕ( f, θ/n)p

Lp(S),w + c
M

j=1

Er ( f )p

Lp(Z j
σ j ,1/n),w

,

provided (µ− r − 1 − ν0/2)p − s ≥ 2.
Thus, if we pick µ = µ(r, ν0, p, s) so that this (the most restrictive in this proof) inequality

is satisfied then, for each m ∈ N, we constructed a polynomial Pm of degree < n0m with some
n0 ∈ N depending only on r , ν0, p and the doubling constant of the weight w, such that

max
ρνm P(ν)m


p,w

, ∥ f − Pm∥p,w


≤ cΩr

ϕ( f, θ/m)p
Lp(S(1/m)),w

+ c
M

j=1

Er ( f )p

Lp(Z j
σ j ,1/m ),w

.

Suppose now that n ≥ Dn0 =: N , where D is a natural number ≥ 10 that will be picked in
a moment. Then there exists m ∈ N such that mn0 ≤ n < (m + 1)n0 (note that m ≥ D and so
n0 ≤ n/m ≤ (1 + 1/D)n0). Then the polynomial Pm is of degree < n0m ≤ n (i.e., Pm ∈ Πn).

Now, we need to pick θ , σ j ’s, c0 and D so that

Ωr
ϕ( f, θ/m)p

Lp(S(1/m)),w
+ c

M
j=1

Er ( f )p

Lp(Z j
σ j ,1/m ),w

≤ cωr
ϕ( f, A, ϑ/n)p,w. (5.3)

This will complete the proof since ρm(x) ∼ ρn(x).
The estimate (5.3) is satisfied if, in particular, for 1 ≤ j ≤ M ,

Z j
A,ϑ/n ⊂ Z j

c0σ j ,1/m, Z j
σ j ,1/m ⊂ Z j

2A,ϑ/n and θ/m ≤ ϑ/n

(see properties of the moduli in Section 3). We pick θ so that θ ≤ ϑ/(2n0), and to finish the
proof we need to make sure that the following holds:

c0σ jρm(z j ) ≥ Aρ(ϑ/n, z j ) and σ jρm(z j ) ≤ 2Aρ(ϑ/n, z j ), 1 ≤ j ≤ M. (5.4)

Recall that σ j is assumed to be ≤ 1/10, and that it cannot depend on m or n (but can depend on
n0). We also note that we can assume that ϑ is small since

ωr
ϕ( f, A, ϑ1/n)p,w ≤ cωr

ϕ( f, A, ϑ2/n)p,w, if ϑ1 ≤ ϑ2.

So we assume that ϑ ≤ 1 is such that it guarantees that σ j ≤ 1/10 (see the estimates below).
Alternatively, we can guarantee this by letting n0 be sufficiently large.

Hence, if z j = ±1 the inequalities in (5.4) become

Aϑ2
≤ c0σ j

n2

m2 and σ j
n2

m2 ≤ 2Aϑ2,

and recalling that n0 ≤ n/m ≤ (1 + 1/D)n0, we now pick σ j so that

Aϑ2

c0n2
0

≤ σ j ≤
2Aϑ2

(1 + 1/D)2n2
0

.

For example, with c0 := 0.9 we set σ j := Aϑ2/(0.9n2
0) (recall that D ≥ 10).
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We now let D ≥ 10 be so large that D ≥ 10/ϕ(z j ) for all 1 ≤ j ≤ M , for which z j ≠ ±1
(so, clearly, D depends only on the weight w). Recalling that n ≥ m ≥ D, this implies that, if
z j ≠ ±1, then

ϕ(z j )/m ≤ ρ(1/m, z j ) ≤ 1.1ϕ(z j )/m and ϑϕ(z j )/n ≤ ρ(ϑ/n, z j ) ≤ 1.1ϑϕ(z j )/n.

Therefore, to guarantee that the inequalities in (5.4) hold it is sufficient to pick σ j so that

1.1Aϑ

c0
≤ σ j

n

m
and 1.1σ j

n

m
≤ 2Aϑ,

which, in turn, follows from

1.1Aϑ

c0n0
≤ σ j ≤

2Aϑ

1.1(1 + 1/D)n0
.

Now, recall that we already picked c0 = 0.9, and let

σ j :=
1.1Aϑ

0.9n0
,

for all 1 ≤ j ≤ M such that z j ≠ ±1. �

6. Remez and Markov–Bernstein type theorems and applications

Most results in this section are based on a well known idea to use Remez type results to go
back and forth between ϕ(x) and ϕ(x)+ 1/n in various estimates involving polynomials and on
the fact that ∥Pn∥p,w ∼ ∥Pn∥p,wn for polynomials from Πn (G. Mastroianni and V. Totik deserve
most credit for this observation). Note that most of them are given for general doubling weights
without the requirement that they belong to W(Z) (but see a comment following the statement
of Corollary 6.3).

6.1. Remez type theorems and applications

We start with the following crucial lemma that states that the norms of polynomials of degree
< n are essentially the same irrespectively of whether the weight w or the weight wn is used
(where w is a doubling weight).

Lemma 6.1. Let w be a doubling weight on [−1, 1]. Then for every 0 < p < ∞ there is a
constant c0 depending only on p and the doubling constant of w such that, for every polynomial
Pn ∈ Πn ,

c−1
0 ∥Pn∥p,w ≤ ∥Pn∥p,wn ≤ c0 ∥Pn∥p,w .

In the case 1 ≤ p < ∞, this is [20, Theorem 7.2]. It is obtained in [20] as a corollary of
an analogous result for trigonometric polynomials (see [20, Theorem 3.1]) with a method that
does not depend on whether or not p is greater or less than 1. Since the result for trigonometric
polynomials holds for all 0 < p < ∞ (see [13, Theorem 2.1]), we conclude that Lemma 6.1 is
valid.

The following Remez inequality for doubling weights holds.
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Theorem 6.2 ([13,20]). Let W be a 2π -periodic function which is a doubling weight on [0, 2π ],
and let 0 < p < ∞ be arbitrary. Then there is a constant C > 0 depending only on p and on the
doubling constant of W so that if Tn is a trigonometric polynomial of degree at most n and E is
a measurable subset of [0, 2π ] of measure at most Λ/n, 1 ≤ Λ ≤ n, that is a union of intervals
of length at least c/n, then π

−π

|Tn(u)|
pW (u)du ≤


C

c

Λ 
[0,2π ]\E

|Tn(u)|
pW (u)du.

The following is a corollary for algebraic polynomials (see [20] in the case 1 ≤ p < ∞, the
case 0 < p < 1 is analogous).

Corollary 6.3. Let w be a doubling weight and 0 < p < ∞. If E ⊂ [−1, 1] is a union of at
most K intervals and


E (1 − x2)−1/2dx ≤ Λ/n, Λ ≤ n, then for each pn ∈ Πn , we have 1

−1
|pn(x)|

pw(x) dx ≤ C


[−1,1]\E
|pn(x)|

pw(x) dx,

where the constant C depends only on Λ, K , p and the doubling constant of w.

