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1. Introduction

Polynomials and polynomial inequalities are ubiquitous in mathematics. Nowadays several
monographs address polynomials, orthogonal polynomials and their properties, e.g. [21,19,2,11].
Many related topics and computational issues are covered as well, with countless applications in
physics and applied mathematics. The univariate analysis is far more developed than its multi-
variate counterpart, see e.g. the monograph [7] specifically targeted to the multivariate case. In
this paper we deal with multivariate polynomial inequalities of Markov type and Nikolskii type.
The results proposed can find possible applications, among others, in the fields of polynomial
approximation techniques for aleatory functions [6,18,14], for parametric and stochastic partial
differential equations [17,4,14], spectral methods [3] and high-order finite element methods [20].

In recent years, the importance of Nikolskii-type inequalities between L∞ and L2
ρ has arisen

in the analysis of the stability and accuracy properties of polynomial approximation based on dis-
crete least squares with random evaluations [6,18,17,4,14]. The constant of the L∞

− L2
ρ inverse

inequality plays a role in [6,18], which concern the analysis of discrete least squares in the uni-
variate case. The multivariate case is more challenging, since there are more degrees of freedom
to enrich the multivariate polynomial space. The multivariate polynomial space can be character-
ized by means of multi-indices. In the present paper we focus on polynomial spaces associated
with downward closed multi-index sets, also known as lower sets, see e.g. [8]. Multivariate in-
terpolation on polynomial spaces of this type has been analyzed in [8] and references therein. In
the multivariate case, Nikolskii-type L∞

− L2
ρ and L4

ρ − L2
ρ inequalities for tensorized Legendre

polynomials have been derived in the specific case of tensor product, total degree and hyperbolic
cross polynomial spaces in [14, Appendix B], and more general Nikolskii-type L∞

−L2
ρ inequal-

ities for tensorized Legendre and Chebyshev polynomials of the first kind have been derived in
[4,5] in polynomial spaces associated with arbitrary downward closed multi-index sets.

In several contributions over the past decades, the analyses of Markov-type and Nikolskii-type
inequalities, in univariate and multivariate tensor product and total degree polynomial spaces,
have been developed for general domains and general weights, see e.g. [2,10,9] and the references
therein.

In the present work we prove a general result in Theorem 1 concerning the summation of
tensorized polynomials over arbitrary downward closed multi-index sets in any dimension. Af-
terwards, using Theorem 1, we derive Markov-type and Nikolskii-type inequalities over mul-
tivariate polynomial spaces associated with arbitrary downward closed multi-index sets in any
dimension. Moreover, we show how the constant of these inequalities changes when the poly-
nomial is expanded in series of tensorized Legendre or Chebyshev or Gegenbauer or Jacobi
orthogonal polynomials indexed by a downward closed multi-index set.

In [22,13,12] multivariate Markov-type inequalities have been proposed in the case of poly-
nomial spaces of total degree type. Recent results on Markov-type inequalities for the mixed
derivatives have been proposed in [1], showing a relation between the L∞ norm of the gradient
of a polynomial and its mixed derivatives.

In the present paper we propose novel Markov-type inequalities for the mixed derivatives of
any general multivariate polynomial associated with an arbitrary downward closed multi-index
set in any dimension, and refine the proposed result depending on the series of orthogonal poly-
nomials used in the expansion.

The outline of the paper is the following. In Section 2 we introduce the settings of polynomial
approximation and the notation. In Section 3 we prove Theorem 1 concerning the summation
of tensorized polynomials over arbitrary downward closed multi-index sets in any dimension. In
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Section 4 we review the most common families of orthogonal polynomials and their orthonor-
malization. In Section 5 we present novel multivariate polynomial inequalities. We begin to re-
call some one-dimensional Markov inequalities in Section 5.1. Then in Section 5.2 we prove
multivariate Markov-type inequalities for the mixed derivatives and in Section 5.3 we prove mul-
tivariate Nikolskii-type L∞

− L2
ρ inequalities.

2. Multivariate polynomial spaces

Let d be a positive integer, Dq := [−1, 1] ⊂ R be a compact interval and ρq : Dq → R+

0

be a univariate weight function for all q = 1, . . . , d. Define the compact set D :=
d

q=1 Dq =

[−1, 1]
d

⊂ Rd as the d-dimensional hypercube in the d-dimensional euclidean space. Consider
the d-dimensional weight function ρ :=

d
q=1 ρq : D → R+

0 , the L2
ρ weighted inner product

⟨ f1, f2⟩L2
ρ (D)

:=


D

f1(y) f2(y)ρ(y)dy, ∀ f1, f2 ∈ L2
ρ(D), (1)

and its associated L2
ρ norm ∥ · ∥L2

ρ (D)
:= ⟨·, ·⟩

1/2
L2
ρ (D)

. Moreover, we denote by ⟨ f1, f2⟩L2(D) the

standard L2 inner product with its associated L2 norm ∥ · ∥L2(D) := ⟨·, ·⟩
1/2
L2(D)

, and by ∥ · ∥L∞(D)

the standard L∞ norm. On any compact set D, for any continuous real-valued function f ∈ C(D)
it holds ∥ f ∥L∞(D) = maxy∈D | f (y)|. We denote the integral of ρ by

Wρ :=


D
ρ(y)dy. (2)

For any n, k ∈ N0 we denote by δnk the Kronecker delta, equal to one if the indices are equal,
and equal to zero otherwise. For any q = 1, . . . , d , denote by {ϕ

q
n }n≥0 the family of univariate

polynomials orthonormal w.r.t. (1) with the weight ρq , i.e. ⟨ϕnϕk⟩L2
ρq (Dq )

= δnk . Denote by

Λ ⊂ Nd
0 a finite multi-index set, and by #Λ its cardinality. For any ν ∈ Λ define the tensorized

(multivariate) polynomials ψν , orthonormal w.r.t. (1), as

ψν(y) =

d
q=1

ϕνq (yq), y ∈ D. (3)

The space of polynomials PΛ = PΛ(D) associated with the multi-index set Λ is defined as
follows:

PΛ := span{ψν : ν ∈ Λ}.

It holds that dim(PΛ) = #Λ. Denoting by w a nonnegative integer, common isotropic polynomial
spaces PΛw are

Tensor Product (TP): Λw =


ν ∈ Nd

0 : ∥ν∥ℓ∞(Nd
0 )

≤ w

,

Total Degree (TD): Λw =


ν ∈ Nd

0 : ∥ν∥ℓ1(Nd
0 )

≤ w

,

Hyperbolic Cross (HC): Λw =


ν ∈ Nd

0 :

d
q=1

(νq + 1) ≤ w + 1


.
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Anisotropic variants of these spaces can be defined by replacing w ∈ N0 with a multi-index.
For example, the anisotropic tensor product space, with maximum degrees in each direction w =

(w1, . . . , wd) ∈ Nd
0 , is defined as

anisotropic Tensor Product (aTP): Λw =


ν ∈ Nd

0 : νq ≤ wq , ∀q = 1, . . . , d

. (4)

In the present paper we confine to multi-index sets Λ featuring the following property, see
also [8].

