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Abstract

We investigate a correspondence between strict K -monotonicity, K -order continuity and the best
dominated approximation problems with respect to the Hardy–Littlewood–Pólya relation ≺. Namely, we
study, in terms of an LKM point and a UKM point, a necessary condition for uniqueness of the best
dominated approximation under the relation ≺ in a symmetric space E . Next, we characterize a relation
between a point of K -order continuity and an existence of a best dominated approximant with respect to ≺.
Finally, we present a compete criteria, written in a notion of K -order continuity, under which a closed and
K -bounded above subset of a symmetric space E is proximinal.
c⃝ 2016 Elsevier Inc. All rights reserved.
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1. Introduction

The natural motivation for exploring of the geometrical structure of Banach spaces for many
decades was an application to the best approximation. Recently, many authors have been investi-
gated intensively the relations between local structure of monotonicity and rotundity properties of
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Banach spaces and the best approximation (see [7,9,12,13,16]). One of the most essential results
was published by W. Kurc in [16], who has established a connection between the best dominated
approximation problems and order continuity as well as strict and uniformly monotone proper-
ties. It is worth mentioning that in view of the previous results in the paper [8], local approach
of strict and uniform monotone properties and order continuity in Banach lattice has been re-
searched with application to the best dominated approximation. The intension of this paper is to
find a complete characterization of existence and uniqueness of the best approximant from the
cone of all nonnegative and decreasing functions that oscillate around the given function x in a
symmetric space E . This induces the crucial question of replacing the partial order with respect
to the relation ≤ in the best dominated approximation problems by the Hardy–Littlewood–Pólya
relation ≺. It is worth mentioning that recently in papers [4,10,5] there has been researched local
and global monotone properties in the sense of the Hardy–Littlewood–Pólya relation ≺ in sym-
metric spaces (so-called K -monotone properties). In the spirit of the previous investigations, it is
natural to expect a correspondence between K -monotone properties as well as K -order continu-
ity and the best dominated approximation in the sense of the Hardy–Littlewood–Pólya relation.

In Section 2, we recall the needed terminology.
Section 3 is devoted to connections between the best dominated approximation problems

under the Hardy–Littlewood–Pólya relation ≺ and K -order continuity and also K -monotone
properties.

First, we establish a useful property for a vanishing decreasing rearrangement at infinity and
its maximal function for any element in L1

+ L∞. Next, we discuss the sufficient condition, in
terms of the best dominated approximation with respect to the Hardy–Littlewood–Pólya relation
≺, for an LKM point and a UKM point in symmetric space E . In our investigation of the best
dominated approximation under the relation ≺ and strict K -monotonicity, we restrict ourself to
closed subsets of a symmetric space E which are bounded above or below with respect to ≺. In
this problem, we also answer the key question whether a uniqueness of the best approximation
for bounded subsets in E in the sense of ≺ yields strict K -monotonicity of E . We present an
example of Lorentz spaces Γp,w strictly K -monotone in which uniqueness of the best dominated
approximation in the sense of ≺ is not fulfilled. Next, we characterize under which conditions
any closed subset of a symmetric space E , additionally bounded above or below in the sense
of ≺, is proximinal. Finally, we present complete criteria for K -order continuity in symmetric
spaces expressed in terms of the best dominated approximation with respect to the relation ≺.

2. Preliminaries

Denote by R and N the sets of reals and positive integers, respectively. Let S(X) (resp. B(X))
be the unit sphere (resp. the closed unit ball) of a Banach space (X, ∥·∥X ). Denote by L0 the set of
all (equivalence classes of) extended real valued Lebesgue measurable functions on I = [0, α),
where α = 1 or α = ∞. A Banach lattice (E, ∥ · ∥E ) is called a Banach function space (or a
Köthe space) if it is a sublattice of L0 satisfying the following conditions:

(1) If x ∈ L0, y ∈ E and |x | ≤ |y| a.e., then x ∈ E and ∥x∥E ≤ ∥y∥E .
(2) There exists a strictly positive x ∈ E .

By E+ we denote the positive cone of E , i.e. E+
= {x ∈ E : x ≥ 0}. We use the notation

Ac
= I \ A for any measurable set A. By µ denote the Lebesgue measure on I . A point x ∈ E

is said to be a point of order continuity if for any sequence (xn) ⊂ E+ such that xn ≤ |x |

and xn → 0 a.e. we have ∥xn∥E → 0. A Köthe space E is called order continuous (shortly
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E ∈ (OC)) if every element x of E is a point of order continuity (see [17]). Unless we say
otherwise, we assume in the whole paper that E has the Fatou property, i.e. if (xn) ⊂ E+,
supn∈N ∥xn∥E < ∞ and xn ↑ x ∈ L0, then x ∈ E and ∥xn∥E ↑ ∥x∥E . For any function x ∈ L0

we define its distribution function by

dx (λ) = µ {s ∈ I : |x (s)| > λ} , λ ≥ 0,

and its decreasing rearrangement by

x∗ (t) = inf {λ > 0 : dx (λ) ≤ t} , t ≥ 0.

A function x ∈ L0 is said to be ∗regular if

m


t ∈ supp(x) : |x(t)| < x∗(α)


= 0.