We note that there is a simple proof showing that Corollary 6.3 is satisfied for doubling
weights from the class W(Z). This follows from the usual unweighted Remez inequality
(i.e., Corollary 6.3 with w ≡ 1) and the fact that wn(x) ∼ Qn(x)p, where 0 < p < ∞ and
Qn ∈ Πn (see [20, (7.34)–(7.36)] or [16, Theorem 4.1]).

Indeed, suppose that E ⊂ [−1, 1] is a union of at most K intervals and


E (1 − x2)−1/2dx ≤

c/n. We enlarge E to E ∪ E , where E := Z1,1/n = [−1, 1] ∩ ∪
M
j=1[z j − ρn(z j ), z j + ρn(z j )]

and note that
E (1 − x2)−1/2dx ≤

M
j=1

 z j +ρn(z j )

z j −ρn(z j )

(1 − x2)−1/2dx ≤ c/n.

Then, using Lemma 6.1 we have

∥Pn∥p,w ∼ ∥Pn∥p,wn ≤ c ∥Pn Qn∥p ≤ c ∥Pn Qn∥Lp([−1,1]\(E∪E))
≤ c ∥Pn∥Lp([−1,1]\(E∪E)),wn

≤ c ∥Pn∥Lp([−1,1]\(E∪E)),w ≤ c ∥Pn∥Lp([−1,1]\E),w ,

since w ∼ wn on [−1, 1] \ E by Lemma 2.3(v).
One of the applications of Corollary 6.3 is the following result which is quite useful in the

proofs.

Theorem 6.4. Let w be a doubling weight, 0 < p < ∞, n ∈ N, 0 ≤ µ ≤ n. Then, for any
Pn ∈ Πn ,ϕµPn


p,w ∼

ϕµPn


p,wn
(6.1)

and λµn Pn


p,w ∼
λµn Pn


p,wn

, (6.2)
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where λn(x) := max
√

1 − x2, 1/n


, and the equivalence constants depend only on p and the

doubling constant of w, and are independent of µ.

Proof. The idea used in this proof is well known. Remez type results allow us to replace [−1, 1]

by [−1 + n−2, 1 − n−2
] where λn ∼ ϕ. We have to be careful with the constants though making

sure that they do not depend on µ.
We start with the equivalence (6.1). Note that if µ is an even integer, then this equivalence

immediately follows from Lemma 6.1 since ϕµPn ∈ Πn+µ ⊂ Π2n and wn ∼ w2n . It is now clear
how to proceed. We let m := 2⌊µ/2⌋. Then m is an even integer such that µ− 2 < m ≤ µ (note
that m = 0 if µ < 2), and Qn+m := ϕm Pn ∈ Πn+m ⊂ Π2n .

Since w is a doubling weight, then wϕγ p, γ > 0, is also a doubling weight (with a doubling
constant depending on ⌈γ ⌉, p and the doubling constant of w) and (see also [20, Lemma 4.5 and
p. 65])

(wϕγ p)n ∼ wnϕ
γ p
n ,

where ϕn(x) ∼ ϕ(x) + 1/n, and the equivalence constants depend on ⌈γ ⌉, p and the doubling
constant of w.

Hence, denoting Jn := [−1 + n−2, 1 − n−2
], η := µ− m, noting that 0 ≤ η < 2 (and so ⌈η⌉

is either 1 or 2 allowing us to replace constant that depend on ⌈η⌉ by those independent of η),
and using Lemma 6.1 and Corollary 6.3 we haveϕµPn


p,w =

ϕηQn+m


p,w = ∥Qn+m∥p,wϕηp ∼ ∥Qn+m∥p,(wϕηp)n

∼ ∥Qn+m∥Lp(Jn),(wϕηp)n
∼ ∥Qn+m∥Lp(Jn),wnϕ

ηp
n

∼ ∥Qn+m∥Lp(Jn),wnϕηp .

Now, since the weight wnϕ
ηp is doubling with the doubling constant depending only on the

doubling constant of w and p, we can continue as follows.

∥Qn+m∥Lp(Jn),wnϕηp ∼ ∥Qn+m∥p,wnϕηp =
ϕηQn+m


p,wn

=
ϕµPn


p,wn

.

Note that none of the constants in the equivalences above depend on µ. This completes the proof
of (6.1).

Now, let En :=


x
 √

1 − x2 ≤ 1/n


and note that λn(x) = 1/n if x ∈ En , and λn(x) = ϕ(x)

if x ∈ [−1, 1] \ En . Using (6.1) we have

2min{0,1−1/p}
λµn Pn


p,w ≤

λµn Pn


Lp(En),w
+
λµn Pn


Lp([−1,1]\En),w

= n−µ
∥Pn∥Lp(En),w +

ϕµPn


Lp([−1,1]\En),w

≤ n−µ
∥Pn∥p,w +

ϕµPn


p,w

≤ c0


n−µ

∥Pn∥p,wn +
ϕµPn


p,wn


≤ 2c0

λµn Pn


p,wn
.

In the other direction, the sequence of inequalities is exactly the same (switching w and wn).
This verifies (6.2). �

If we allow constants to depend on µ, then we have the following result.
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Corollary 6.5. Let w be a doubling weight, 0 < p < ∞, n ∈ N and µ ≥ 0. Then, for any
Pn ∈ Πn ,ϕµn Pn


p,w ∼

ϕµPn


p,w ∼
ϕµPn


p,wn

∼
ϕµn Pn


p,wn

,

where the equivalence constants depend only on p, µ and the doubling constant of w.

Proof. Since λn(x) ∼ ϕn(x) ∼ ϕ(x) + 1/n and ϕ(x) ≤ ϕ(x) + 1/n ∼ ϕn(x), we immediately
get from Theorem 6.4ϕµPn


p,w ∼

ϕµPn


p,wn
≤ c

ϕµn Pn


p,wn
∼
ϕµn Pn


p,w .

The following sequence finishes the proof:ϕµPn


p,w = ∥Pn∥p,wϕµp ∼ ∥Pn∥p,(wϕµp)n ∼ ∥Pn∥p,wnϕ
µp
n

=
ϕµn Pn


p,wn

. �

6.2. Markov–Bernstein type theorems

In this subsection, we continue with the applications of the results presented in the first part
of this section and discuss several Markov–Bernstein estimates for doubling weights.

We note that the following theorem can be obtained from [20, Theorem 4.1] and [13,
Theorem 3.1] (Markov–Bernstein estimate for trigonometric polynomials) with the same proof
as that of [20, Theorem 7.3, (7.10) and (7.12)]. However, we provide an alternative proof using
the equivalence results from the previous section.

Theorem 6.6. Let w be a doubling weight, 0 < p < ∞ and r ∈ N. Then, for all n ∈ N and
Pn ∈ Πn ,

n−r
ϕr P(r)n


p,w

∼ n−r
ϕr P(r)n


p,wn

∼

ρr
n P(r)n


p,wn

∼

ρr
n P(r)n


p,w

≤ c ∥Pn∥p,w ∼ ∥Pn∥p,wn ,

where the constant c and the equivalence constants depend only on r, p and the doubling
constant of w.