Definition (Downward Closedness of the Multi-Index Set Λ). The finite multi-index set Λ ⊂ Nd
0

is downward closed (or it is a lower set) if

(ν ∈ Λ and µ ≤ ν) ⇒ µ ∈ Λ,

where µ ≤ ν means that µq ≤ νq for all q = 1, . . . , d.

Hence, also the multi-index set Λ = {ν : νq = 0 for all q = 1, . . . , d} containing only the
null multi-index is by definition downward closed.

3. Summations of tensorized polynomials over a downward closed multi-index set

Given η ∈ N0 and η + 1 real nonnegative coefficients α0, . . . , αη, we define the univariate
polynomial p ∈ Pη(N0) of degree η as

p : N0 → R : n → p(n) :=

η
l=0

αln
l , (5)

with the convention that 00
= 1 to avoid the splitting of the summation. In any dimension d and

given an arbitrary downward closed multi-index set Λ, we define the quantity K p(Λ) as

K p(Λ) :=


ν∈Λ

d
q=1

p(νq) =


ν∈Λ

d
q=1


α0 + α1νq + · · · + αην

η
q


, (6)

which depends only on Λ when p is fixed. This quantity has shown considerable importance
in the analyses of the stability and convergence properties of polynomial approximation based
on discrete least squares with random evaluations [6,18,4,17,14,15], or with evaluations in low-
discrepancy point sets [16]. In the particular case where η = 1, i.e. p(n) = α0 + α1n, K p(Λ)
has been analyzed in [6] in the univariate case, in [4,5] with tensorized Legendre polynomials
and in [4] with tensorized Chebyshev polynomials of the first kind.

We introduce the following condition concerning the coefficients of the polynomial p.

Definition (Binomial Condition). The polynomial p defined in (5) satisfies the binomial condi-
tion if its coefficients α0, . . . , αη satisfy

αl ≤


η + 1

l


, for any l = 0, . . . , η. (7)
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Throughout the paper, given any η ∈ N0, we denote by

p : N0 → R : n → p(n) :=

η
l=0


η + 1

l


nl (8)

the unique polynomial of degree η whose coefficients sharply satisfy (with equalities) the
binomial condition (7).

The multinomial coefficient is defined as


η
k0,...,kr


:=

η!
k0!···kr !

, for any η, r, k0, . . . , kr ∈ N0

such that k0 + · · · + kr = η.

Lemma 1. For any M, η ∈ N0 and any choice of M + 1 real nonnegative numbers λ0, . . . , λM
it holds

M
r=0


k0+···+kr =η+1

kr>0


η + 1

k0, . . . , kr

 r
z=0

λ
kz
z =


k0+···+kM =η+1

k0,...,kM ∈N0


η + 1

k0, . . . , kM

 M
r=0

λkr
r . (9)

Proof. We expand the outermost summation with r ranging from 0 to M , then we manipulate
the rightmost term, merge the rightmost and rightmost but one terms, and proceed backward till
when only one term remains:

M
r=0


k0+···+kr =η+1

kr>0


η + 1

k0, . . . , kr

 r
z=0

λ
kz
z

=


k0+···+kM =η+1

kM>0


η + 1

k0, . . . , kM

 M
r=0

λkr
r + · · · +


k0+k1=η+1

k1>0


η + 1
k0, k1

 1
r=0

λkr
r

+


k0=η+1

k0>0


η + 1

k0

 0
r=0

λkr
r

=


k0+···+kM =η+1

kM>0


η + 1

k0, . . . , kM

 M
r=0

λkr
r + · · · +


k0+k1=η+1

k1>0


η + 1
k0, k1

 1
r=0

λkr
r

+


k0+k1=η+1

k1=0


η + 1
k0, k1

 1
r=0

λkr
r

=


k0+···+kM =η+1

kM>0


η + 1

k0, . . . , kM

 M
r=0

λkr
r + · · · +


k0+k1+k2=η+1

k2>0


η + 1

k0, k1, k2

 2
r=0

λkr
r

+


k0+k1=η+1


η + 1
k0, k1

 1
r=0

λkr
r

=


k0+···+kM =η+1

kM>0


η + 1

k0, . . . , kM

 M
r=0

λkr
r + · · · +


k0+k1+k2=η+1

k2>0


η + 1

k0, k1, k2

 2
r=0

λkr
r
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+


k0+k1+k2=η+1

k2=0


η + 1

k0, k1, k2

 2
r=0

λkr
r

=


k0+···+kM =η+1

kM>0


η + 1

k0, . . . , kM

 M
r=0

λkr
r + · · · +


k0+k1+k2=η+1


η + 1

k0, k1, k2

 2
r=0

λkr
r

...

=


k0+···+kM =η+1

kM>0


η + 1

k0, . . . , kM

 M
r=0

λkr
r +


k0+···+kM =η+1

kM =0


η + 1

k0, . . . , kM

 M
r=0

λkr
r

=


k0+···+kM =η+1

k0,...,kM ∈N0


η + 1

k0, . . . , kM

 M
r=0

λkr
r . �

Theorem 1. In any dimension d, for any downward closed multi-index set Λ and for any η ∈ N0,
if the coefficients α0, . . . , αη of the polynomial p satisfy the binomial condition (7) then the
quantity K p(Λ) defined in (6) satisfies

K p(Λ) ≤ (#Λ)η+1. (10)

Proof. We prove (10) by induction. The relation (10) trivially holds when Λ contains only the
null multi-index i.e. Λ = {ν : νq = 0 for all q = 1, . . . , d}, since in this case K p(Λ) = 1 and
#Λ = 1.

Now we have to prove the induction step, i.e. we suppose that (10) holds for any arbitrarily
given downward closed multi-index set Λ̂ with #Λ̂ ≥ 1, and we prove that (10) still holds for any
Λ = Λ̂ ∪ µ, with µ ∉ Λ̂ and such that Λ remains downward closed.

The directions can be arbitrarily reordered, so without loss of generality we suppose that
ν1 ≠ 0 for some ν ∈ Λ, and we denote by J := maxν∈Λ ν1 the maximal value of the first
component of the multi-indices ν ∈ Λ.

For any r ∈ N0, we denote by Λr := {ν̂ ∈ Nd−1
0 : (r, ν̂) ∈ Λ} the “sections” of the set Λ

w.r.t. the current first component according to the lexicographical ordering. Moreover, for any
r = 1, . . . , J it holds

ΛJ ⊆ · · · ⊆ Λr ⊆ Λr−1 ⊆ · · · ⊆ Λ0, (11)

and each one of these sets is also finite and downward closed. For any r > J it holds Λr = ∅.
Moreover, #Λ0 ≤ #Λ̂ = #Λ − 1 and therefore the inclusions (11) imply that the induction
hypothesis holds for all the sets Λ0, . . . ,ΛJ as well.

