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Abstract

Let Pn denote the set of all algebraic polynomials of degree at mostn with real coefficients.
Associated with a set of poles{a1, a2, . . . , an} ⊂ R\[−1,1] we define the rational function spaces

Pn(a1, a2, . . . , an) : =
{
f : f (x) = b0 +

∑n

j=1

bj

x − aj
, b0, b1, . . . , bn ∈ R

}
.

Associated with a set of poles{a1, a2, . . .} ⊂ R\[−1,1], we define the rational function spaces

P(a1, a2, . . .) : =
⋃∞

n=1
Pn(a1, a2, . . . , an).

It is an interesting problem to characterize sets{a1, a2, . . .} ⊂ R\[−1,1] for which
P(a1, a2, . . .) is not dense inC[−1,1], whereC[−1,1] denotes the space of all continuous functions
equipped with the uniform norm on[−1,1]. Akhieser showed that the density ofP(a1, a2, . . .) is

characterized by the divergence of the series
∑∞

n=1

√
a2n − 1.

In this paper, we show that the so-called Clarkson–Erd˝os–Schwartz phenomenon occurs in the
non-dense case. Namely, ifP(a1, a2, . . .) is not dense inC[−1,1], then it is “very much not so”.
More precisely, we prove the following result.
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Theorem.Let {a1, a2, . . .} ⊂ R\[−1,1]. SupposeP(a1, a2, . . .) is not dense inC[−1,1], that is,
∑∞

n=1

√
a2n − 1< ∞.

Then every function in the uniform closure ofP(a1, a2, . . .) in C[−1,1] can be extended analyti-
cally throughout the setC\{−1,1, a1, a2, . . .}.
© 2004 Elsevier Inc. All rights reserved.
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Throughout this paper‖f ‖A will denote the uniform norm of a continuous functionf on
a setA ⊂ C. LetPn denote the set of all algebraic polynomials of degree at mostn with
real coefficients. Associated with a set of poles{a1, a2, . . . , an} ⊂ R \ [−1,1] we define
the rational function spaces

Pn(a1, a2, . . . , an) :=

f : f (x) = b0 +

n∑
j=1

bj

x − aj

, b0, b1, . . . , bn ∈ R


 .

Note that everyf ∈ Pn(a1, a2, . . . , an) can be written asf = p/q with

p ∈ Pn and q(x) =
n∏

j=1

(x − aj ).

Associated with a set of poles{a1, a2, . . .} ⊂ R \ [−1,1], we define the rational function
spaces

P(a1, a2, . . .) :=
∞⋃

n=1

Pn(a1, a2, . . . , an).

It is an interesting problem to characterize sets{a1, a2, . . .} ⊂ R \ [−1,1] for which
P(a1, a2, . . .) is not dense inC[−1,1], whereC[−1,1] denotes the space of all continuous
functions equipped with the uniform norm on[−1,1]. Akhieser presents the answer (which
is recaptured in[1], see Corollary 4.3.4 on p. 208) in his book by proving the following
result.

Theorem (Akhieser).Let {a1, a2, . . .} ⊂ R \ [−1,1]. ThenP(a1, a2, . . .) is dense in
C[−1,1] if and only if

∞∑
n=1

√
a2n − 1 = ∞.
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In this paper, we show that the so-called Clarkson–Erd˝os–Schwartz phenomenon occurs
in the non-dense case. Namely ifP(a1, a2, . . .) is not dense inC[−1,1], then it is “very
much not so". More precisely, we prove the following result.

Theorem 1. Let {a1, a2, . . .} ⊂ R \ [−1,1]. SupposeP(a1, a2, . . .) is not dense in
C[−1,1], that is,

∞∑
n=1

√
a2n − 1 < ∞.

Then every function in the uniform closure ofP(a1, a2, . . .) in C[−1,1] can be extended
analytically throughout the setC \ {−1,1, a1, a2, . . .}.

Theorem1 follows immediately from our main result below.

Theorem 2. Suppose(aj ) is a sequence with eachaj ∈ R \ [−1,1] . Suppose
∞∑

j=1

√
a2j − 1 < ∞ .