The above notion is given under the following convention x∗(∞) = limt→∞ x∗(t) if α = ∞

and x∗(∞) = 0 if α = 1. Given x ∈ L0 we denote the maximal function of x∗ by

x∗∗(t) =
1
t

 t

0
x∗(s)ds.

It is well known that x∗
≤ x∗∗, x∗∗ is decreasing and subadditive, i.e.

(x + y)∗∗
≤ x∗∗

+ y∗∗

for any x, y ∈ L0. Two functions x, y ∈ L0 are said to be equimeasurable (shortly x ∼ y)
if dx = dy . The notion ≺ so-called Hardy–Littlewood–Pólya relation is given for any x, y in
L1

+ L∞ by

x ≺ y ⇔ x∗∗(t) ≤ y∗∗(t) for all t > 0.

A Banach function space (E, ∥·∥E ) is called rearrangement invariant (r.i. for short) or symmetric
if whenever x ∈ L0 and y ∈ E with x ∼ y, then x ∈ E and ∥x∥E = ∥y∥E . For more properties
of dx , x∗ and x∗∗ see [1,15]. Let 0 < p < ∞ and w ∈ L0 be a nonnegative weight function, the
Lorentz space Γp,w is a subspace of L0 such that

∥x∥Γp,w
:=

 α

0
x∗∗p(t)w(t)dt

1/p

< ∞.

Additionally, we assume that w is from class Dp, i.e.

W (s) :=

 s

0
w(t)dt < ∞ and Wp(s) := s p

 α

s
t−pw(t)dt < ∞

for all 0 < s ≤ 1 if α = 1 and for all 0 < s < ∞ otherwise. These two conditions guarantee that
the Lorentz space Γp,w is nontrivial. It is well known that


Γp,w, ∥ · ∥Γp,w


is a symmetric space

with the Fatou property. It is easy to see that for α = 1 by the Lebesgue Dominated Convergence
Theorem, Γp,w is order continuous. It was proved in [14] that in the case when α = ∞ the
space Γp,w has order continuous norm if and only if


∞

0 w (t) dt = ∞. The spaces Γp,w were
introduced by A.P. Calderón in [3] and it is an interpolation space between L1 and L∞ yielded
by the Lions–Peetre K -method [2,15]. For more details about the properties of Γp,w the reader
is referred to [14,7,8].

A symmetric space E is called K -monotone (shortly E ∈ (K M)) if for any x ∈ L1
+ L∞

and y ∈ E such that x ≺ y, we have x ∈ E and ∥x∥E ≤ ∥y∥E . Recall that a symmetric space
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is K -monotone if and only if E is exact interpolation space between L1 and L∞. Moreover, it
is well known that a symmetric spaces with Fatou property or with an order continuous norm is
K -monotone (see [15]). A point x ∈ E is said to be a point of K -order continuity of E if and
only if for any (xn) ⊂ E such that xn ≺ x and x∗

n → 0 a.e. we have ∥xn∥E → 0. A symmetric
space E is called K -order continuous (shortly E ∈ (K OC)) if every element x of E is a point of
K -order continuity. A point x ∈ E is a point of upper K -monotonicity (lower K -monotonicity)
shortly a UKM point (an LKM point) of E if and only if for any y ∈ E , x∗

≠ y∗ with x ≺ y (with
y ≺ x), we have ∥x∥E < ∥y∥E (∥y∥E < ∥x∥E ), respectively. Clearly, a symmetric space E is
strictly K -monotone (shortly E ∈ (SK M)) if every point of E is a UKM point or equivalently
if every point of E is an LKM point [5]. For more details about K -monotonicity the reader is
referred to [4,10,11].

Let (E, ∥·∥E ) be a symmetric space and let Y ⊂ X be a nonempty subset. For x ∈ X define

PY (x) = {y ∈ Y : ∥x − y∥ = dist(x, Y )}.

Any element y ∈ PY (x) is called a best approximant in Y to x . A nonempty set Y ⊂ X is called
proximinal or set of existence if PY (x) ≠ ∅ for any x ∈ X . A nonempty set Y is said to be a
Chebyshev set if it is proximinal and PY (x) is a singleton for any x ∈ E .

3. Best K -dominated approximation problems

First, we present auxiliary result which will be useful in our investigation. We omit the proof
of the following lemma since it follows instantly by L’Hospital’s rule.

Lemma 3.1. Let x ∈ L1
+ L∞ and x∗(∞) = 0, then x∗∗(∞) = 0.

Now, concerning a local approach, we characterize strict K -monotonicity of symmetric spaces
E in terms of the best dominated approximation in the sense of the Hardy–Littlewood–Pólya
relation ≺. We start our investigation of a UKM point and an LKM point examining uniqueness
of the best approximation for a closed set which is also bounded below in the sense of ≺.

Theorem 3.2. Let E be a symmetric space and x ∈ E+. If for any closed subset K of the space
E such that x ≺ K , the set PK (x) is at most singleton, then x is a UKM point and an LKM point.

Proof. For a contrary we assume that x is no UKM point, i.e. there exists y ∈ E such that
x∗

≠ y∗, x ≺ y and ∥x∥E = ∥y∥E . Define

K =


x + u∗
: u ∈ E, x ≺ u ≺ y


.