Proof. The statement of the lemma is an immediate consequence of Corollary 6.5 and the
following estimate (see [16, Lemma 6.1], for example)ρr

n P(r)n


p,wn

≤ c ∥Pn∥p,wn ,

where the constant c depends only on r , p and the doubling constant of w. �

In the proof of inverse results for 0 < p < 1 we need to know how the constants in
Markov–Bernstein estimates depend on the order of derivatives.

We start with the following result that was proved in [16] (see Corollaries 6.4 and 6.6 there).

Lemma 6.7. Let w be a doubling weight and 0 < p < 1. Then, for all n, r ∈ N and l ∈ N0 such
that l ≤ r ≤ n − 1, and Pn ∈ Πn ,δr

n P(r)n


p,wn

≤ (c∗)
r−l r !

l!

δl
n P(l)n


p,wn
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and ϕr P(r)n


p,wn

≤ (c∗)
r−l r !

l!
nr−l

ϕl P(l)n


p,wn

,

where δn(x) := max
√

1 − x2/n, 1/n2


, and the constant c∗ depends only on p and the

doubling constant of w.

We remark that if we are not interested in the exact dependence of the constants on l (the order
of the lower derivative in the estimates), then the first estimate in Lemma 6.7 and Corollary 6.5
imply the following (weaker) analog of the second estimate in Lemma 6.7 which actually would
have been sufficient for our purposes:ϕr P(r)n


p,wn

≤ nr
δr

n P(r)n


p,wn

≤ c(c∗)
rr !nr

δl
n P(l)n


p,wn

≤ c(c∗)
rr !nr−l

ϕl P(l)n


p,wn

,

where c is allowed to depend on l in addition to p and the doubling constant of w.
Taking into account Theorem 6.4 and observing that δn(x) = λn(x)/n we immediately get the

following corollary (in order not to overcomplicate the notation we incorporate the extra constant
into c∗, i.e., we emphasize once again that constants c∗ in different statements are different).

Corollary 6.8. Let w be a doubling weight and 0 < p < 1. Then, for all n, r ∈ N and l ∈ N0
such that l ≤ r ≤ n − 1, and Pn ∈ Πn ,δr

n P(r)n


p,w

≤ (c∗)
r−l r !

l!

δl
n P(l)n


p,w

and ϕr P(r)n


p,w

≤ (c∗)
r−l r !

l!
nr−l

ϕl P(l)n


p,w

,

where the constant c∗ depends only on p and the doubling constant of w.

Now, taking into account that δn(x) ≤ ρn(x) ≤ 2δn(x), this immediately implies the
following.

Corollary 6.9. Let w be a doubling weight and 0 < p < 1. Then, for all n, r ∈ N and l ∈ N0
such that l ≤ r ≤ n − 1, and Pn ∈ Πn ,ρr

n P(r)n


p,w

≤ 2l(c∗)
r−l r !

l!

ρl
n P(l)n


p,w

,

where the constant c∗ depends only on p and the doubling constant of w.

7. Two crucial auxiliary lemmas

In the case 1 ≤ p < ∞, we have the following lemma.

Lemma 7.1. Let w be a doubling weight, 1 ≤ p < ∞ and A > 0. Then for any n, r ∈ N,
I := Z j

A,1/n , and any polynomials Qn ∈ Πn and qr ∈ Πr satisfying Q(ν)
n (z j ) = q(ν)r (z j ), 0 ≤

ν ≤ r − 1, the following inequality holds

∥Qn − qr∥Lp(I ),w ≤ cn−r
ϕr Q(r)

n


p,w

,

where the constant c depends only on r, p, A and the doubling constant of w.
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Remark 7.2. Using the same proof it is possible to show that, for any f such that f (r−1)
∈

AC(I ),

Er ( f )Lp(I ),w ≤ c
ρr

n f (r)


Lp(I ),wn
.

At the same time, wn on the right-hand side of this estimate cannot be replaced with w since,
otherwise, together with Lemma 8.2 and Theorem 5.2 we would get the estimate En( f )p,w ≤

c
ρr

n f (r)


p,w which is not valid for all doubling weights (see [18, Example 3.5]). In fact, even

the estimate Er ( f )Lp(I ),w ≤ c
ρr

n f (r)


p,w is invalid in general.

Proof of Lemma 7.1. The proof is rather straightforward and relies on Taylor’s theorem (see
e.g. [4, Proposition 4.1]). However, since it is short and works for all doubling weights, we sketch
it below for completeness. Denote z := z j , and note that (Qn − qr )

(ν)(z) = 0, 0 ≤ ν ≤ r − 1,
and that we can assume that n ≥ r + 1. Using Taylor’s theorem with the integral remainder we
have

Qn(x)− qr (x) =
1

(r − 1)!

 x

z
(x − u)r−1 Q(r)

n (u)du.

Hence, using Hölder’s inequality (with 1/p + 1/p′
= 1) we have

∥Qn − qr∥
p
Lp(I ),w

≤


I
w(x)


[z,x]

|x − u|
r−1

|Q(r)
n (u)|du

p

dx

≤


I
w(x)


[z,x]

|x − u|
(r−1)p′

du

p/p′ 
[z,x]

|Q(r)
n (u)|pdudx

≤


I
w(x)|x − z|r p−1


[z,x]

|Q(r)
n (u)|pdudx

≤ (Aρn(z))
r p−1

Q(r)
n

p

Lp(I )


I
w(x)dx .

Now, using the fact that w(I ) ≤ cw ([z − ρn(z), z + ρn(z)]) with c depending only on A and the
doubling constant of w, and the fact that ρn(x) ∼ ρn(z) and wn(x) ∼ wn(z), for x ∈ I , we have

∥Qn − qr∥
p
Lp(I ),w

≤ cwn(z)
ρr

n Q(r)
n

p

Lp(I )
≤ c

ρr
n Q(r)

n

p

Lp(I ),wn
≤ c

ρr
n Q(r)

n

p

p,wn

≤ cn−r
ϕr Q(r)

n

p

p,w
,

where the last estimate follows from Corollary 6.5. �

If 0 < p < 1, we no longer can use Hölder’s inequality in a straightforward way, and so it
takes much more effort to get an analog of Lemma 7.1. If there is a simple proof of the following
lemma, we were unable to find it.

Lemma 7.3. Let w be a doubling weight and 0 < p < 1. Then there exists a positive constant
θ ≤ 1 depending only on p and the doubling constant of w such that, for n, r ∈ N, I := Z j

θ,1/n ,

and any polynomials Qn ∈ Πn and qr ∈ Πr satisfying Q(ν)
n (z j ) = q(ν)r (z j ), 0 ≤ ν ≤ r − 1, the
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following inequality holds

∥Qn − qr∥Lp(I ),w ≤ cn−r
ϕr Q(r)

n


p,w

,

where the constant c depends only on r, p and the doubling constant of w.