Then there is a constantC� depending only on� > 0 and the sequence(aj ) such that

|f (z)|�C�‖f ‖[−1,1]

for everyf ∈ P(a1, a2, . . .) andz ∈ C \ {a1, a2, . . . , an} such that the distance between
the point z and the set{−1,1} is at least� > 0.

Theorem 2 is the key observation of this paper. Theorem1 follows immediately from
Theorem 2. Indeed, suppose the sequence(fn) with fn ∈ P(a1, a2, . . .) converges uni-
formly on [−1,1]. Then it is also uniformly Cauchy on[−1,1]. By Theorem 2, it remains
uniformly Cauchy on any compact setK ⊂ C \ {−1,1, a1, a2, . . .}. Theorem1 now fol-
lows from the well known theorem in complex analysis stating that a uniformly convergent
sequence of analytic functions on a compact setK has an analytic limit function onK.
From now on we focus on proving Theorem 2. First an extremal function for the prob-

lem is introduced and then some nice properties of the extremal function is established in
Lemma 1.
Letz0 ∈ C\([−1,1]∪{a1, a2, . . . , an}) be fixed.A simple compactness argument shows

that there exists a function 0�= f ∗ ∈ Pn(a1, a2, . . . , an)0 �= f ∗ such that

|f ∗(z0)|
‖f ∗‖[−1,1]

= sup
0�=f ∈Pn(a1,a2,...,an)

|f (z0)|
‖f ‖[−1,1]

. (1)

Lemma 1. Supposef ∗ ∈ Pn(a1, a2, . . . , an) satisfy(1). Then the following statements
hold.
(i) The functionf ∗ equioscillates on[−1,1] at least n times. That is, there are

−1 < x1 < x2 < · · · < xn < 1
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such that

f ∗(xj ) = ±(−1)j‖f ∗‖[−1,1] , j = 1,2, . . . , n .

(ii) f ∗ has only real zeros. All but at most one zeros off ∗ are in (−1,1).

Proof. The proof of (i) can be given by a standard variational method. Assume that state-
ment (i) of the lemma is false. Letx1 ∈ [−1,1] be the smallest number such thatf ∗(x1) =
±‖f ∗‖[−1,1]. Let x2 ∈ [x1,1] be the smallest value for whichf ∗(x2) = −f ∗(x1). In-
ductively, letxk ∈ [xk−1,1] be the smallest value such thatf ∗(xk) = −f ∗(xk−1) , k =
2,3, . . . , m , and assume that there is noxm+1 ∈ [xm,1] such thatf ∗(xm+1) = −f ∗(xm).
By our indirect assumption, we havem�n − 1. Choosey1, y2, . . . , ym−1 so that

x1 < y1 < x2 < y2 < x3 < · · · < xm−1 < ym−1 < xm .

We define

qm+1(x) = (x − z0)(x − z0)(x − y1)(x − y2) · · · (x − ym−1) .

Thenqm+1 ∈ Pn, and for sufficiently smallε > 0 either

f ∗(x) + ε
qm+1(x)

(x − a1)(x − a2) · · · (x − an)
∈ Pn(a1, a2, . . . , an)

or

f ∗(x) − ε
qm+1(x)

(x − a1)(x − a2) · · · (x − an)
∈ Pn(a1, a2, . . . , an)

contradicts the extremality off ∗. Hence (i) is proved. To see (ii) we can argue as follows.
By using the IntermediateValue Theorem, (i) implies that all but at most one zero off ∗ are
in (−1,1). Sincef ∗ ∈ Pn(a1, a2, . . . , an) can be written asf ∗ = p/q with

p ∈ Pn and q(x) =
n∏

j=1

(x − aj ) ,

we conclude that the only possibly remaining zero off ∗ is also real. �
Our next tool is the bounded Bernstein-type inequality below for non-dense rational

spacesP(a1, a2, . . .). This is proved in[1] (see Corollary 7.1.4 on p. 323) and plays an
important role in the proof Theorem 2.

Lemma 2. Suppose{a1, a2, . . . , an} ⊂ R \ [−1,1]. Then

|f ′(x)|� 1√
1− x2




n∑
j=1

√
a2j − 1

|x − aj |


 ‖f ‖[−1,1]

for everyf ∈ Pn(a1, a2, . . . , an) andx ∈ (−1,1).

