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Abstract

Let 2, denote the set of all algebraic polynomials of degree at maosith real coefficients.
Associated with a set of polds1, ao, ..., a,} C R\[—1, 1] we define the rational function spaces

n by
Jj=1x —aj

%(al,az,...,an):={f:f(x>=bo+2 , bo,bl,...,bneﬂ%e}‘

Associated with a set of pol€sq, az, ...} ¢ R\[—1, 1], we define the rational function spaces
77 P— > 7
P(ay, ap,...): —Unzlfn (ay,ap, ..., ap).

It is an interesting problem to characterize sdis,a,...} < R\[-1,1] for which
P(a1, az, ...)isnotdense iC[—1, 1], whereC[—1, 1] denotes the space of all continuous functions
equipped with the uniform norm or-1, 1]. Akhieser showed that the density #(a1, ap, ...) is

characterized by the divergence of the selig ;,/a2 — 1.

In this paper, we show that the so-called ClarksoneEr&chwartz phenomenon occurs in the
non-dense case. Namely,#(az, ap, ...) is not dense irC[—1, 1], then it is “very much not so”.
More precisely, we prove the following result.
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Theorem.Let{ay, ap, ...} C R\[—1, 1]. Suppose?(ay, ap, ...) is not dense irC[—1, 1], that is,

o
2
E L—qV i —1<oo0.

Then every function in the uniform closure®ta1, ao, ...) in C[—1, 1] can be extended analyti-
cally throughout the sef\{—1, 1, a1, ap, .. .}.
© 2004 Elsevier Inc. All rights reserved.
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Throughout this paperf || 4 will denote the uniform norm of a continuous functibon
a setA c C. Let 2, denote the set of all algebraic polynomials of degree at mesth
real coefficients. Associated with a set of poles, as, ..., a,} C R\ [—1, 1] we define
the rational function spaces

n
b.
Pular,az, ... an) =1 [ fX) =bo+ Y ——, bo,b1,....by € R
j=1x —aj
Note that everyf € 2, (a1, az, ..., a,) can be written ag’ = p/q with

pe?, and ¢(x)= 1_[ (x —aj).
j=1

Associated with a set of poldss, az, ...} € R\ [—1, 1], we define the rational function
spaces

oo
Plar.az....) =) Pular. az. ... ay).
n=1

It is an interesting problem to characterize sets ap, ...} C R\ [—1, 1] for which
P(a1, az, ...)isnotdenseiC[—1, 1], whereC[—1, 1] denotes the space of all continuous
functions equipped with the uniform norm pal, 1]. Akhieser presents the answer (which
is recaptured ifl1], see Corollary 4.3.4 on p. 208) in his book by proving the following
result.

Theorem (Akhieser).Let {a1, az,...} € R\ [—1,1]. Then% (a1, ap, ...) is dense in
C[-1, 1] if and only if

oo
> ai—1=o0.
n=1
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In this paper, we show that the so-called ClarksoneEr&chwartz phenomenon occurs
in the non-dense case. Namely#fa1, az, ...) is not dense irC[—1, 1], then it is “very
much not so". More precisely, we prove the following result.

Theorem 1. Let {a1,a2,...} C R\ [—1, 1]. SupposeZ?(ai,ay,...) iS not dense in
C[—1, 1], that is,

oo
> ai—1<oo.

n=1

Then every function in the uniform closuretas, ao, ...) in C[—1, 1] can be extended
analytically throughout the sét \ {—1, 1, a1, az, ...}.

Theoreml follows immediately from our main result below.

Theorem 2. Supposé€q;) is a sequence with eaeh € R\ [—1, 1]. Suppose

o0
Z \ /ajz. —1l<oo.
j=1
Then there is a constait, depending only on > 0 and the sequendg ;) such that

[f @IS Cyll flli-1,1

foreveryf € Z(ay, ap,...)andz € C\ {ai, ay, ..., a,} such that the distance between
the point z and the s¢t-1, 1} is at leasty > O.

Theorem 2 is the key observation of this paper. Theotédioilows immediately from
Theorem 2. Indeed, suppose the sequdnie with f,, € %(as, az, ...) converges uni-
formly on[—1, 1]. Then itis also uniformly Cauchy dr-1, 1]. By Theorem 2, it remains
uniformly Cauchy on any compact skt c C\ {—1, 1, a1, ap, ...}. Theoreml now fol-
lows from the well known theorem in complex analysis stating that a uniformly convergent
sequence of analytic functions on a compaciskas an analytic limit function oK.