Proof. We use the approach from [11, Section 6]. Denote g := Qn − qr and z := z j , and note

that g(ν)(z) = 0, 0 ≤ ν ≤ r − 1, and g(r) = Q(r)
n . Using Taylor’s theorem with the integral

remainder we have

g(x) =
1

(r − 1)!

 x

z
(x − u)r−1g(r)(u)du.

Hence,

∥Qn − qr∥
p
Lp(I ),w

= ∥g∥
p
Lp(I ),w

=


I
|g(x)|pw(x)dx

≤


I

 x

z
(x − u)r−1g(r)(u)w(x)1/pdu

p

dx

≤


I

 x

z

(x − u)r−1g(r)(u)
1−p

w(x)−1+1/p
×

(x − u)r−1g(r)(u)
p
w(x)du

p

dx

≤


I

 (x − u)r−1g(r)(u)
1−p

w(x)−1+1/p
p

L∞[z,x]

×

 x

z

(x − u)r−1g(r)(u)
p
w(x)du

p

dx .

Now, using Hölder’s inequality with σ1 = 1/(1 − p) and σ2 = 1/p (note that 1/σ1 + 1/σ2 = 1)
we have

∥g∥
p
Lp(I ),w

≤


I

 (x − u)r−1g(r)(u)
1−p

w(x)−1+1/p
p/(1−p)

L∞[z,x]

dx

1/σ1

×


I

 x

z

(x − u)r−1g(r)(u)
p
w(x)du

 dx

1/σ2

≤


I

 (x − u)r−1g(r)(u)
p
w(x)


L∞[z,x]

dx

1−p

×


I

 x

z

(x − u)r−1g(r)(u)
p
w(x)du

 dx

p

=: T p
1 × T p

2 .

To estimate T2 we recall that [z, x] := [x, z] if x < z and write

T2 =


I
w(x)


[z,x]

|x − u|
(r−1)p

|g(r)(u)|pdudx

≤


I

g(r)(u)p
du


I
w(x)|x − z|(r−1)pdx

≤ (θρn(z))
(r−1)p

g(r)
p

Lp(I )


I
w(x)dx

≤ (θρn(z))
(r−1)pρn(z)wn(z)

g(r)
p

Lp(I )
.
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Since wn(x) ∼ wn(z) and ρn(x) ∼ ρn(z), x ∈ I , this implies

T2 ≤ cρn(z)
1−p

ρr
ng(r)

p

Lp(I ),wn
.

Now, we need to estimate

T p/(1−p)
1 =


I

 (x − u)r−1g(r)(u)
p
w(x)


L∞[z,x]

dx .

For u between z and x we have

|x − u|
(r−1)p

|g(r)(u)|p
= |x − u|

(r−1)p

n−1
ν=r

g(ν)(x)

(ν − r)!
(u − x)ν−r


p

≤

n−1
ν=r

|g(ν)(x)|p

|x − z|ν−1

(ν − r)!

p

,

and so

T p/(1−p)
1 ≤


I
w(x)

n−1
ν=r

|g(ν)(x)|p

|x − z|ν−1

(ν − r)!

p

dx

≤ c


I
w(x)

n−1
ν=r

|ρn(x)
νg(ν)(x)|p


|x − z|ν−1

ρn(z)ν(ν − r)!

p

dx

≤ c
n−1
ν=r


(θρn(z))ν−1

ρn(z)ν(ν − r)!

p ρνn g(ν)
p

Lp(I ),w

≤ c
n−1
ν=r


θν−1

ρn(z)(ν − r)!

p ρνn g(ν)
p

p,w
.

We now use Corollary 6.9 to conclude

T p/(1−p)
1 ≤ c

n−1
ν=r


θν−1

ρn(z)(ν − r)!
2r (c∗)

ν−r ν!

r !

p ρr
ng(r)

p

p,w

≤ cρn(z)
−p
ρr

ng(r)
p

p,w

∞
ν=r
(θc∗)

νp
ν

r

p

≤ cρn(z)
−p
ρr

ng(r)
p

p,w
,

provided θc∗ ≤ 1/2. Therefore,

T1 ≤ cρn(z)
p−1

ρr
ng(r)

1−p

p,w
.

Combining estimates of T1 and T2, we have

∥g∥Lp(I ) ≤ c
ρr

ng(r)
p

Lp(I ),wn

ρr
ng(r)

1−p

p,w
≤ c

ρr
ng(r)

p

p,wn

ρr
ng(r)

1−p

p,w

≤ cn−r
ϕr g(r)


p,w

,

noting that the last estimate immediately follows from Corollary 6.5. �
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8. Preliminary results for inverse theorems

Lemma 8.1. If w is a doubling weight from the class W(Z), 0 < p < ∞, f ∈ Lwp , r ∈ N, and
A, t > 0, then

ωr
ϕ( f, A, t)p,w ≤ c ∥ f ∥p,w ,

where c depends only on r, p, A and the weight w.

Proof. First of all, it is clear that

M
j=1

Er ( f )Lp(Z j
2A,t ),w

≤

M
j=1

∥ f ∥Lp(Z j
2A,t ),w

≤ M ∥ f ∥p,w .

Now, recall that ∆r
hϕ(x)( f, x, I A,h) = 0 if x ∉ SA,h ⊂ Drh/2, where

SA,h :=


x
 [x − rhϕ(x)/2, x + rhϕ(x)/2] ⊂ I A,h


and

Drh/2 :=


x
 x ≠ ±1 and x ± rhϕ(x)/2 ∈ [−1, 1]


=


x
 |x | ≤ (4 − r2h2)/(4 + r2h2)


,

and so

Ωr
ϕ( f, A, t)p,w = sup

0<h≤t

∆r
hϕ( f )


Lp(SA,h),w

.

Let h ∈ (0, t] be fixed, x ∈ SA,h and denote yi (x) := x + (i − r/2)hϕ(x), 0 ≤ i ≤ r .
Then, [x, yi (x)] ⊂ I A,h and |x − yi (x)| ≤ (r/2)ρ(h, x), and so Lemma 2.3(iv) implies that
w(x) ∼ w(yi (x)).

Now, taking into account that 1/2 ≤ y′

i (x) ≤ 3/2, x ∈ Drh/2, we have∆r
hϕ( f )

p

Lp(SA,h),w
≤


SA,h

w(x)


r

i=0

r

i


| f (x + (i − r/2)hϕ(x))|

p

dx

≤ c
r

i=0


SA,h

w(yi (x)) | f (yi (x))|
p dx

≤ c
 1

−1
w(y) | f (y)|p dy ≤ c ∥ f ∥

p
p,w . �

Lemma 8.2. Let w be a doubling weight from the class W(Z), 1 ≤ p < ∞ n, r ∈ N and
A, t > 0. If f is such that f (r−1)

∈ ACloc ((−1, 1) \ Z) and
ϕr f (r)


p,w < ∞, then

Ωr
ϕ( f, A, t)p,w ≤ ctr

ϕr f (r)


p,w
,

where c depends only on r, A, p and the weight w.