In fact, to prove Theorem 2, wewill need the following consequence of the above lemma.
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Corollary 3. Suppose(aj ) is a sequence with eachaj ∈ R \ [−1,1] . Suppose

C :=
∞∑

j=1

√
a2j − 1 < ∞ .

Then

|f ′(x)|� 2C

(1− x2)3/2
‖f ‖[−1,1]

for everyf ∈ Pn(a1, a2, . . . , an) andx ∈ (−1,1).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We fixn ∈ N andz0 ∈ C \ ([−1,1] ∪ {a1, a2, . . .}). It is sufficient to
prove the lemma for rational functions

f ∈ S2n(a1, a2, . . . , an) := P2n(a1, −a1, a2, −a2, . . . , an, −an) .

Without loss of generality we may assume that Re(z0)�0 and Im(z0) �= 0. By Lemma1
we may assume thatf ∈ S2n(a1, a2, . . . , an) equioscillates on[−1,1] at least 2n times.
That is, there exist−1�x1 < x2 < · · · < x2n �1 such that

f (xj ) = ±(−1)j‖f ‖[−1,1] .

Hence, there areyj ∈ (xj , xj+1), j = 1,2, . . . ,2n − 1 , �, y0 ∈ R, and� ∈ {0,1} such
that

f (x) = �
(x − y0)

�(x − y1) · · · (x − y2n−1)

(x2 − a21)(x
2 − a22) · · · (x2 − a2n)

. (2)

Assume that� = 1 andy0 ∈ R \ [−1,1]. The remaining cases are similar (in fact easier).
Let k be chosen so that

x1 < x2 < · · · < xk < 0�xk+1 < xk+2 < · · · < x2n .

Observe that|k − n|�2, otherwise

f (x) − f (−x) ∈ S2n(a1, a2, . . . , an)

has at least 2n + 2 zeros by counting multiplicities. By using the MeanValue Theorem and
Corollary 3 we have

(xj+1 + 1) − (xj + 1) = xj+1 − xj = |f (xj+1) − f (xj )|
|f ′(�j )| = 2

|f ′(�j )|

�
(1− �2j )

3/2

C
� (xj + 1)3/2

C
, j = 1,2, . . . , k − 1 (3)
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with suitable numbers�j ∈ (xj , xj+1). Similarly

(1− xj+1) − (1− xj ) = xj+1 − xj = |f (xj+1)−f (xj )|
|f ′(�j )| = 2

|f ′(�j )|

�
(1−�2j )

3/2

C
� (1−xj+1)

3/2

C
, j = k+1, k+2, . . . ,2n

(4)

with suitable numbers�j ∈ (xj , xj+1). Letm ∈ N . It follows from (3) that the set

Km :=
{
j ∈ {1,2, . . . , k − 1} : 1

(m + 1)2
< xj + 1� 1

m2

}

has at most 6C + 2 elements. Indeed, ifj ∈ Km, then (3) implies

(xj+1 + 1) − (xj + 1)� (xj + 1)3/2

C
� 1

C(m + 1)3
� 1

6C

(
1

m2 − 1

(m + 1)2

)

and our claim follows. Therefore

k−1∑
j=1

(xj + 1) < (6C + 2)
∞∑

m=1

1

m2 �12C + 4 . (5)

Similarly, it follows from (4) that the set

Lm :=
{
j ∈ {k + 1, k + 2, . . . ,2n} : 1

(m + 1)2
< 1− xj � 1

m2

}

has at most 6C + 2 elements. Indeed, ifj ∈ Lm, then (4) implies

(1− xj ) − (1− xj+1)�
(1− xj )

3/2

C
� 1

C(m + 1)3
� 1

6C

(
1

m2 − 1

(m + 1)2

)

and our claim follows. Therefore

2n∑
j=k+1

(1− xj ) < (6C + 2)
∞∑

m=1

1

m2 �12C + 4 . (6)