Observe that for every z = x + u∗
∈ K we have x ≺ z and ∥x − z∥E = ∥u∥E . Since

x ≺ u ≺ y, by assumption that E is a symmetric space it follows that ∥x∥E ≤ ∥u∥E ≤ ∥y∥E (see
[1,15]). Therefore, ∥x∥E = ∥x − z∥E = infw∈K ∥x − w∥E . Moreover, since x∗

≠ y∗ we obtain
x + x∗

≠ x + y∗ and so K is no singleton. Consequently, PK (x) = K which contradicts with
assumption that PK (x) is a singleton. Now, we show that K is closed. Assume (xn) ⊂ K , x0 ∈ E
and xn converges to x0 in norm of E . Then, there exist (un) ⊂ E such that xn = x + u∗

n and
x ≺ un ≺ y for any n ∈ N. Define u = x0 − x . Observe thatu∗

n − u


E =
u∗

n − (x0 − x)


E = ∥xn − x0∥E → 0 (1)

whence, by symmetry of E , passing to subsequence if necessary we obtain that u∗
n converges to

u a.e. By symmetry of E and by Lemma 3.2 [15] for any n ∈ N and t > 0 we have
u∗

n − u∗
∗∗

(t)
χ(0,t)


E ≤

u∗
n − u∗


E ≤

u∗
n − u


E .
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Consequently, by condition (1) and by the triangle inequality for the maximal function it follows
that u∗∗

n converges to u∗∗ for all t > 0 and also u∗
= u a.e. Thus, by assumption x ≺ un ≺ y for

any n ∈ N we get x ≺ u ≺ y. So x0 ∈ K .
Now, suppose that x is not an LKM point, then there exists y ∈ E such that x∗

≠ y∗ and
y ≺ x and ∥x∥E = ∥y∥E . Denoting

K =


x + u∗
: u ∈ E, y ≺ u ≺ x


and proceeding analogously as above we finish the proof. �

Now, we continue our research of a UKM point and an LKM point in the notion of uniqueness
of the best approximation for a set bounded above with respect to ≺.

Theorem 3.3. Let E be a symmetric space and x ∈ E+ be ∗regular. If for any closed subset K
of the space E such that K ≺ x, the set PK (x) is at most singleton, then x is an LKM point.
Additionally, if y∗(∞) = 0 for all y ∈ E, then x is a UKM point.

Proof. Let x be ∗regular. By Lemma 2.2 [8] there exists a measure preserving transformation
σ : supp(x) → supp(x∗) such that x∗

◦ σ = x a.e. on supp(x). Clearly, if µ(supp(x)) < ∞ then
we may construct the measure preserving transformation σ : I → I with x∗

◦ σ = x a.e. on I
(see [1,18]). Assume that x is not an LKM point. Then, there exists y ∈ E such that x∗

≠ y∗,
y ≺ x and ∥x∥E = ∥y∥E . Define

K =


x

2
−

u∗
◦ σ

2
: u ∈ E, y ≺ u ≺ x


.

Notice that K ≠ ∅ is no singleton. Let z ∈ K , there exists u ∈ E such that z = (x − u∗
◦ σ)/2

and y ≺ u ≺ x . Then, we have

z =
x − u∗

◦ σ

2
≺

x∗
+ u∗

2
and y ≺

x∗
+ u∗

2
≺ x .

In consequence, K ≺ x and also by symmetry of the space E and by assumption that
∥x∥E = ∥y∥E we get

∥x − z∥E =
1
2

x + u∗
◦ σ


E =

1
2

x∗
◦ σ + u∗

◦ σ


E =
1
2

x∗
+ u∗


E = ∥x∥E .

Therefore,

inf
z∈K

∥x − z∥E = ∥x∥E

which implies that the set PK (x) = K is no singleton. Now, we prove that K is closed. Let
(zn) ⊂ K and z ∈ E such that zn converges to z in norm of E . Then, there is a sequence
(un) ⊂ E such that zn = (x − u∗

n ◦ σ)/2 and y ≺ un ≺ x for every n ∈ N. Define u = x − 2z.
Then,

1
2

u − u∗
n ◦ σ


E =

1
2

x − u∗
n ◦ σ − 2z


E = ∥zn − z∥E → 0. (2)

Thus, by symmetry of E , passing to subsequence and relabelling if necessary we may assume
that u∗

n ◦ σ converges to u a.e. By symmetry of E and by Lemma 3.2 [15] for any n ∈ N and
t > 0 we have

u∗
n − u∗

∗∗
(t)

χ(0,t)


E ≤
u∗

n − u∗


E ≤
u∗

n ◦ σ − u


E
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and alsou∗
◦ σ − u


E ≤

u∗
n ◦ σ − u


E +

u∗
◦ σ − u∗

n ◦ σ


E

=
u∗

n ◦ σ − u


E +
u∗

− u∗
n


E

≤ 2
u∗

n ◦ σ − u


E .

Hence, by condition (2) we obtain u∗∗
n converges to u∗∗ for all t > 0 and u∗

◦ σ = u a.e.
Therefore, z = (x − u∗

◦ σ)/2 and by assumption that y ≺ un ≺ x for any n ∈ N we get
y ≺ u ≺ x and so z ∈ K . Now, we assume that x is no UKM point. Then, there exists y ∈ E
with y∗

≠ x∗, x ≺ y and ∥x∥E = ∥y∥E . We continue the proof in cases.
Case 1. Assume y∗

≥ x∗. Denote

K =

−u : u ∈ E+, u ≤ y∗

◦ σ − x, u ≺ x

.