Proof. Recall that

Ωr
ϕ( f, A, t)p,w = sup

0<h≤t

∆r
hϕ( f )


Lp(SA,h),w

,
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where

SA,h :=


x
 [x − rhϕ(x)/2, x + rhϕ(x)/2] ⊂ I A,h


.

Since I A,h has at most M +1 components, it is sufficient (and necessary) to verify the lemma for
each of them. We have two different types of components: when a component is “in the middle”
of [−1, 1], i.e.,

J j
A,h := [z j + Aρ(h, z j ), z j+1 − Aρ(h, z j+1)], where 1 ≤ j ≤ M − 1,

and when a component is near the endpoints of [−1, 1]. Note that there is a component of this
type only when z1 ≠ −1 and zM ≠ 1. More precisely, define

J 0
A,h := [−1, z1 − Aρ(h, z1)] if z1 ≠ −1

and

J M
A,h := [zM + Aρ(h, z j ), 1] if zM ≠ 1.

Recall that ∆r
hϕ(x)( f, x, I A,h) = 0 if x ∈ J j

A,h and [x − rhϕ(x)/2, x + rhϕ(x)/2] ⊄ J j
A,h ,

and so we also denote

S j
A,h :=


x
 [x − rhϕ(x)/2, x + rhϕ(x)/2] ⊂ J j

A,h


, 0 ≤ j ≤ M.

Suppose now that 1 ≤ p < ∞ and let h ∈ (0, t] be fixed. Since f has the (r − 1)st locally
absolutely continuous derivative inside each S j

A,h , we have for any x ∈ S j
A,h

∆r
hϕ(x)( f, x) =

 hϕ(x)/2

−hϕ(x)/2
. . .

 hϕ(x)/2

−hϕ(x)/2
f (r)(x + t1 + · · · + tr )dtr · · · dt1,

and, by Lemma 2.3(iv), w(x) ∼ w(u), for u ∈ [x − rhϕ(x)/2, x + rhϕ(x)/2].
Therefore,

S j
A,h

w(x)|∆r
hϕ(x)( f, x)|pdx

1/p

≤


S j

A,h

 hϕ(x)/2

−hϕ(x)/2
. . .

 hϕ(x)/2

−hϕ(x)/2
w(x)1/p

| f (r)(x + t1 + · · · + tr )|dtr · · · dt1

p

dx

1/p

≤ c


S j

A,h

 hϕ(x)/2

−hϕ(x)/2
. . .

 hϕ(x)/2

−hϕ(x)/2
w(x + t1 + · · · + tr )

1/p

× | f (r)(x + t1 + · · · + tr )|dtr · · · dt1

p

dx

1/p

.

By Hölder’s inequality, for each u satisfying [x + u − hϕ(x)/2, x + u + hϕ(x)/2] ⊂ S j
A,h , we

have  hϕ(x)/2

−hϕ(x)/2
w(x + u + tr )

1/p
| f (r)(x + u + tr )|dtr =

 x+u+hϕ(x)/2

x+u−hϕ(x)/2
w(v)1/p

| f (r)(v)|dv

≤

w1/pϕr f (r)


Lp(A(x,u))

ϕ−r


Lp′ (A(x,u)) ,
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where 1/p + 1/p′
= 1 and

A(x, u) := [x + u − hϕ(x)/2, x + u + hϕ(x)/2] .

The needed estimate now follows from
S j

A,h

 hϕ(x)/2

−hϕ(x)/2
. . .

 hϕ(x)/2

−hϕ(x)/2

ϕ−r


Lp′ (A(x,t1+···+tr−1))

×

w1/pϕr f (r)


Lp(A(x,t1+···+tr−1))
dtr−1 · · · dt1

p

dx ≤ chr p
w1/pϕr f (r)

p

p
,

1 ≤ p < ∞. (8.1)

Note that, in the case r = 1, (8.1) is understood as
S j

A,h

ϕ−1
p

Lp′ (A(x,0))

w1/pϕ f ′

p

Lp(A(x,0))
dx ≤ ch p

w1/pϕ f ′

p

p
, 1 ≤ p < ∞. (8.2)

Estimates (8.1) and (8.2) are proved in exactly the same way as [17, (4.2)–(4.4)]. �

The following lemma can be proved using exactly the same sequence of estimates that were
used to prove [16, Lemma 6.9] with the only difference that the second estimate of Corollary 6.8
should be used instead of [16, Corollary 6.6].

Lemma 8.3. Let w be a doubling weight, 0 < p < 1 and n, r ∈ N. Then, there exists a positive
constant ϑ depending only on r, p and the doubling constant of w, such that, for any Pn ∈ Πn
and 0 < h ≤ ϑ/n,

(1/2)1/p hr
ϕr P(r)n


p,w

≤

∆r
hϕ(Pn)


p,w

≤ (3/2)1/phr
ϕr P(r)n


p,w

.

Taking into account that

Ωr
ϕ(Pn, A, t)p,w = sup

0<h≤t

∆r
hϕ(Pn)


Lp(I A,h),w

≤ sup
0<h≤t

∆r
hϕ(Pn)


p,w

we immediately get the following corollary.

Corollary 8.4. Let w be a doubling weight, 0 < p < 1 and n, r ∈ N. Then, there exists a
positive constant ϑ ≤ 1 depending only on r, p and the doubling constant of w, such that, for
any Pn ∈ Πn , A > 0 and 0 < t ≤ ϑ/n,

Ωr
ϕ(Pn, A, t)p,w ≤ n−r

ϕr P(r)n


p,w

.

9. Inverse theorem for 1 ≤ p < ∞

Theorem 9.1. Suppose that w is a doubling weight from the class W(Z), r ∈ N, 1 ≤ p < ∞,
and f ∈ Lwp . Then

ωr
ϕ( f, A, n−1)p,w ≤ cn−r

n
k=1

kr−1 Ek( f )p,w,

where the constant c depends only on r, p, A and the weight w.
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Proof. Let P∗
n ∈ Πn denote a polynomial of (near) best approximation to f with weight w, i.e.,

c
 f − P∗

n


p,w ≤ inf

Pn∈Πn

∥ f − Pn∥p,w =: En( f )p,w.

We let N ∈ N be such that 2N
≤ n < 2N+1. To estimate Ωr

ϕ( f, A, n−1)p,w, using Lemma 8.1
we have

Ωr
ϕ( f, A, n−1)p,w ≤ Ωr

ϕ( f, A, 2−N )p,w

≤ Ωr
ϕ( f − P∗

2N , A, 2−N )p,w + Ωr
ϕ(P

∗

2N , A, 2−N )p,w

≤ c
 f − P∗

2N


p,w

+ Ωr
ϕ(P

∗

2N , A, 2−N )p,w

≤ cE2N ( f )p,w + Ωr
ϕ(P

∗

2N , A, 2−N )p,w.