In addition, for any r = 1, . . . , J we have

r#Λr ≤

r−1
z=0

#Λz . (12)

Finally we prove the induction step when the coefficients α0, . . . , αη satisfy the binomial
condition (7):
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K p(Λ) =


ν∈Λ

d
q=1


α0 + α1νq + · · · + αην

η
q



=

J
r=0


α0 + α1r + · · · + αηr

η


K p(Λr )

= α0 K p(Λ0)+

J
r=1

η
l=0

αlr
l K p(Λr )


induction hypotheses on Λ0, . . . ,ΛJ


≤ α0(#Λ0)

η+1
+

J
r=1

η
l=0

αlr
l(#Λr )

η+1

= α0(#Λ0)
η+1

+

J
r=1

η
l=0

αl(r#Λr )
l(#Λr )

η+1−l 
using (12)



≤ α0(#Λ0)
η+1

+

J
r=1

η
l=0

αl


r−1
z=0

#Λz

l

(#Λr )
η+1−l


using the binomial condition (7)


≤ (#Λ0)

η+1
+

J
r=1

η
l=0


η + 1

l

r−1
z=0

#Λz

l

(#Λr )
η+1−l


using the multinomial theorem


= (#Λ0)

η+1
+

J
r=1

η
l=0


η + 1

l

 
k0+···+kr−1=l
k0,...,kr−1∈N0


l

k0, . . . , kr−1



×

r−1
z=0

(#Λz)
kz (#Λr )

η+1−l

= (#Λ0)
η+1

+

J
r=1

η
l=0


k0+···+kr−1=l
k0,...,kr−1∈N0


η + 1

k0, . . . , kr−1, η + 1 − l



×

r−1
z=0

(#Λz)
kz (#Λr )

η+1−l

= (#Λ0)
η+1

+

J
r=1

η+1
kr =1


k0+···+kr−1=η+1−kr


η + 1

k0, . . . , kr

 r−1
z=0

(#Λz)
kz (#Λr )

kr

= (#Λ0)
η+1

+

J
r=1


k0+···+kr =η+1

kr>0


η + 1

k0, . . . , kr

 r
z=0

(#Λz)
kz
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=

J
r=0


k0+···+kr =η+1

kr>0


η + 1

k0, . . . , kr

 r
z=0

(#Λz)
kz


using (9)



=


k0+···+kJ =η+1

k0,...,kJ ∈N0


η + 1

k0, . . . , kJ

 J
r=0

(#Λr )
kr


using the multinomial theorem



=


J

r=0

#Λr

η+1

= (#Λ)η+1,

and the proof of the induction step is completed. �

Theorem 1 can be further generalized to allow any positive rational number (or even positive
real number) in the exponents of the polynomial p, e.g. p(n) =

√
n, but the proof in this case re-

quires the use of the generalized multinomial theorem and generalized multinomial coefficients.
In the next remark we state an optimality property of the combinatorial estimate (10) in the

class of downward closed multi-index sets.

Remark 1. For any given η ∈ N0, consider the polynomial p = p(n) defined in (8), with its
coefficients sharply satisfying (with equalities) the binomial condition (7). In any dimension d , let
Λ be any multi-index set of anisotropic tensor product type (4) with degrees w = (w1, . . . , wd):
its sections according to the first direction satisfy

Λ0 = Λ1 = · · · = ΛJ and #Λ0 = #Λ1 = · · · = #ΛJ =

d
q=2

(wq + 1);

hence, repeating the proof of the induction step in Theorem 1 with all the inequalities replaced
by equalities, one can prove that

Kp(Λ) = (#Λ)η+1.

Therefore the thesis of Theorem 1 with the polynomial p is optimal in the class of downward
closed multi-index sets, in the sense that the equality in (10) is always attained for at least one
multi-index set in the class.

We introduce a finite constant Ĉ ∈ R+

0 defined as

Ĉ := max
l=0,...,η

αl
η+1

l

 ≥ 0. (13)

When Ĉ > 1 the constant Ĉ quantifies how much the coefficients α0, . . . , αη violate the binomial
condition (7). When Ĉ < 1 it quantifies how much the coefficients α0, . . . , αη are far from the
violation of the binomial condition (7). When Ĉ = 1 at least one of the coefficients equals the
corresponding binomial coefficient.

Lemma 2. In any dimension d and for any downward closed multi-index set Λ, let p be the
polynomial defined in (5) with arbitrary coefficients α0, . . . , αη ∈ R+

0 , and let Ĉ be their
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associated constant defined in (13). Let p be the polynomial defined in (8), and let K p(Λ) and
Kp(Λ) be the quantities (6) associated with p and p, respectively. It holds that

K p(Λ) ≤ Ĉd Kp(Λ) ≤ Ĉd(#Λ)η+1. (14)

Proof. To prove the left inequality in (14): from (13), αl ≤ Ĉ

η+1

l


for any l = 0, . . . , η, and

by linearity it follows that

K p(Λ) =


ν∈Λ

d
q=1


α0 + α1νq + · · · + αην

η
q



≤ Ĉd

ν∈Λ

d
q=1


η + 1

0


+


η + 1

1


νq + · · · +


η + 1
η


νηq


= Ĉd Kp(Λ). (15)

To prove the right inequality in (14): in the rightmost expression of (15) the coefficients of p by
definition satisfy the binomial condition (7), and we can apply Theorem 1 to bound Kp(Λ). �

Remark 2. When Ĉ > 1 and with the additional requirement that α0 ≤ 1, by using similar
techniques to those used in the proof of [4, Lemma 2], inequality (14) can be rewritten as

K p(Λ) ≤ (#Λ)η+1+θ ,

where θ is a positive monotonic increasing function depending on Ĉ , i.e. θ = θ(Ĉ). Therefore,
when Ĉ > 1 and α0 ≤ 1, one can get rid of the multiplicative constant Ĉd in the rightmost
expression of (14) but at the price of a worse exponent.

4. Orthogonal polynomials

In this section we recall several common families of univariate orthogonal polynomials de-
fined over the interval [−1, 1] ⊂ R, some of their properties, their three-term recurrence relation,
and derive their orthonormalization in the L2

ρ norm. We denote by 0 the usual gamma function

defined as 0(α) :=


+∞

0 yα−1e−y dy with Re(α) > 0, and then extended by analytic continua-
tion. We recall that 0(α + 1) = α! when α ∈ N0.

Univariate Jacobi polynomials. These polynomials are orthogonal w.r.t. the inner product (1)
with the univariate weight

ρJ (y) := (1 − y)α(1 + y)β , y ∈ [−1, 1], (16)

and any real numbers α, β > −1:
+1

−1

Jα,βn (y) Jα,βk (y) (1 − y)α(1 + y)β dy

=
2α+β+10(n + α + 1)0(n + β + 1)

(2n + α + β + 1)0(n + 1)0(n + α + β + 1)
δnk, (17)

see [21, Eq. (4.3.3)]. When n = 0, the product (2n + α + β + 1)0(n + α + β + 1) has to be
replaced by 0(α+β+2). These polynomials satisfy the following three-term recurrence relation
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[21, Eq. (4.5.1)]:Jα,β0 (y) ≡ 1, Jα,β1 (y) = (α + 1)+ (α + β + 2)(y − 1)/2,

Jα,βn (y) =
(2n + α + β − 1)


(2n + α + β)(2n + α + β − 2)y + α2

− β2


2n(n + α + β)(2n + α + β − 2)
Jα,βn−1(y)

−
2(n + α − 1)(n + β − 1)(2n + α + β)

2n(n + α + β)(2n + α + β − 2)
Jα,βn−2(y), n = 2, 3, . . . .