Now, combining (5), (6), and the interlacing property

−1 < x1 < y1 < x2 < y2 < · · · < x2n−1 < y2n−1 < x2n < 1 ,

we obtain

k∑
j=1

(yj + 1)�12C + 8 (7)
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and

2n−1∑
j=k+1

(1− yj )�12C + 4 . (8)

Using the condition for the non-denseness ofP(a1, a2, . . .), we have

∞∑
j=1

(a2j − 1)�C1

∞∑
j=1

√
a2j − 1�C2 , (9)

whereC1 andC2 are constants depending only on the sequence(aj ). Observe that ify0 ∈
R \ [−1,1], thenx − y0 = A(x + 1) + B(1− x) with some constantsA andB satisfying
AB > 0. Writing the factorx − y0 in (2) as the sum of the termsA(x + 1) andB(1− x),
with some constantsA > 0 andB > 0 satisfying

AB > 0 , (10)

we obtain

f (x) = f1(x) + f2(x) , (11)

where

f1(x) = �A
(x + 1)(x − y1) · · · (x − y2n−1)

(x2 − a21)(x
2 − a22) · · · (x2 − a2n)

(12)

and

f2(x) = �B
(1− x)(x − y1) · · · (x − y2n−1)

(x2 − a21)(x
2 − a22) · · · (x2 − a2n)

(13)

andAB > 0 implies

|f1(x)|� |f (x)| and |f2(x)|� |f (x)| , x ∈ [−1,1] .

Assume now that‖f ‖[−1,1] �1. Then‖f1‖[−1,1] �1 and‖f2‖[−1,1] �1 . By E.7 on p. 153
in [1], for the factors�A in (12) and�B in (13), we have

�A�C3‖f1‖[−1,1] �C3‖f ‖[−1,1] �C3 (14)

and

�B �C3‖f2‖[−1,1] �C3‖f ‖[−1,1] �C3 (15)

with a constantC3 > 0 depending only on the sequence(aj ) (this exercise can be eas-
ily solved by using the explicit formula for the Chebyshev “polynomial” for the space
Pn(a1, a2, . . . , an) on [−1,1] and by observing that for every fixedk = 0,1, . . . , n, in the
extremal problem

sup
f

|bk|
‖f ‖[−1,1]

,
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where the supremum is taken for all “polynomials”f ∈ Pn(a1, a2, . . . , an) of the form

f (x) = b0 +
n∑

j=1

bj

x − aj

, b0, b1, . . . , bn ∈ R ,

the extremal “polynomial” is theChebyshev “polynomial” for the spacePn(a1, a2, . . . , an)

on [−1,1] (in fact, we need this observation only whenk = 0). This latter observation can
be easily seen by a standard zero-counting argument by noting that if one drops an element
from the system{

1 ,
1

x − a1
,

1

x − a2
, · · · ,

1

x − an

}
, (16)

then the remaining elements form a Chebyshev system on[−1,1] (�A and�B are the
coefficients of the basis element 1 inf1 andf2, respectively, if one writes them as the linear
combinations of the basis elements in (16)).
Observe that (7), (8), and|k − n|�2 imply

k∏
j=1

|z0 − yj | =
k∏

j=1

|(z0 + 1) − (yj + 1)|� |z0 + 1|k+1
k∏

j=1

(
1+

∣∣∣∣yj + 1

z0 + 1

∣∣∣∣
)

� |z0 + 1|n+3C4 (17)

and
2n−1∏

j=k+1

|z0 − yj | =
2n−1∏

j=k+1

|(1−z0)− (1−yj )|� |1−z0|n+3
2n−1∏

j=k+1

(
1+

∣∣∣∣1− yj

1− z0

∣∣∣∣
)

� |1− z0|n+3C4 (18)

with some constantC4 > 0 depending only on the sequence(aj ) and|1− z0|. Further, it
follows from (9) that

n∏
j=1

|z20 − a2j | =
n∏

j=1

|(z20 − 1) − (a2j − 1)| = |z20 − 1|n
n∏

j=1

∣∣∣∣∣1− a2j − 1

z20 − 1

∣∣∣∣∣
� C5|z20 − 1|n . (19)

with some constantC5 > 0 depending only on(aj ) and|z20 − 1|. The theorem now follows
from (2) and (10)–(19).
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