Now, using

P∗

2N = P∗

1 +

N−1
i=0

(P∗

2i+1 − P∗

2i ) (9.1)

as well as Lemma 8.2 we have

Ωr
ϕ(P

∗

2N , A, 2−N )p,w ≤

N−1
i=0

Ωr
ϕ


P∗

2i+1 − P∗

2i , A, 2−N


p,w

≤ c2−Nr
N−1
i=0

ϕr P∗

2i+1 − P∗

2i

(r)
p,w

.

Now, for each 1 ≤ j ≤ M , taking into account that Z j
2A,t1

⊂ Z j
2A,t2

if t1 ≤ t2, we have

Er ( f )Lp(Z j
2A,1/n),w

≤ inf
q∈Πr

∥ f − q∥Lp(Z j
2A,2−N ),w

≤
 f − P∗

2N


Lp(Z j

2A,2−N ),w
+ inf

q∈Πr

P∗

2N − q


Lp(Z j
2A,2−N ),w

≤ cE2N ( f )p,w +
P∗

2N − qr (P
∗

2N )


Lp(Z j
2A,2−N ),w

,

where qr (g) denotes the Taylor polynomial of degree < r at z j for g. Using (9.1) again, noting
that

qr (P
∗

2N ) = P∗

1 +

N−1
i=0

qr (P
∗

2i+1 − P∗

2i ), (9.2)

and taking Lemma 7.1 into account we haveP∗

2N − qr (P
∗

2N )


Lp(Z j
2A,2−N ),w

≤

N−1
i=0

(P∗

2i+1 − P∗

2i )− qr (P
∗

2i+1 − P∗

2i )


Lp(Z j
2A,2−N ),w

≤ c
N−1
i=0

2−Nr
ϕr (P∗

2i+1 − P∗

2i )
(r)


p,w
.

Hence,

ωr
ϕ( f, A, n−1)p,w ≤ cE2N ( f )p,w + c2−Nr

N−1
i=0

ϕr P∗

2i+1 − P∗

2i

(r)
p,w

.
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Now, using Theorem 6.6 we have

ωr
ϕ( f, A, n−1)p,w ≤ cE2N ( f )p,w + c2−Nr

N−1
i=0

2ir
P∗

2i+1 − P∗

2i


p,w

≤ c2−Nr
N

i=0

2ir E2i ( f )p,w

≤ cn−r

E1( f )p,w +

N
i=1

2i
k=2i−1+1

kr−1 Ek( f )p,w


≤ cn−r

n
k=1

kr−1 Ek( f )p,w

with all constants c depending only on r , p, A and the weight w. �

10. Inverse theorem for 0 < p < 1

Theorem 10.1. Suppose that w is a doubling weight from the class W(Z), and let r ∈ N, A > 0,
0 < p < 1, and f ∈ Lwp . Then there exists a positive constant ϑ ≤ 1 depending only on p, r , A
and the doubling constant of w, and such that

ωr
ϕ( f, A, ϑn−1)

p
p,w ≤ cn−r p

n
k=1

kr p−1 Ek( f )p
p,w,

where the constant c depends only on r, p, A and the weight w.

Proof. The method of the proof is standard and well known (see [10] or [16]). With the same
notation as in the proof of Theorem 9.1 (i.e., P∗

n is a polynomial of (near) best weighted
approximation to f and 2N

≤ n < 2N+1), we have using Lemma 8.1 (note that we will be
putting restrictions on ϑ as we go along)

Ωr
ϕ( f, A, ϑn−1)

p
p,w ≤ cE2N ( f )p

p,w + Ωr
ϕ(P

∗

2N , A, ϑ2−N )
p
p,w

and, using (9.1),

Ωr
ϕ(P

∗

2N , A, ϑ2−N )
p
p,w ≤

N−1
i=0

Ωr
ϕ


P∗

2i+1 − P∗

2i , A, ϑ2−N
p

p,w
.

Lemma 8.2 can no longer be used, and so we employ Corollary 8.4 (we assume that the current
constant ϑ ≤ 1 is not bigger than ϑ from Corollary 8.4) which implies

Ωr
ϕ(P

∗

2N , A, ϑ2−N )
p
p,w ≤ 2−Nr p

N−1
i=0

ϕr P∗

2i+1 − P∗

2i

(r)p

p,w
.

For each 1 ≤ j ≤ M , recalling that qr (g) denotes the Taylor polynomial of degree < r at z j
for g, we have

Er ( f )p

Lp(Z j
2A,ϑ/n),w

≤ inf
q∈Πr

∥ f − q∥
p

Lp(Z j
2A,ϑ2−N ),w

≤ cE2N ( f )p
p,w +

P∗

2N − qr (P
∗

2N )
p

Lp(Z j
2A,ϑ2−N ),w

.
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Now, we make sure that ϑ is so small that

Z j
2A,ϑ2−N ⊂ Z j

θ,2−N , 1 ≤ j ≤ M,

where θ is the constant from Lemma 7.3. This is achieved if ϑ ≤ θ/(2A). Therefore, Lemma 7.3
implies

∥Q − qr (Q)∥Lp(Z j
2A,ϑ2−N ),w

≤ c2−Nr
ϕr Q(r)


p,w

, for any Q ∈ Π2N ,

with c depending only on r , p and the doubling constant of w. Hence, using (9.1) and (9.2) we
obtainP∗

2N − qr (P
∗

2N )
p

Lp(Z j
2A,ϑ2−N ),w

≤

N−1
i=0

(P∗

2i+1 − P∗

2i )− qr (P
∗

2i+1 − P∗

2i )
p

Lp(Z j
2A,ϑ2−N ),w

≤ c
N−1
i=0

2−Nr p
ϕr (P∗

2i+1 − P∗

2i )
(r)
p

p,w
.

Therefore,

ωr
ϕ( f, A, ϑn−1)

p
p,w ≤ cE2N ( f )p

p,w + c2−Nr p
N−1
i=0

ϕr P∗

2i+1 − P∗

2i

(r)p

p,w
.

Now, using Theorem 6.6, similarly to the case 1 ≤ p < ∞, we get

ωr
ϕ( f, A, ϑn−1)

p
p,w ≤ cE2N ( f )p

p,w + c2−Nr p
N−1
i=0

2ir p
P∗

2i+1 − P∗

2i

p
p,w

≤ c2−Nr p
N

i=0

2ir p E2i ( f )p
p,w

≤ cn−r p
n

k=1

kr p−1 Ek( f )p
p,w

with all constants c depending only on r , p and the weight w. �

11. Equivalence of moduli and realization functionals

Let w be a doubling weight from the class W(Z), r ∈ N, 0 < p < ∞ and f ∈ Lwp .
Realization functionals were introduced by Hristov and Ivanov in [15]. They became a quite

useful tool to measure smoothness of functions once it was observed that certain K -functionals
are zero if 0 < p < 1 and so cannot serve this purpose if p < 1 (see [9]). See [9,11,8] for more
discussions.

We define the following realization functionals as follows

Rr,ϕ( f, t,Πn)p,w := inf
Pn∈Πn


∥ f − Pn∥p,w + tr

ϕr P(r)n


p,w


.