From (17), the L2
ρ-orthonormal Jacobi polynomials are defined as

Jα,βn (y) :=


(2n + α + β + 1)0(n + 1)0(n + α + β + 1)

2α+β+10(n + α + 1)0(n + β + 1)
Jα,βn (y), n ∈ N0.

Denote γm := min(α, β) and γM := max(α, β). Thanks to [21, Theorem 7.32.1], in the case
γM ≥ −1/2 it holds that

∥Jα,βn ∥L∞(−1,1) =


(2n + α + β + 1)0(n + 1)0(n + α + β + 1)

2α+β+10(n + α + 1)0(n + β + 1)


n + γM

n



=


(2n + γm + γM + 1)0(n + γm + γM + 1)0(n + γM + 1)

2γm+γM +10(n + γm + 1)0(n + 1)

1
0(γM + 1)

,

n ∈ N0. (18)

We will not consider the case γM < −1/2 where the behavior of ∥Jα,βn ∥L∞(−1,1) is different,
see [21, Theorem 7.32.1].

Univariate Gegenbauer polynomials (or ultraspherical polynomials). These polynomials belong
to the family of Jacobi polynomials, and Sαn = Jα,αn for any real α > −1 and any n ∈ N0. They
are orthogonal w.r.t. the inner product (1) with the univariate weight

ρS(y) := (1 − y2)α, y ∈ [−1, 1], (19)

and any real α > −1:
+1

−1

Sαn (y) Sαk (y) (1 − y2)α dy =
22α+1(0(n + α + 1))2

(2n + 2α + 1)0(n + 1)0(n + 2α + 1)
δnk . (20)

When n = 0, the product (2n + 2α + 1)0(n + 2α + 1) has to be replaced by 0(2α + 2). These
polynomials satisfy the following three-term recurrence relation:Sα0 (y) ≡ 1, Sα1 (y) = (α + 1)y,

Sαn (y) =
(2n + 2α − 1)(n + α)(n + α − 1)y

n(n + 2α)(n + α − 1)
Sαn−1(y)−

(n + α − 1)2(n + α)

n(n + 2α)(n + α − 1)
Sαn−2(y),

n = 2, 3, . . . .

From (20), the L2
ρ-orthonormal Gegenbauer polynomials are defined as

Sαn (y) :=


(2n + 2α + 1)0(n + 1)0(n + 2α + 1)

22α+1(0(n + α + 1))2
Sαn (y), n ∈ N0.
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Choosing β = α in (18), in the case α ≥ −1/2 we obtain

∥Sαn ∥L∞(−1,1) =


(2n + 2α + 1)0(n + 2α + 1)

22α+10(n + 1)

1
0(α + 1)

, n ∈ N0. (21)

Univariate Legendre polynomials. These polynomials belong to the family of Jacobi and Gegen-
bauer polynomials, and Ln = S0

n = J 0,0
n for any n ∈ N0. They are orthogonal w.r.t. the inner

product (1) with the univariate weight

ρL(y) := I[−1,1](y), y ∈ [−1, 1], (22)

i.e. 
+1

−1

Ln(y) Lk(y) dy =
2

2n + 1
δnk . (23)

Notice that, when using the weight (22), the weighted L2
ρ norm associated with the weighted

inner product (1) reduces to the standard L2 norm. These polynomials satisfy the following
three-term recurrence relation:

L0(y) ≡ 1, L1(y) = y, Ln+1(y) =
2n + 1
n + 1

yLn(y)−
n

n + 1
Ln−1(y), n ∈ N.

From (23), the L2
ρ-orthonormal Legendre polynomials are defined as

Ln(y) :=


2n + 1

2
Ln(y), n ∈ N0,

and, choosing α = β = 0 in (18), it holds that

∥Ln∥L∞(−1,1) =


2n + 1

2
, n ∈ N0. (24)

Univariate Chebyshev polynomials of the first kind. These polynomials belong to the family of
Jacobi and Gegenbauer polynomials, and Tn = S−1/2

n for any n ∈ N0. They are orthogonal
w.r.t. the inner product (1) with the univariate weight

ρT (y) := (1 − y2)−1/2, y ∈ [−1, 1], (25)

i.e. 
+1

−1

Tn(y) Tk(y) (1 − y2)−1/2 dy =

π, if n = k = 0,
π/2, if n = k ≥ 1,
0, if n ≠ k.

(26)

They satisfy the following three-term recurrence relation:T0(y) ≡ 1, T1(y) = y, Tn+1(y) = 2yTn(y)− Tn−1(y), n ∈ N.

From (26), the L2
ρ-orthonormal Chebyshev polynomials of the first kind are defined as

T0(y) :=


1
π
T0(y), and Tn(y) :=


2
π
Tn(y), n ∈ N.
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Choosing α = β = −1/2 in (18) and exploiting classical properties of the gamma function, their
norms equal

∥T0∥L∞(−1,1) =


1
π
, and ∥Tn∥L∞(−1,1) =


2
π
, n ∈ N. (27)

The univariate families of L2
ρ-orthonormal polynomials {Jα,βn }n≥0, {Sαn }n≥0, {Ln}n≥0, {Tn}n≥0,

corresponding to Jacobi, Gegenbauer, Legendre and Chebyshev polynomials, are used to build
the corresponding tensorized (multivariate) families of L2

ρ-orthonormal polynomials. For each
one of the four families of univariate L2

ρ-orthonormal polynomials, we define the d-dimensional
orthonormalization weights using the univariate weights (16), (19), (22) and (25):

ρd
J (y) :=

d
q=1

ρJ (yq), (tensorized Jacobi polynomials), (28)

ρd
S (y) :=

d
q=1

ρS(yq), (tensorized Gegenbauer polynomials), (29)

ρd
L(y) :=

d
q=1

ρL(yq), (tensorized Legendre polynomials), (30)

ρd
T (y) :=

d
q=1

ρT (yq), (tensorized Chebyshev polynomials of the first kind). (31)

Given any arbitrary d-dimensional downward closed multi-index set Λ, we denote by {Jα,βν }ν∈Λ,

{Sαν }ν∈Λ, {Lν}ν∈Λ and {Tν}ν∈Λ the tensorized families of Jacobi, Gegenbauer, Legendre
and Chebyshev polynomials over the d-dimensional hypercube [−1, 1]

d
⊂ Rd , with each

multivariate polynomial being built by tensorization as in (3) using the univariate fami-
lies {Jα,βn }n≥0, {Sαn }n≥0, {Ln}n≥0 and {Tn}n≥0. Each one of these tensorized families is L2

ρ-
orthonormal w.r.t. the corresponding tensorized orthonormalization weight defined in (28)–(31).