Clearly, K ≠ ∅ is no singleton and K ≺ x . Let z = −u ∈ K . Then, u ∈ E+, u ≤ y∗
◦ σ − x

and u ≺ x . So, by symmetry of E and by assumption that ∥x∥E = ∥y∥E we have ∥x − z∥E =

∥x + u∥E = ∥x∥E for any −u ∈ K . Hence, PK (x) = K . We claim that K is closed. Suppose
that (un) ⊂ E+ with un ≤ y∗

◦ σ − x , u∗
n ≺ x∗ for every n ∈ N and also un converges to u ∈ E

in norm of E . Now, by symmetry of E , passing to subsequence and relabelling if necessary we
obtain un → u a.e. and u ≤ y∗

◦ σ − x a.e. and also u ∈ E+. Moreover, by Lemma 3.2 [15] for
any n ∈ N and t > 0 we get

u∗
n − u∗

∗∗
(t)

χ(0,t)


E ≤
u∗

n − u∗


E ≤ ∥un − u∥E .

Hence, since un ≺ x , by assumption ∥un − u∥E → 0 and by the triangle inequality of the
maximal function we conclude that u ≺ x and so u ∈ K .

Case 2. Suppose y∗
≱ x∗. Since x∗ and y∗ are decreasing and right-continuous, by

assumption x ≺ y, there are 0 < γ < β such that x∗
≤ y∗ on [0, γ ) and y∗ < x∗ on (γ, β) and

also  γ

0
(y∗

− x∗) ≥

 β

γ

(x∗
− y∗). (3)

Moreover, we may find an interval [a, b] ⊂ [0, γ ] and ϵ ∈ (0, x∗(a)) such that

x∗
≤ x∗

+ 2ϵχ[a,b] ≤ y∗ on [0, γ ]. (4)

Since x∗ > y∗ on (γ, β) there exist ϵ1 ∈ (0, ϵ) and δ ∈ (0, min{a/2, b − a}) such that β

β−δ

x∗
≥

 β

β−δ

y∗
+ 2δϵ1.

Hence, by condition (3) we get for any t ∈ [γ, β − δ], γ

0
(y∗

− x∗) ≥

 β

γ

(x∗
− y∗) =

 β−δ

γ

(x∗
− y∗) +

 β

β−δ

(x∗
− y∗)

≥

 β−δ

γ

(x∗
− y∗) + 2δϵ1 ≥

 t

γ

(x∗
− y∗) + 2δϵ1.

Therefore, by the triangle inequality for the maximal function we obtain t

0
y∗

≥

 t

0
x∗

+ 2δϵ1 ≥

 t

0


x∗

+ ϵ1χ[a,a+δ]

∗
+ δϵ1 (5)
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for any t ∈ [γ, β − δ]. Furthermore, by condition (4) we have x∗
+ ϵ1χ[a,a+δ] ≤ y∗ on [0, γ ].

Then, for any t ∈ [0, γ ] we have t

0
y∗

≥

 t

0


x∗

+ ϵ1χ[a,a+δ]

∗
. (6)

Now, consider that x∗ is not constant on (γ, β). Then, there is c, d ∈ (γ, β) such that
x∗(c) > x∗(d). Hence, by right-continuity and monotonicity of x∗ we may find 0 < δ <

min{b − a, d − c, β − d} and ϵ1 ∈ (0, ϵ] such that x∗(d) < x∗(c + δ) − ϵ1. Thus, we have

x∗(t) =

x∗

+ ϵ1χ[a,a+δ] − ϵ1χ[c,c+δ]

∗
(t)

for all t ∈ (β − δ, ∞) and also

(x∗
+ ϵ1χ[a,a+δ])

∗(t) =

x∗

+ ϵ1χ[a,a+δ] − ϵ1χ[c,c+δ]

∗
(t)

for any t ∈ [0, γ ]. In consequence, since x ≺ y, by condition (6) it follows that t

0
y∗

≥

 t

0


x∗

+ ϵ1χ[a,a+δ] − ϵ1χ[c,c+δ]

∗ (7)

for any t ∈ [0, γ ) ∪ (β − δ, ∞). Now, according to condition (5) and by the triangle inequality
for the maximal function, we conclude t

0
y∗

≥

 t

0


x∗

+ ϵ1χ[a,a+δ]

∗
+ δϵ1 ≥

 t

0


x∗

+ ϵ1χ[a,a+δ] − ϵ1χ[c,c+δ]

∗ (8)

for all t ∈ [γ, β−δ]. If x∗ is constant on (γ, β), then denoting λ = sup{ω > 0 : x∗(w) = x∗(γ )}

we may assume without loss of generality that x∗(λ) < x∗(λ−). Indeed, because otherwise by
assumption x ≺ y and by right-continuity of x∗ we are able to find β > λ such that y∗ < x∗ and
x∗ is not constant on (γ, β) and then we proceed as above. Now, assuming β = λ it is easy to see
that there exist 0 < δ < {b − a, β − γ } and 0 < ϵ1 < min{ϵ, x∗(β − δ) − y∗(β − δ), x∗(β−) −

x∗(β)} such that for all t > 0 we get
x∗

+ ϵ1χ[a,a+δ]

∗
(t) − ϵ1χ[β−δ,β)(t) =


x∗

+ ϵ1χ[a,a+δ] − ϵ1χ[β−δ,β)

∗
(t).