Clearly, Rr,ϕ( f, t1,Πn)p,w ∼ Rr,ϕ( f, t2,Πn)p,w if t1 ∼ t2.



K.A. Kopotun / Journal of Approximation Theory 198 (2015) 24–62 57

Theorem 5.2 implies that, for every n ≥ N (with N depending only on r , p and w), ϑ > 0
and A > 0, there exists a polynomial Pn ∈ Πn such that

Rr,ϕ( f, 1/n,Πn)p,w ≤ cωr
ϕ( f, A, ϑ/n)p,w, (11.1)

where constants c depend only on r , p, ϑ , A and the weight w.
Lemma 8.1 implies that, for any 0 < p < ∞, f ∈ Lwp , r ∈ N and A, t > 0, and any g ∈ Lwp ,

Ωr
ϕ( f, A, t)p,w ≤ cΩr

ϕ( f − g, A, t)p,w + cΩr
ϕ(g, A, t)p,w

≤ c ∥ f − g∥p,w + cΩr
ϕ(g, A, t)p,w, (11.2)

where c depends only on r , p, A and the weight w.
Now, in the case 1 ≤ p < ∞, Lemma 8.2 additionally yields that, if g is such that g(r−1)

∈

ACloc ((−1, 1) \ Z) and
ϕr g(r)


p,w < ∞, then

Ωr
ϕ( f, A, t)p,w ≤ c ∥ f − g∥p,w + ctr

ϕr g(r)


p,w
.

This, in particular, implies that, if 1 ≤ p < ∞, then for any n ∈ N, ϑ > 0, A > 0 and
0 < t ≤ ϑ/n,

Ωr
ϕ( f, A, t)p,w ≤ c ∥ f − Pn∥p,w + cn−r

ϕr P(r)n


p,w

, (11.3)

where c depends only on r , p, ϑ , A and the weight w.
If we use Corollary 8.4 instead of Lemma 8.2 then we conclude that (11.3) is valid if

0 < p < 1 as well, but now 0 < ϑ ≤ 1 is some fixed constant that depends on r , p and
the doubling constant of w.

Now, using Lemma 7.1 we have, for 1 ≤ p < ∞, any ϑ > 0 and 0 < t ≤ ϑ/n (taking into
account that Z j

2A,t ⊂ Z j
2A,ϑ/n ⊂ Z j

2Aϑ max{ϑ,1},1/n),

M
j=1

inf
q∈Πr

∥ f − q∥Lp(Z j
2A,t ),w

≤ c ∥ f − Pn∥p,w +

M
j=1

inf
q∈Πr

∥Pn − q∥Lp(Z j
2Aϑ max{ϑ,1},1/n),w

≤ c ∥ f − Pn∥p,w + cn−r
ϕr P(r)n


p,w

, (11.4)

where constants c depend on r , p, A, ϑ and the doubling constant of w.
In the case 0 < p < 1, using Lemma 7.3 we conclude that there exists 0 < ϑ ≤ 1 depending

only on p, A and the doubling constant of w such that, for 0 < t ≤ ϑ/n, (11.4) is satisfied with
constants c that depend on r , p, A, and the doubling constant of w. Note that this follows from
the observation that Z j

2A,t ⊂ Z j
2A,ϑ/n ⊂ Z j

2Aϑ,1/n ⊂ Z j
θ,1/n , where θ is the constant from the

statement of Lemma 7.3 and ϑ := min{θ/(2A), 1}.
Hence, we actually verified the validity of the following two corollaries. First, (11.1), (11.3)

and (11.4) yield the following result.

Corollary 11.1. Let w be a doubling weight from the class W(Z), r ∈ N, 1 ≤ p < ∞ and
f ∈ Lwp . Then there exists a constant N ∈ N depending on r, p and the weight w such that, for
any ϑ2 ≥ ϑ1 > 0, n ≥ N, ϑ1/n ≤ t ≤ ϑ2/n, and A > 0, we have

Rr,ϕ( f, t,Πn)p,w ∼ ωr
ϕ( f, A, t)p,w ∼ ωr

ϕ( f, A, t)p,w.
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Corollary 11.1 implies, in particular, that ωr
ϕ( f, A1, t1)p,w ∼ ωr

ϕ( f, A2, t2)p,w if A1 ∼ A2
and t1 ∼ t2.

In the case 0 < p < 1, we have

Corollary 11.2. Let w be a doubling weight from the class W(Z), r ∈ N, 0 < p < 1, A > 0,
and f ∈ Lwp . Then there exist N ∈ N depending on r, p and the weight w, and ϑ > 0
depending on r, p, A, and the doubling constant of w, such that, for any ϑ1 ∈ (0, ϑ], n ≥ N,
ϑ1/n ≤ t ≤ ϑ/n, we have

Rr,ϕ( f, t,Πn)p,w ∼ ωr
ϕ( f, A, t)p,w ∼ ωr

ϕ( f, A, t)p,w.

Corollary 11.2 implies that, for A1, A2 > 0, A1 ∼ A2, there exists t0 > 0 such that ωr
ϕ( f,

A1, t1)p,w ∼ ωr
ϕ( f, A2, t2)p,w for 0 < t1, t2 ≤ t0 such that t1 ∼ t2.
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Appendix A

Lemma A.1. Suppose that w is a doubling weight from the class W(Z), 0 < p < ∞, f ∈ Lwp ,
and suppose that intervals I and J are such that I ⊂ J ⊂ [−1, 1] and |J | ≤ c0|I |. Then, for any
r ∈ N, if q ∈ Πr is a polynomial of near best approximation to f on I in the Lp (quasi)norm
with weight w, i.e.,

∥ f − q∥Lp(I ),w ≤ c1 Er ( f )Lp(I ),w,

then q is also a polynomial of near best approximation to f on J . In other words,

∥ f − q∥Lp(J ),w ≤ cEr ( f )Lp(J ),w,

where the constant c depends only on p, c0, c1 and the weight w.

Proof. First, we assume that |I | ≤ D/2, and so I may contain at most one z j from Z . Now, we
denote by a the midpoint of I and let n ∈ N be such that

ρn+1(a) < |I |/1000 ≤ ρn(a).

Then |I |/1000 ≤ ρn(a) ≤ |I |/250.
We recall again that ρn(x) ≤ |Ii | ≤ 5ρn(x) for x ∈ Ii , and |Ii±1| ≤ 3|Ii |. Hence, if a ∈ Iν ,

for some ν, then

2
i=0

|Iν−i | ≤ (1 + 3 + 9)|Iν | = 13|Iν | ≤ 65ρn(a) < |I |/2,

and so Iν−1 ∪ Iν−2 ⊂ I . Similarly,

2
i=0

|Iν+i | ≤ (1 + 3 + 9)|Iν | = 13|Iν | ≤ 65ρn(a) < |I |/2,

and so Iν+1 ∪ Iν+2 ⊂ I .
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In other words, I contains at least 5 adjacent intervals Iν+i , i = 2, 1, 0,−1,−2. Since I
contains at most one z j , we now can pick one of these 5 intervals in such a way that there is
another interval Ii between it and z j (if I does not contain any z j ’s, we pick one of the intervals
“in the middle” of I , for example Iν). Suppose that the interval that we picked is Iµ. Then,

|I | ≥ |Iµ| ≥ |Iν |/9 ≥ ρn(a)/9 ≥ |I |/9000,

i.e., |Iµ| ∼ |I |. Also, Iµ ⊂ Ic,1/n with some absolute constant c, and Lemma 2.3(iv) implies that
w(x) ∼ w(y), for x, y ∈ Iµ, with equivalence constants depending only on w.