In any dimension d ≥ 1 and for any real numbers α, β > −1, we introduce the integral of the
weight (28) as

W (α, β, d) :=


D
ρd

J (y)dy =


D

d
q=1

(1 − yq)
α(1 + yq)

βdy

=


2α+β+10(α + 1)0(β + 1)

0(α + β + 2)

d

, (32)

where its evaluation is given by taking n = k = 0 in (17), in each one of the d directions. In any
dimension d ≥ 1 and for any real number α > −1, choosing β = α in (32) yields the integral of
the weight (29), i.e.

W (α, α, d) =


22α+1(0(α + 1))2

0(2α + 2)

d

. (33)
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The integral of the weight (30) equals

W (0, 0, d) = 2d , (34)

and the integral of the weight (31) equals

W (−1/2,−1/2, d) = πd . (35)

Remark 3. Throughout the paper {Jα,βn }n≥0, {Sαn }n≥0, {Ln}n≥0 and {Tn}n≥0 will always denote
the families of univariate L2

ρ-orthonormal polynomials over the interval [−1, 1], with their

L∞ norms satisfying (18), (21), (24) and (27), respectively. Analogously, {Jα,βν }ν∈Λ, {Sαν }ν∈Λ,

{Lν}ν∈Λ and {Tν}ν∈Λ will always denote the tensorized families of L2
ρ-orthonormal polynomials

on [−1, 1]
d associated with the multi-index set Λ.

5. Multivariate polynomial inequalities

In this section we prove several Markov-type and Nikolskii-type inequalities for multivariate
polynomials indexed by downward closed multi-index sets in any dimension. Throughout this
section D will always denote the d-dimensional hypercube D = [−1, 1]

d
⊂ Rd .

5.1. Markov one-dimensional inequalities

Lemma 3 (Markov One-Dimensional Inequality in L2). Given an interval [a, b] ⊂ R, for any
polynomial u ∈ Pw(a, b) with maximum degree w it holds that

∥u′
∥L2(a,b) ≤

2
√

3
b − a

w2
∥u∥L2(a,b). (36)

Proof. See [20]. �

Lemma 4 (Derivative of Univariate Legendre Polynomials). Given the interval [−1, 1] ⊂ R,
for any L2

ρ-orthonormal Legendre polynomial Ln ∈ Pn(−1, 1) with degree n ∈ N0 it holds that

∥L ′
n∥L2

ρ (−1,1) =


n


n +

1
2


(n + 1). (37)

Proof. Thanks to the following identity [21, Eq. (4.7.29)] it holds that

d

dy

Ln+1(y)− Ln−1(y)


= (2n + 1)Ln(y), ∀y ∈ D, ∀n ≥ 1,

and, by recurrence and using (23), we obtain for any n ≥ 1 that

∥L ′

2n∥
2
L2
ρ

=

n
r=1

(2(2r − 1)+ 1)2∥L2r−1∥
2
L2
ρ

= 2n(2n + 1),

∥L ′

2n+1∥
2
L2
ρ

=

n
r=0

(2(2r)+ 1)2∥L2r∥
2
L2
ρ

= 2(n + 1)(2n + 1).
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Hence the L2
ρ-orthonormal polynomials (Ln)n≥2 satisfy (37). By direct calculation, L0 and L1

satisfy (37) as well. �

Lemma 5 (Derivative of Univariate Chebyshev Polynomials). Given the interval [−1, 1] ⊂ R,
for any L2

ρ-orthonormal Chebyshev polynomial of the first kind Tn ∈ Pn(−1, 1) with degree
n ∈ N0 it holds that

∥T ′
n∥L2

ρ (−1,1) =
√

2n3/2. (38)

Proof. Consider the following identity (see [19, p. 5])

Tn =

T ′

n+1

2n + 2
−

T ′

n−1

2n − 2
, ∀n ≥ 2.

When n = 1 we have T1 = T ′

2/4. By recurrence we obtain that

T ′

n+1 = 2(n + 1)


n/2
r=1

T2r + T ′

1/2


, if n is even,

T ′

n+1 = 2(n + 1)
⌊n/2⌋
r=0

T2r+1, if n is odd.

Therefore, since T ′

1 = T0, we obtain

∥T ′

n+1∥
2
L2
ρ

= 4(n + 1)2


n/2
r=1

∥T2r∥
2
L2
ρ

+ ∥T ′

1∥
2
L2
ρ
/4


= π(n + 1)3, n even,

and

∥T ′

n+1∥
2
L2
ρ

= 4(n + 1)2


⌊n/2⌋
r=0

∥T2r+1∥
2
L2
ρ


= π(n + 1)3, n odd.

Thus the L2
ρ-orthonormal polynomials (Tn)n≥1 satisfy (38). By direct calculation T0 satisfies (38)

as well. �

Lemma 6 (Derivative of Univariate Gegenbauer Polynomials). Given the interval [−1, 1] ⊂ R
and any α ∈ N, for any L2

ρ-orthonormal Gegenbauer polynomial Sαn ∈ Pn(−1, 1) with degree
n ∈ N0 it holds that

∥(Sαn )
′
∥

2
L2
ρ (−1,1) ≤ ζ e(α) (n + α + 1/2) (n2

+ n(2α + 1)), if n is even, (39)

∥(Sα1 )
′
∥

2
L2
ρ (−1,1) =

(3 + 2α)(2α + 1)!

22α+1(α!)2
=
(3 + 2α)(α + 1)

22α+1

α
k=1


α + 1

k
+ 1


, (40)

∥(Sαn )
′
∥

2
L2
ρ (−1,1) ≤ ζ o(α)(n + α + 1/2)


n2

+ n (2α + 1)−
2α(α + 1)

2α + 1


,

if n is odd and n ≥ 3, (41)

with ζ e
: N → R+ and ζ o

: N → R+ being defined as

ζ e(α) :=

α
k=1


1 −

α

(k + 2)(α + k + 1)


< 1,



G. Migliorati / Journal of Approximation Theory 189 (2015) 137–159 151

ζ o(α) :=

α
k=1


1 −

3α
(k + 3)(α + k)


< 1.

Proof. From the following identity [21, Eq. (4.7.29)] it holds

d

dy

Sαn+1(y)−Sαn−1(y)


= (2n + 2α + 1)Sαn (y), ∀y ∈ D, ∀n ≥ 1, (42)

and, by recurrence and using (20), we obtain for any n ≥ 1 that

∥(Sα2n)
′
∥

2
L2
ρ

=

n
r=1

(2(2r − 1)+ 2α + 1)2∥Sα2r−1∥
2
L2
ρ
,

∥(Sα2n+1)
′
∥

2
L2
ρ

=

n
r=1

(2(2r)+ 2α + 1)2∥Sα2r∥
2
L2
ρ

+ (α + 1)2∥Sα0 ∥
2
L2
ρ
.