Hence, x∗ is constant and y∗ is decreasing on (γ, β), by condition (3) it follows that for all
t ∈ (β − δ, ∞), γ

0


y∗

−

x∗

+ ϵ1χ[a,a+δ]

∗
=

 γ

0
(y∗

− x∗) −

 γ

0
ϵ1χ[a,a+δ]

≥

 β

γ

(x∗
− y∗) −

 β

γ

ϵ1χ[β−δ,β)

=

 β−δ

γ

(x∗
− y∗) +

 β

β−δ

(x∗
− ϵ1 − y∗)

=

 β−δ

γ

(x∗
− y∗) +

 β

β−δ


(x∗

− ϵ1χ[β−δ,β))
∗

− y∗


≥

 β−δ

γ

(x∗
− y∗) +

 t

β−δ

((x∗
− ϵ1χ[β−δ,β))

∗
− y∗).
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Therefore, for any t ∈ (β − δ, ∞) we have t

0
y∗

≥

 γ

0


x∗

+ ϵ1χ[a,a+δ]

∗
+

 β−δ

γ

x∗
+

 t

β−δ


x∗

− ϵ1χ[β−δ,β)

∗

=

 t

0


x∗

+ ϵ1χ[a,a+δ] − ϵ1χ[β−δ,β)

∗
. (9)

Moreover, by conditions (5) and (6) for any t ∈ [0, β − δ] we obtain t

0
y∗

≥

 t

0


x∗

+ ϵ1χ[a,a+δ]

∗
=

 t

0


x∗

+ ϵ1χ[a,a+δ] − ϵ1χ[β−δ,β)

∗
. (10)

Now, we define a function z by

z = x∗
+ ϵ1χ[a,a+δ] −


ϵ1χ[c,c+δ), if x∗ is not constant on (γ, β),

ϵ1χ[β−δ,β), if x∗ is constant on (γ, β).

Furthermore, since [a, a + δ] ⊂ [0, γ ] and (c, c + δ) ⊂ (γ, β) and by the Hardy–Littlewood
inequality (see [1]) for any t > 0 we have t

0
z∗

≥

 t

0


x∗

+ ϵ1χ[a,a+δ] − ϵ1χ[β−δ,β)


≥

 t

0
x∗.

Hence, by conditions (7)–(10), and by symmetry of E , in view of assumption ∥x∥E = ∥y∥E , we
get

x ≺ z ≺ y and ∥x∥E = ∥z∥E . (11)

Denote

u = ϵ1χ[a,a+δ] −


ϵ1χ[c,c+δ), if x∗ is not constant on (γ, β),

ϵ1χ[β−δ,β), if x∗ is constant on (γ, β),

and

K = {−λu ◦ σ : λ ∈ [0, 1]} .

Notice that |u ◦ σ | ≤ ϵ1 ≤ x∗(a), δ < a/2 and so λu ≺ x for any λ ∈ [0, 1], which means
that K ≺ x . Moreover, by condition (11) and by definition of u and z replacing ϵ1 by λϵ1 > 0
where λ ∈ [0, 1] we can easily observe

x ≺ x∗
+ λu ≺ y

for any λ ∈ [0, 1]. Then, assuming v ∈ K , there is λ ∈ [0, 1] such that v = −λu ◦ σ and

∥x − v∥E = ∥x + λu ◦ σ∥E =
x∗

◦ σ + λu ◦ σ


E =
x∗

+ λu


E = ∥x∥E .

Hence PK (x) = K ≠ ∅ is no singleton. Obviously, K is closed. �

The immediate consequence of Theorems 3.2 and 3.3 are the following results.

Corollary 3.4. Let E be a symmetric space. If for any closed subset K of the space E and x ∈ E
with x ≺ K , the set PK (|x |) is at most singleton, then E is strictly K -monotone.

Corollary 3.5. Let E be a symmetric space such that x∗(∞) = 0 for any x ∈ E. If for any
closed subset K of the space E and x ∈ E with K ≺ x the set PK (|x |) is at most singleton, then
E is strictly K -monotone.
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The following example shows that the conditions in Corollaries 3.4 and 3.5 are not necessary
for E to be strictly K -monotone.

Example 3.6. Let us consider the Lorentz space Γp,w with a weight w > 0,


∞

0 w < ∞

and p > 0. Then, by Theorem 2.10 [10] it follows that Γp,w is strictly K -monotone. Denote
A =


∞

n=0[2n, 2n + 1). Define

x = 2χI +
1

1 + t
χA, u = 1χI +

1
1 + t

χA, v =


1 +

1
1 + t


χI

and denote an order interval K = [u, v]. Then, by Proposition 2.1 [6] we obtain that Γp,w

contains an order-isometric copy of l∞, whence x ∈ Γp,w and K ⊂ Γp,w. Moreover, it is easy to
see that K ≺ x and (x − z)∗ = 1 for any z ∈ K. Consequently,

inf
z∈K

∥x − z∥Γp,w
= ∥x − u∥Γp,w

= ∥x − v∥Γp,w

which implies that the set PK(x) = K is no singleton. Now, we define

x =


1 +

1
1 + t


χI , u = 2χI v = u +

1
1 + t

χA, and K = [u, v].