Suppose now thatq is a polynomial of near best approximation of f on J , i.e.,

∥ f −q∥Lp(J ),w ≤ cEr ( f )Lp(J ),w.

Then, taking into account that |Iµ| ∼ |I | ∼ |J | and using properties of doubling weights (see
[20, Lemma 2.1(vi) and Lemma 7.1], for example), we have

∥q − q∥
p
Lp(J ),w

=


J
w(x)|q(x)− q(x)|pdx ≤ ∥q − q∥

p
C(J )


J
w(x)dx

≤ c ∥q − q∥
p
C(Iµ)


Iµ
w(x)dx ≤ c|Iµ|

−1
∥q − q∥

p
Lp(Iµ)


Iµ
w(xµ)dx

≤ c


Iµ
|q(x)− q(x)|pw(xµ)dx ≤ c ∥q − q∥

p
Lp(Iµ),w

≤ c ∥q − q∥
p
Lp(I ),w

.

Therefore,

∥ f − q∥Lp(J ),w ≤ c ∥ f −q∥Lp(J ),w + c ∥q − q∥Lp(J ),w

≤ c ∥ f −q∥Lp(J ),w + c ∥q − q∥Lp(I ),w

≤ c ∥ f −q∥Lp(J ),w + c ∥q − f ∥Lp(I ),w + c ∥ f − q∥Lp(I ),w

≤ c ∥ f −q∥Lp(J ),w + c ∥ f − q∥Lp(I ),w

≤ cEr ( f )Lp(J ),w + cEr ( f )Lp(I ),w

≤ cEr ( f )Lp(J ),w,

and the proof is complete if |I | ≤ D/2.
If |I | > D/2, then |I | ∼ |J | ∼ 1, and we take n ∈ N to be such I contains at least 4M + 4

intervals Ii . Then I contains 4 adjacent intervals Ii not containing any points from Z , and we
can use the same argument as above. �

Appendix B. Definitions, notation and glossary of symbols

In this section, we repeat the main definitions and list the main notation used throughout this
paper (or provide references to appropriate statements/formulas).

N {1, 2, 3, . . .}
N0 N ∪ {0}

C(I ) Space of continuous functions on I
∥ f ∥C(I ) maxx∈I | f (x)|
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∥ f ∥Lp(I ),w


I | f (u)|pw(u)du
1/p

, 0 < p < ∞

∥ f ∥Lp(I ) ∥ f ∥Lp(I ),1

∥·∥p,w ∥·∥Lp[−1,1],w

∥·∥p ∥·∥p,1

Lwp All measurable functions on [−1, 1] such that ∥ f ∥p,w < ∞

Πr Space of algebraic polynomials of degree ≤ r − 1
Er ( f )Lp(I ),w infq∈Πr ∥ f − q∥Lp(I ),w

[x, y], x > y [y, x]

|[x, y]| |x − y|

2I The interval of length 2|I | with the same center as I
ϕ(x)

√
1 − x2

ρ(h, x) hϕ(x)+ h2

ρn(x) n−1ϕ(x)+ n−2 (=ρ(1/n, x))
λn(x) max {ϕ(x), 1/n}

w(I )


I∩[−1,1]
w(u)du

wn(x) ρn(x)−1w ([x − ρn(x), x + ρn(x)])
Z (z j )

M
j=1, −1 ≤ z1 < · · · < zM−1 < zM ≤ 1

W(Z) See Definition 2.1
pmin(S) The smallest positive number from the set S of nonnegative reals
D := D(w) pmin


|z j − z j−1|

 1 ≤ j ≤ M + 1

, where z0 := −1, zM+1 := 1

Z j
A,h


x ∈ [−1, 1]

 |x − z j | ≤ Aρ(h, z j )

, 1 ≤ j ≤ M

Z A,h ∪
M
j=1 Z j

A,h

I A,h

[−1, 1] \ Z A,h

cl
=

x ∈ [−1, 1]
 |x − z j | ≥ Aρ(h, z j ), for all 1 ≤ j ≤ M


J j

A,h [z j + Aρ(h, z j ), z j+1 − Aρ(h, z j+1)], 1 ≤ j ≤ M − 1

J 0
A,h [−1, z1 − Aρ(h, z1)] if z1 ≠ −1

J M
A,h [zM + Aρ(h, z j ), 1] if zM ≠ 1

SA,h


x
 [x − rhϕ(x)/2, x + rhϕ(x)/2] ⊂ I A,h


S j

A,h


x
 [x − rhϕ(x)/2, x + rhϕ(x)/2] ⊂ J j

A,h


, 0 ≤ j ≤ M

xi cos(iπ/n)
Ii [xi , xi−1]

ψi := ψi (x) |Ii |/ (|x − xi | + |Ii |)

χi (x) := χ[xi ,1](x) 1 if xi ≤ x ≤ 1, and 0 otherwise
∆r

h( f, x, S)
r

i=0

 r
i


(−1)r−i f (x − rh/2 + ih) if [x − rh/2, x + rh/2] ⊂ S, and 0

otherwise (r th symmetric difference on S)
ωr ( f, t, I )p sup0<h≤t

∆r
h( f, x, I )


Lp(I )

(usual r th modulus of smoothness on an

interval I )

Ωr
ϕ( f, A, t)p,w sup0<h≤t

∆r
hϕ(·)( f, ·, I A,h)


Lp(I A,h),w

(main part weighted modulus)

ωr
ϕ( f, A, t)p,w Ωr

ϕ( f, A, t)p,w +
M

j=1 Er ( f )Lp(Z j
2A,t ),w

(complete weighted modulus)
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Ωr
ϕ( f, A, t)p,w


t−1

 t
0

∆r
hϕ(·)( f, ·, I A,h)

p

Lp(I A,h),w
dh

1/p

(averaged main part

weighted modulus)ωr
ϕ( f, A, t)p,w Ωr

ϕ( f, A, t)p,w +
M

j=1 Er ( f )Lp(Z j
2A,t ),w

(averaged weighted modulus)

Ωr
ϕ( f, t)Lp(S),w


t−1

 t
0


S w(x)|∆

r
hϕ(x)( f, x, S)|pdxdh

1/p
, S ⊂ [−1, 1] (restricted

averaged main part modulus)
Rr,ϕ( f, t,Πn)p,w See Section 11 (realization functional)
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