Hence the L2
ρ-orthonormal Gegenbauer polynomials for any n ≥ 1 and any α ∈ N satisfy

∥(Sα2n)
′
∥

2
L2
ρ

=
(2(2n)+ 2α + 1)(2n)!(2n + 2α)!

((2n + α)!)2

n
r=1

(4r + 2α − 1)

×

α
k=1


1 −

α

2r − 1 + k + α



≤
(4n + 2α + 1)(2n)!(2n + 2α)!

((2n + α)!)2

α
k=1


1 −

α

1 + k + α

 n
r=1

(4r + 2α − 1)

=
(4n + 2α + 1)n(2n + 2α + 1)(2n)!(2n + 2α)!

((2n + α)!)2

α
k=1


1 −

α

1 + k + α



= (4n + 2α + 1)n(2n + 2α + 1)
α

k=1


1 −

α

1 + k + α

 α
k=1


1 +

α

2n + k



≤ (4n + 2α + 1)n(2n + 2α + 1)
α

k=1


1 −

α

1 + k + α

 α
k=1


1 +

α

2 + k



= (4n + 2α + 1)n(2n + 2α + 1)
α

k=1


1 −

α

(k + 2)(α + k + 1)


,

∥(Sα2n+1)
′
∥

2
L2
ρ

=
(2(2n + 1)+ 2α + 1)(2n + 1)!(2n + 1 + 2α)!

((2n + 1 + α)!)2

×


n

r=1

(4r + 2α + 1)
α

k=1


1 −

α

2r + k + α


+
(α + 1)2(α!)2

(2α + 1)(2α)!



≤
(4n + 2α + 3)(2n + 1)!(2n + 1 + 2α)!

((2n + 1 + α)!)2

×

α
k=1


1 −

α

k + α

 n
r=1

(4r + 2α + 1)+
(α + 1)2

(2α + 1)



=
(4n + 2α + 3)(2n + 1)!(2n + 1 + 2α)!

((2n + 1 + α)!)2
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×

α
k=1


1 −

α

k + α


n(2n + 2α + 3)+

(α + 1)2

(2α + 1)


= (4n + 2α + 3)


2n2

+ n(2α + 3)+
(α + 1)2

(2α + 1)


×

α
k=1


1 −

α

k + α

 α
k=1


1 +

α

2n + 1 + k


≤ (4n + 2α + 3)


2n2

+ n(2α + 3)+
(α + 1)2

(2α + 1)


×

α
k=1


1 −

α

k + α

 α
k=1


1 +

α

3 + k


= (4n + 2α + 3)


2n2

+ n(2α + 3)+
(α + 1)2

(2α + 1)


×

α
k=1


1 −

3α
(k + 3)(α + k)


.

Hence the L2
ρ-orthonormal polynomials (Sαn )n≥2 satisfy (39)–(41) depending on the parity of n,

since

∥(Sαn )
′
∥

2
L2
ρ

≤ ζ e(α)(n + α + 1/2)n(n + 2α + 1), when n is even and n ≥ 2,

∥(Sαn )
′
∥

2
L2
ρ

≤ ζ o(α)(n + α + 1/2)


n2
+ n (2α + 1)−

2α(α + 1)
2α + 1


,

when n is odd and n ≥ 3.

By direct calculation, it holds that Sα0 satisfies (39) and Sα1 satisfies (40). �

5.2. Multivariate Markov-type inequalities

The result in Theorem 1 can be used to derive inequalities of Markov-type, for the mixed
derivative of a multivariate polynomial u ∈ PΛ(D) associated with an arbitrary downward closed
multi-index set Λ in any dimension d .

Theorem 2. For any d-variate polynomial u ∈ PΛ(D) with Λ downward closed it holds that ∂d

∂y1 · · · ∂yd
u


L2(D)

≤


3
5

d/2

(#Λ)5/2 ∥u∥L2(D).

Proof. We expand the polynomial u ∈ PΛ(D) over any polynomial orthonormal basis {ψν}ν∈Λ

of PΛ(D) of the form (3):

u =


ν∈Λ

βνψν .

Then, using the Cauchy–Schwarz inequality in R#Λ and (36) in each direction with [a, b] =

[−1, 1], we proceed as follows:
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∂y1 · · · ∂yd
u

2

L2(D)
=


D


∂d

∂y1 · · · ∂yd
u

2

dy

=


D1

· · ·


Dd


∂d

∂y1 · · · ∂yd
u

2

dy1 · · · dyd

=


D1

· · ·


Dd


∂d

∂y1 · · · ∂yd


ν∈Λ

βνψν

2

dy1 · · · dyd

=


D1

· · ·


Dd


ν∈Λ

βν
∂d

∂y1 · · · ∂yd
ψν

2

dy1 · · · dyd

≤


ν∈Λ

β2
ν


D1

· · ·


Dd


ν∈Λ


∂d

∂y1 · · · ∂yd
ψν

2

dy1 · · · dyd

= ∥β∥
2
ℓ2


ν∈Λ


D1

· · ·


Dd


∂d

∂y1 · · · ∂yd
ψν

2

dy1 · · · dyd

= ∥u∥
2
L2(D)


ν∈Λ

 ∂d

∂y1 · · · ∂yd
ψν

2

L2(D)

= ∥u∥
2
L2(D)


ν∈Λ

 ∂d

∂y1 · · · ∂yd

d
q=1

ϕνq (yq)


2

L2(D)

≤ ∥u∥
2
L2(D)


ν∈Λ

d
q=1

3ν4
q

= ∥u∥
2
L2(D)


3
5

d 
ν∈Λ

d
q=1

5ν4
q

≤ ∥u∥
2
L2(D)(#Λ)

5


3
5

d

.

In the last step we have applied Theorem 1 with η = 4 and p(n) = 5n4. Notice that we are in

the case where the binomial condition (7) is satisfied, since


5
4


= 5. �

Theorem 3. For any d-variate polynomial u ∈ PΛ(D) with Λ downward closed it holds that ∂d

∂y1 · · · ∂yd
u


L2
ρ (D)

≤ 2−d(#Λ)2∥u∥L2
ρ (D)

,

with ρ = ρd
L being defined in (30) as the weight associated with tensorized Legendre L2

ρ-
orthonormal polynomials.
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Proof. Any u ∈ PΛ(D) can be expanded in series of tensorized Legendre polynomials (Lν)ν∈Λ.
Following the lines of the proof of Theorem 2, but using (37) in each direction, we obtain ∂d

∂y1 · · · ∂yd
u

2

L2(D)
= ∥u∥

2
L2(D)


ν∈Λ

 ∂d

∂y1 · · · ∂yd

d
q=1

Lνq (yq)


2

L2(D)

≤ ∥u∥
2
L2(D)


ν∈Λ

d
q=1

νq


νq +

1
2

 
νq + 1


= ∥u∥

2
L2(D)4

−d

ν∈Λ

d
q=1


4ν3

q + 6ν2
q + 2νq



≤ ∥u∥
2
L2(D)4

−d

ν∈Λ

d
q=1

p(νq)

≤ ∥u∥
2
L2(D)4

−d(#Λ)4.