Clearly, x ∈ Γp,w, K ⊂ Γp,w, x ≺ K and (x −z)∗ = 1 for any z ∈ K, whence the set PK(x) = K
is no singleton.

Now, we investigate a relation between K -order continuity and proximinality of the best
dominated approximation with respect to ≺.

Theorem 3.7. Let E be a symmetric space and let A ⊂ E be a closed subset such that for any
a ∈ A we have a∗

∈ A. If x ∈ E is a point of K -order continuity with x∗(∞) = 0 and A ≺ x,
then the set PA(x∗) ≠ ∅.

Proof. Let A ≺ x and (un) ⊂ A be a minimizing sequence from A, i.e.

d = inf
a∈A

x∗
− a


E = lim

n→∞

x∗
− un


E . (12)

Hence, by Lemma 3.2 [15] we may assume without loss of generality that un = u∗
n for any

n ∈ N. Since un ≺ x for every n ∈ N, by symmetry of E it follows that

u∗
n(t)

χ(0,t)


E ≤ u∗∗
n (t)

χ(0,t)


E ≤ x∗∗(t)
χ(0,t)


E ≤ ∥x∥E

for any t > 0 and n ∈ N. Thus, by Helly’s Selection Theorem [19] passing to subsequence and
relabelling if necessary there exists u = u∗ such that u∗

n converges to u∗ a.e. on I . Therefore,
since un ≺ x for each n ∈ N and by Fatou’s lemma [18] we get t

0
u∗

≤ lim inf
n→∞

 t

0
u∗

n ≤

 t

0
x∗

for any t > 0 which proves u ≺ x . Thus, by assumption that x∗(∞) = 0 and by Lemma 3.1, we
have u∗(∞) = 0. Define vn =


∞

k=n u∗

k for any n ∈ N. Then, vn = v∗
n ≤ u∗

n for every n ∈ N
and v∗

n ↑ u∗ a.e. on I . Therefore, for any n ∈ N, 0 ≤ u∗
− v∗

n ≤ u∗ and u∗
− v∗

n ↓ 0 a.e. on I .
Hence, applying the fact u∗(∞) = 0 and property 2.12 [15] we obtain

(u∗
− v∗

n)∗(t) → 0 (13)
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for all t ∈ I . Moreover, by assumption that x is a point of K -order continuity, since u∗
− v∗

n ≺ x
and by condition (13) we getu∗

− v∗
n


E → 0. (14)

Now, we claim that
u∗

n − v∗
n


E → 0. Let ϵ > 0. Since u∗(∞) = 0 and u∗

n → u∗ a.e. on I ,
by monotonicity of decreasing rearrangement passing to subsequence if necessary we may find
tϵ ∈ I such that u∗

n(t) < ϵ for any t ≥ tϵ and n ∈ N. Thus, since u∗
n − v∗

n → 0 locally in measure
and 0 ≤ u∗

n − v∗
n ≤ u∗

n for any n ∈ N it follows that u∗
n − v∗

n → 0 in measure on I . Therefore, by
Property 2.11 in [15] we get (u∗

n − v∗
n)∗(t) → 0 for all t ∈ I , whence by assumption that x is a

point of K -order continuity and by the inequality u∗
n − v∗

n ≺ x for any n ∈ N we haveu∗
n − v∗

n


E → 0.

Hence, by condition (14) and by the triangle inequality of the norm in E we obtainu∗
n − u∗


E → 0

which implies that u∗
∈ A, in view of the assumption A is closed. In consequence, by condition

(12) we finish the proof. �

Theorem 3.8. Let E be a symmetric space and x ∈ E+ be ∗regular. If for any closed subset A
of E such that A ≺ x we have the set PA(x) ≠ ∅, then x is a point of K -order continuity.

Proof. Let us suppose for a contrary that there exists (xn) ⊂ E such that x∗
n → 0 a.e. on I

and xn ≺ x for any n ∈ N and also δ = infn∈N ∥xn∥E > 0. Since x is ∗regular, by Lemma
2.2 [8] there exists a measure preserving transformation σ : supp(x) → supp(x∗) such that
x∗

◦ σ = x a.e. on supp(x). It is obvious that if µ(supp(x)) < ∞ then we may construct the
measure preserving transformation σ : I → I with x∗

◦σ = x a.e. on I (see [1,18]). Notice that

x∗
n = x∗

n ∧ x∗
+ (x∗

n − x∗)+

for a.e. on I and for any n ∈ N. Hence, by triangle inequality for any n ∈ N we get

δ = inf
n∈N

∥xn∥E ≤
x∗

n ∧ x∗


E +
(x∗

n − x∗)+


E .

Therefore, we can easily see thatx∗
n ∧ x∗


E ≥

δ

2
or

(x∗
n − x∗)+


E ≥

δ

2
for any n ∈ N. Now, we consider two cases.

Case 1. Assume that there exist a subsequence (nk) ⊂ N and δ1 ∈ (0, δ/2] such that

inf
k∈N

x∗
nk

∧ x∗


E
= δ1.

Now, passing to subsequence and relabelling if necessary we obtain
x∗

n ∧ x∗


E ≥ δ1 for all
n ∈ N. Define for every n ∈ N,

yn =
1
2


1 +

1
n

 ∞
k=n

x∗

k ∧ x∗.

Clearly, yn+1 ≤ yn ≤ x∗ a.e. on I and for any n ∈ N. Moreover,

∥yn∥E > ∥yn+1∥E > inf
k∈N

∥yk∥E ≥ δ1/2 (15)
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for any n ∈ N. Denote A = {x − yn ◦ σ : n ∈ N}. By definition of yn we observe 0 ≤

x − yn ◦ σ ≤ x for any n ∈ N, and consequently A ≺ x . Furthermore, by condition (15)
we have

∥x − (x − yn ◦ σ)∥E = ∥yn∥E > inf
k∈N

∥yk∥E = inf
a∈A

∥x − a∥E

for any n ∈ N. Hence, the set PA(x) = ∅. Now, we claim that A is closed. Indeed, taking a
subsequence (nk) ⊂ N and y ∈ E such that

ynk − y


E → 0, by symmetry of E passing to
subsequence and relabelling if necessary we conclude yn converges to y a.e. on I . Since x∗

n → 0
a.e. on I and by definition of yn this yields that yn → 0 a.e. on I , which implies y = 0 a.e. on I .
By assumption that

x∗
n ∧ x∗


E ≥ δ1 for any n ∈ N we have

δ1

2
≤

1
2


1 +

1
n

 x∗
n ∧ x∗


E ≤ ∥yn∥E

for all n ∈ N, which contradicts with the fact ∥yn∥E → 0 and finishes case 1.
Case 2. Assume

x∗
n ∧ x∗


E → 0 and there exist (nk) ⊂ N and δ1 ∈ (0, δ/2] such that

inf
k∈N

(x∗
nk

− x∗)+


E
= δ1.

Since (x∗
nk

− x∗)+ ≥ 0 for all k ∈ N, passing to subsequence and relabelling if necessary we
may suppose without loss of generality that

inf
n∈N

x∗
+

1
2
(x∗

n − x∗)+


E
= δ2 ≥

δ1

2
and

x∗
n ∧ x∗


E → 0.

Now, by definition of infimum, passing to subsequence and relabelling again if necessary we
may assume that for any n ∈ N,x∗

+
1
2
(x∗

n − x∗)+


E
≥

x∗
+

1
2
(x∗

n+1 − x∗)+


E
≥ δ2. (16)

Denote

yn =


1 −

1
n


x∗

2
−

1
4


1 +

1
n


(x∗

n − x∗)+

for every n ∈ N and also A = {yn ◦ σ : n ∈ N}. It is easy to see that (x∗
n − x∗)+ ≤ x∗

n ≺ x for
any n ∈ N, whence

|yn| ≤


1 −

1
n


x∗

2
+

1
4


1 +

1
n


x∗

n ≤
1
2

x∗
n +

1
2

x∗
≺ x

for each n ∈ N, which implies that A ≺ x . Moreover, by symmetry of E and by condition (16)
we have

∥x − yn ◦ σ∥E =
(x∗

− yn) ◦ σ


E =
1
2


1 +

1
n

 x∗
+

1
2
(x∗

n − x∗)+


E

>
1
2


1 +

1
n + 1

 x∗
+

1
2
(x∗

n+1 − x∗)+


E

= ∥x − yn+1 ◦ σ∥E

>
δ2

2
= inf

a∈A
∥x − a∥E
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for all n ∈ N. In consequence, PA(x) = ∅. Now, we show that A is closed. Suppose for a
contrary that it is not true, then there are (nk) ⊂ N and y ∈ E \ A such that

ynk − y


E → 0.
Thus, by symmetry of E passing to subsequence and relabelling if necessary we get yn converges
to y a.e. on I . Moreover, by assumption x∗

n → 0 a.e. on I and by construction of yn it follows
that yn → x∗/2 a.e. on I and so y = x∗/2 a.e. on I . Hence, we have

∥yn − y∥E =

 x∗

2n
+

1
4


1 +

1
n


(x∗

n − x∗)+


E
→ 0. (17)

Furthermore, in view of the assumption that
(x∗

n − x∗)+


E ≥ δ1 for every n ∈ N and by the
triangle inequality we obtain

δ1

4
≤

1
4


1 +

1
n

 (x∗
n − x∗)+


E ≤

 x∗

2n
+

1
4


1 +

1
n


(x∗

n − x∗)+


E
+

∥x∗∥E

2n

for any n ∈ N. Thus, by condition (17) we obtain a contradiction and complete the proof. �

Immediately, by the previous theorems we obtain the following corollaries.

Corollary 3.9. Let E be a symmetric space with x∗(∞) = 0 for any x ∈ E and let A ⊂ E be a
closed subset such that for any a ∈ A we have a∗

∈ A. If E is K -order continuous and A ≺ x
with x ∈ E, then the set PA(x∗) is proximinal.

Corollary 3.10. Let E be a symmetric space with x∗(∞) = 0 for any x ∈ E. If for any closed
subset A of E and for any x ∈ E with A ≺ x the set PA(x) is proximinal, then E is K -order
continuous.