In the last but one step we have used the polynomial p = p(n) defined in (8) with η = 3, and
then in the last step we have applied Theorem 1. �

Remark 4. The standard L2 norm coincides with the weighted L2
ρ norm when ρ is the weight

(30) associated with tensorized Legendre L2
ρ-orthonormal polynomials. Choosing d = 1 in

the thesis of Theorem 3 yields a better constant than Lemma 3. Expanding the polynomial
u ∈ PΛ(D) in Legendre series is advantageous also when d > 1, since the inequality constant
(3/5)d/2(#Λ)5/2 in the thesis of Theorem 2 improves to 2−d(#Λ)2 in the thesis of Theorem 3.

Theorem 4. For any d-variate polynomial u ∈ PΛ(D) with Λ downward closed it holds that ∂d

∂y1 · · · ∂yd
u


L2
ρ (D)

≤ 2−d/2(#Λ)2∥u∥L2
ρ (D)

,

with ρ = ρd
T being defined in (31) as the weight associated with tensorized Chebyshev of the first

kind L2
ρ-orthonormal polynomials.

Proof. Any u ∈ PΛ(D) can be expanded in series of tensorized Chebyshev polynomials of the
first kind (Tν)ν∈Λ. It suffices to follow the lines of the proof of Theorem 3, but using (38) in each
direction, take out the constant 2−d from the summation, and then apply Theorem 1 with η = 3
and the polynomial p = p(n) defined in (8). �

Theorem 5. For any d-variate polynomial u ∈ PΛ(D) with Λ downward closed and any α ∈ N,
it holds that ∂d

∂y1 · · · ∂yd
u


L2
ρ (D)

≤ (CS(α))
d/2 (#Λ)2∥u∥L2

ρ (D)
, (43)

with ρ = ρd
S being defined in (29) as the weight associated with tensorized Gegenbauer L2

ρ-
orthonormal polynomials, and with CS : N → R+ being the function

CS(α) := max


ζ e(α) (α + 1/2)2

2
,
(3 + 2α)(2α + 1)!

8 (α!)2 22α


> 1. (44)
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Proof. Consider the bounds of ∥(Sαn )
′
∥

2
L2
ρ

on the right-hand side of (39) and (41): they are

polynomials of third degree in the variable n with coefficients depending on α ∈ N. We name
these polynomials pe

= pe(n) if n is even, and po
= po(n) if n is odd and n ≥ 3. The bound

on the right-hand side of (40), when n = 1, can be associated with a polynomial p1
= p1(n) of

degree one. With the same notation, we extend the polynomials pe, po and p1 over any n ∈ N0.
Since ζ e(α) ≥ ζ o(α) for any α ∈ N, it holds true that pe(n) ≥ po(n) for any n ∈ N0. Using the
polynomial p = p(n) defined in (8) with η = 3, we seek a function C(α) : N → R+ such that

∥(Sαn )
′
∥

2
L2
ρ

≤ C(α)p(n), ∀n ∈ N0, ∀α ∈ N. (45)

To this aim, we compute the constant (13) for the polynomial pe
= pe(n) with η = 3, i.e.

Ĉe
S(α) := max

 ζ e(α)
η+1

3

 , ζ e(α)(3α + 3/2)
η+1

2

 ,
2ζ e(α)(α + 1/2)2

η+1
1

 , 0

 ,
and for the polynomial p1

= p1(n) with η = 3 (albeit a linear function), i.e.

Ĉ1
S(α) := max

0, 0,
(3 + 2α)(2α + 1)!
η+1

1


22α+1(α!)2

, 0

 .
The function CS(α) defined in (44) satisfies CS(α) = max


Ĉe

S(α), Ĉ1
S(α)


for any α ∈ N.

Therefore, (45) holds true with C(α) = CS(α).
To prove (43), we follow the lines of the proof of Theorem 3. Any u ∈ PΛ(D) can be expanded

in series of tensorized Gegenbauer polynomials (Sαν )ν∈Λ. Then we use (45) with C(α) = CS(α)

to bound the derivatives in each direction, take out the constant (CS(α))
d from the summation,

apply Theorem 1 with η = 3 and finally obtain (43). �

Remark 5. The estimates proven in Lemma 6 can be extended to any real α > −1, making
use of the properties of the gamma function. The same extension can be achieved in Theorem 5,
because the shape parameter α does not enter in the exponent η when applying Theorem 1.

5.3. Multivariate Nikolskii-type inequalities

Multivariate Nikolskii-type inequalities between L∞ and L2
ρ have been proven in [4, Lemmas

1 and 2] for Legendre and Chebyshev polynomials of the first kind. To keep the present article
self contained we recall these results in the following, and afterwards we generalize them to
the case of Gegenbauer and Jacobi polynomials using Theorem 1. The result in Theorem 6
can be proven with the same proof as in [4, Lemma 1], and taking into account the different
orthonormalization of the Legendre polynomials, see also Remark 6. The result in Theorem 7 in
the case of Chebyshev polynomials is only stated, since a specific treatment is needed to get the
optimal exponent, see [4, Lemma 2] for the proof. In Theorem 8, with Gegenbauer polynomials,
we confine to values of the parameter α such that 2α + 1 ∈ N, and this allows us to include
the Chebyshev polynomials of the second kind given by α = β = 1/2. In Theorem 9, with
Jacobi polynomials, we confine to integer values of the parameters α, β ∈ N0. The analysis in
the general case with α, β ∈ R+

0 requires an extension of Theorem 1 to include (positive) real
exponents η. The case of Legendre polynomials α = β = 0 is included as a particular case in
both theses of Theorems 8 and 9.
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Theorem 6. For any d-variate polynomial u ∈ PΛ(D) with Λ downward closed it holds that

∥u∥
2
L∞(D) ≤ (#Λ)2W −1

ρ ∥u∥
2
L2
ρ (D)

,

with ρ = ρd
L being defined in (30) as the weight associated with tensorized Legendre L2

ρ-
orthonormal polynomials, and with Wρ = 2d being its integral defined in (2).

Proof. From (24) we have that the univariate Legendre L2
ρ-orthonormal polynomials satisfy

∥Ln∥
2
L∞(−1,1) =

(2n + 1)
2

=
p(n)

W (0, 0, 1)
. (46)

In the rightmost expression of (46) we have used the polynomial p(n) = 2n + 1 defined in (8)
with η = 1, divided by the constant W (0, 0, d) defined in (34) with d = 1.

Any u ∈ PΛ(D) can be expanded in series of tensorized Legendre polynomials (Lν)ν∈Λ:

u(y) =


ν∈Λ

βν

d
q=1

Lνq (yq).

Therefore, using in sequence the Cauchy–Schwarz inequality in R#Λ, (46) and Theorem 1, we
have

∥u(y)∥L∞(D) =


ν∈Λ

βν

d
q=1

Lνq (yq)


L∞(D)

≤


ν∈Λ

|βν |
2


ν∈Λ


d

q=1

Lνq (yq)


L∞(−1,1)

2

≤ ∥u∥L2
ρ (D)


W (0, 0, d)−1(#Λ)2,

and we obtain the thesis with Wρ = W (0, 0, d). �

Theorem 7. For any d-variate polynomial u ∈ PΛ(D) with Λ downward closed it holds that

∥u∥
2
L∞(D) ≤ (#Λ)

ln 3
ln 2 W −1

ρ ∥u∥
2
L2
ρ (D)

,

with ρ = ρd
T being defined in (31) as the weight associated with tensorized Chebyshev of the first

kind L2
ρ-orthonormal polynomials, and with Wρ = πd being its integral defined in (2).

Proof. The result follows from the same proof as in [4, Lemma 2], and taking into account the
different orthonormalization of the Chebyshev polynomials of the first kind. �

Theorem 8. For any d-variate polynomial u ∈ PΛ(D) with Λ downward closed it holds that

∥u∥
2
L∞(D) ≤ (#Λ)2α+2W −1

ρ ∥u∥
2
L2
ρ (D)

, for any α : 2α + 1 ∈ N, (47)

with ρ = ρd
S being defined in (29) as the weight associated with tensorized Gegenbauer L2

ρ-
orthonormal polynomials, and with Wρ being its integral defined in (2).
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Proof. From (21) we have that the univariate Gegenbauer L2
ρ-orthonormal polynomials with

2α − 1 ∈ N0 satisfy

∥Sαn ∥
2
L∞(−1,1) =

(2n + 2α + 1)(n + 2α)!

22α+1(0(α + 1))2n!

=
(2α + 1)

22α+1(0(α + 1))2


2n

2α + 1
+ 1


(2α)!

2α
k=1

n

k
+ 1


≤

(2α + 1) (2α)!

22α+1(0(α + 1))2
(n + 1)2α+1

=
(2α + 1) (2α)!

22α+1(0(α + 1))2

2α+1
l=0


2α + 1

l


nl .

= W (α, α, 1)−1 p(n). (48)

In the last but one step we have used the binomial theorem, with the restrictions on α ensuring that
the exponent 2α + 1 is a nonnegative integer. In the last step we have introduced the polynomial

p(n) :=
2α+1

l=0


2α+1

l


nl divided by the constant W (α, α, d) defined in (33) with d = 1. The

polynomial p has maximum degree η = 2α+1, and its coefficients satisfy the binomial condition

(7) since


2α+1
l


≤


2α+2

l


for any l = 0, . . . , η.

Any u ∈ PΛ(D) can be expanded in series of tensorized Gegenbauer polynomials (Sαν )ν∈Λ:

u(y) =


ν∈Λ

βν

d
q=1

Sανq
(yq).

Therefore, using in sequence the Cauchy–Schwarz inequality in R#Λ, (48) and Theorem 1, we
have

∥u(y)∥L∞(D) =


ν∈Λ

βν

d
q=1

Sανq
(yq)


L∞(D)

≤


ν∈Λ

|βν |
2


ν∈Λ


d

q=1

Sανq
(yq)


L∞(−1,1)

2

≤ ∥u∥L2
ρ (D)


W (α, α, d)−1(#Λ)2α+2.

This completes the proof of (47) in the case 2α − 1 ∈ N0, with Wρ = W (α, α, d). The case
α = 0 has been proven in Theorem 6, and is included in (47) as well. �

Theorem 9. For any d-variate polynomial u ∈ PΛ(D) with Λ downward closed and any
α, β ∈ N0 it holds that

∥u∥
2
L∞(D) ≤ (#Λ)2γM +2W −1

ρ ∥u∥
2
L2
ρ (D)

, (49)

with ρ = ρd
J being defined in (28) as the weight associated with tensorized Jacobi L2

ρ-
orthonormal polynomials, and with Wρ being its integral defined in (2).
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Proof. From (18) we have that the univariate Jacobi L2
ρ-orthonormal polynomials with γm +

γM ≥ 1 satisfy

∥Jα,βn ∥
2
L∞(−1,1) =

(2n + γm + γM + 1)(n + γm + γM )!(n + γM )!

2γm+γM +1(γM !)2(n + γm)!n!

=
(γm + γM + 1)(γm + γM )!

2γm+γM +1γM !γm !


2n

γm + γM + 1
+ 1


×

γm+γM
k=γm+1

n

k
+ 1

 γM
k=1

n

k
+ 1


≤
(γm + γM + 1)(γm + γM )!

2γm+γM +1γM !γm !
(n + 1)2γM +1

=
(γm + γM + 1) (γm + γM )!

2γm+γM +1γM !γm !

2γM +1
l=0


2γM + 1

l


nl

= W (α, β, 1)−1 p(n). (50)

In the last step of (50) we have introduced the polynomial p(n) :=
2γM +1

l=0


2γM +1

l


nl divided

by the constant W (α, β, d) defined in (32) with d = 1. The polynomial p has maximum degree

η = 2γM + 1, and its coefficients satisfy the binomial condition (7) since


2γM +1
l


≤


2γM +2

l


for any l = 0, . . . , η.

Any u ∈ PΛ(D) can be expanded in series of tensorized Jacobi polynomials (Jα,βν )ν∈Λ:

u(y) =


ν∈Λ

βν

d
q=1

Jα,βνq (yq).

Proceeding as in the proof of Theorem 8, but using (50), we can apply Theorem 1 and obtain
(49) in the case γm + γM ≥ 1, with Wρ = W (α, β, d). The case α = β = 0 has been proven in
Theorem 6, and is included in (49) as well. �

Remark 6 (“Probabilistic” Orthonormalization Weight). In the weighted inner product (1) one
can use an orthonormalization weight which integrates to one independently of the dimension d
and of the shape parameters. Given any orthonormalization weight ρ and its integral Wρ defined
in (2), we define the “probabilistic” weighted L2

ρ inner product as

{⟨ f1, f2⟩}L2
ρ (D)

:=


D

f1(y) f2(y)W
−1
ρ ρ(y)dy, ∀ f1, f2 ∈ L2

ρ(D), (51)

and the “probabilistic” weighted L2
ρ norm as {∥ · ∥}L2

ρ (D)
:= {⟨·, ·⟩}

1/2
L2
ρ (D)

. Of course it holds true

that

{∥ f ∥}
2
L2
ρ (D)

= W −1
ρ ∥ f ∥

2
L2
ρ (D)

, ∀ f ∈ L2
ρ(D).

Therefore we can rewrite the theses of Theorems 6–9 using the L∞ norm and the “probabilistic”
weighted L2

ρ norm. The theses of Theorems 3–5 hold true also with the “probabilistic” weighted
L2
ρ norm, with the same constants of proportionality.



G. Migliorati / Journal of Approximation Theory 189 (2015) 137–159 159

Equivalently, one might work directly with the “probabilistic” L2
ρ-orthonormal Jacobi poly-

nomials, which are orthonormal w.r.t. the inner product (51) with the orthonormalization weight
ρ = ρd

J defined in (28).
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