A point a ∈ E is called a K -upper bound of a subset A ⊂ E if for any a′
∈ A we have a′

≺ a.
If there exists a K -upper bound of a subset A ⊂ E , then the set A is said to be K -bounded above.
Now, we discuss proximinality of the best dominated approximation under the additional notion
K -bounded above.

Theorem 3.11. Let E be a symmetric space, x ∈ E and let A ⊂ E be a closed K -bounded
above subset such that x ≺ A, a∗

∈ A for any a ∈ A. If a K -upper bound of A is a point of
K -order continuity with finite distribution, then the set PA(x∗) ≠ ∅.

Proof. Let x ∈ E and A ⊂ E be a closed K -bounded above subset with x ≺ A and let (un) ⊂ A
be a minimizing sequence, i.e.

inf
a∈A

x∗
− a


E = lim

n→∞

x∗
− un


E . (18)

Let b ∈ E be a K -upper bound of A. Thus, un ≺ b for all n ∈ N and so by symmetry of E we get
∥un∥E ≤ ∥b∥E for every n ∈ N. Hence, proceeding analogously as in the proof of Theorem 3.7
we may assume that un = u∗

n converges to u∗ a.e. on I .
Define vn =


∞

k=n u∗

k for any n ∈ N. Then, vn = v∗
n for all n ∈ N and

0 ≤ u∗
− v∗

n ↓ 0 and 0 ≤ u∗
n − v∗

n → 0 (19)

a.e. on I . Hence, since 0 ≤ u∗
n − v∗

n ≤ u∗
n ≺ b for any n ∈ N and b∗(∞) = 0 and by Lemma 3.1

it is easy to see that u∗
n − v∗

n → 0 in measure. Thus, by property 2.11 in [15] we obtain

(u∗
n − v∗

n)∗(t) → 0,
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for any t > 0. So, by assumption that b is a point of K -order continuity we concludeu∗
n − v∗

n


E → 0. (20)

Now, according to condition (19), by Lebesgue Monotone Convergence Theorem (see [18]) we
obtain v∗∗

n (t) → u∗∗(t) and in view of the following inequality (see [1]).

(u∗
n − v∗

n)∗∗(t)
χ(0,t)


E ≤

u∗
n − v∗

n


E

for all t > 0 and by condition (20) we get u∗∗
n (t) → u∗∗(t) for all t > 0. Hence, since x ≺ un ≺ b

for each n ∈ N we conclude x ≺ u ≺ b. Therefore, by assumption b∗(∞) = 0 applying
Lemma 3.1 and by condition (19) we can easily prove that u∗

n → u∗ in measure. Consequently,
according to property 2.11 in [15] we obtain (u∗

n − u∗)∗(t) → 0 for all t > 0. Then, since
u∗

n − u∗
≺ 2b and by assumption that b is a point of K -order continuity it follows thatu∗
n − u∗


E → 0.

Finally, by assumption that A is closed and by condition (18) it follows that PA(x∗) ≠ ∅. �

Theorem 3.12. Let E be a symmetric space and x ∈ E. If for any closed K -bounded above
subset A of E such that x ≺ A and a∗

∈ A for any a ∈ A we have the set PA(x∗) ≠ ∅, then x
is a point of K -order continuity.

We present the proof of the above theorem for the sake of completeness and convenience of
the reader although it is similar in some parts to the proof of Proposition 3.3 in [16].

Proof. Let (xn) ⊂ E and x ∈ E be such that x∗
n → 0 a.e., xn ≺ x for any n ∈ N and

δ = infn∈N ∥xn∥E > 0. By definition of δ passing to subsequence and relabelling if necessary
we may assume that ∥xn∥E ≥ ∥xn+1∥E ≥ δ for any n ∈ N. Denote yn =

1
2 (1 +

1
n )x∗

n for any
n ∈ N. Clearly, yn = y∗

n → 0 a.e. and also ∥yn∥E > ∥yn+1∥ > infn∈N ∥yn∥E = δ/2 for any
n ∈ N. Define A = {x∗

+ yn : n ∈ N}. Notice that x∗
≤ a = a∗ for any a ∈ A. Hence, x ≺ A

and for any n ∈ N,

δ

2
= inf

a∈A

x∗
− a


E < ∥yn∥E =

x∗
− (x∗

+ yn)


E . (21)

Therefore, the set PA(x∗) = ∅. We claim that A is closed. Suppose to a contrary that there
exists (an) ⊂ A and a ∉ A such that ∥an − a∥E → 0. So, by symmetry of E passing to
subsequence and relabelling if necessary we obtain an → a a.e. Thus, since x∗

+ yn → x∗ a.e.
we get a = x∗ a.e. Consequently, by condition (21) we conclude a contradiction which proves
our claim. Finally, since xn ≺ x for all n ∈ N it follows that A ≺ 2x , so the set A is K -bounded
above. �

The immediate consequence of Theorems 3.11 and 3.12 is the following characterization of
K -order continuity in symmetric spaces.

Theorem 3.13. Let E be a symmetric space with x∗(∞) = 0 for any x ∈ E. Then, the following
conditions are equivalent.

(i) E is K -order continuous.
(ii) For any x ∈ E and A ⊂ E a closed K -bounded above subset such that x ≺ A, a∗

∈ A for
any a ∈ A, we have PA(x∗) ≠ ∅.
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