From now on we focus on proving Theorem 2. First an extremal function for the prob-
lem is introduced and then some nice properties of the extremal function is established in
Lemma 1.

Letzo € C\([—1, 1]U{a1, ao, ..., a,}) be fixed. A simple compactness argument shows
that there exists a function® f* € 2, (a1, az, ..., a,)0 # f* such that

If*@o)l sup |.f (z0)| o

Lemma 1. Supposef* € Z,(a1, az, ..., a,) satisfy(1). Then the following statements
hold.
(i) The functionf* equioscillates ori—1, 1] at least n timesThat is there are

—“l<xi<xop<--<x, <1
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such that

) =D ey, j=12.0.0,

(i) f* has only real zerasAll but at most one zeros ¢gff are in(—1, 1).

Proof. The proof of (i) can be given by a standard variational method. Assume that state-
ment (i) of the lemma is false. Let € [—1, 1] be the smallest number such that(x1) =

£ f*ll=1.17- Letx2 € [x1, 1] be the smallest value for whicfi*(x2) = —f*(x1). In-
ductively, letx; € [x;—1, 1] be the smallest value such thgt(x;) = — f*(xx-1), &k =
2,3,...,m, and assume that there is 891 € [x,,, 1] such thatf* (x,,+1) = — ™ (xpm)-

By our indirect assumption, we have<n — 1. Choosey1, y2, ..., yu—1 SO that

X1 <Y1 <X2< Y2 <X3<- "+ <Xp—1<Yn-1<Xnp-
We define

gm+1(x) = (x —z0)(x —Z0)(x — yO)(x — y2) -+ - (X — Yym—-1) .
Theng,,+1 € 2,, and for sufficiently smalk > O either

gm+1(x)

S e DG —a2) - r —an)

€ '@n(al, a27 MR an)

or

gm+1(x)
(x —a))(x —az)--- (x —ay)

frx) —e

€ QJyl’l(ala az, ..., an)

contradicts the extremality of*. Hence (i) is proved. To see (ii) we can argue as follows.
By using the Intermediate Value Theorem, (i) implies that all but at most one zgroank
in (=1, 1). Sincef* € #,(ax1, az, ..., a,) can be written ag™ = p/q with

pe?P, and ¢(x)= l_[(x —aj),
j=1

we conclude that the only possibly remaining zerg dfis also real. [

Our next tool is the bounded Bernstein-type inequality below for non-dense rational
spaces?(ai1, az, ...). This is proved in1] (see Corollary 7.1.4 on p. 323) and plays an
important role in the proof Theorem 2.

Lemma 2. Supposéas, az, ...,a,} C R\ [—1,1]. Then

n a?—-1

1 j
L (0] < =11
V1-2 j2_1|x—a,»| o
foreveryf € #,(a1, a2, ...,a,) andx € (-1, 1).

In fact, to prove Theorem 2, we will need the following consequence of the above lemma.
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Corollary 3. Suppose€a;) is a sequence with eaeh € R\ [-1, 1]. Suppose

o0
o 2
C._E ,/aj 1< o0.
j=1

Then
, 2C
| f (x)|<m||f||[fl,ll
foreveryf € #,(ay, a2, ...,a,) andx € (-1, 1).

Now we are ready to prove Theorem 2.

Proof of Theorem 2 We fixn € N andzgoe C\ ([—1, 1] U {a1, az, .. .}). Itis sufficient to
prove the lemma for rational functions

f € Szn(alv az, ..., an) = ‘@2}’1 (als —daji,dz, —dz, ..., 4, _an) .

Without loss of generality we may assume thatdgg>0 and Im(zp) # 0. By Lemmal
we may assume that € Sy, (a1, az, ..., a,) equioscillates ori—1, 1] at least 2 times.
That s, there exist1<x1 < x2 < --- < x2, <1 such that

fx) =D fllj-1.1 -

Hence, there are; € (xj,xj41),j =1,2,...,2n —1, a,y0 € R, ando € {0, 1} such
that

(x —y0)7(x —y1) - (x — y2u-1)
(x2 — af)(x2 — a%) cee(x2 — a,%) '

fx) = 2

Assume that = 1 andyg € R\ [—1, 1]. The remaining cases are similar (in fact easier).
Let k be chosen so that

Xp<xp <+ <xp <O0OK<xpq1 < Xpg2 < -0+ < x2y.
Observe thatk — n| <2, otherwise
f(x) - f(_x) E SZn(ala a25 ey an)

has at least2+ 2 zeros by counting multiplicities. By using the Mean Value Theorem and
Corollary 3 we have

|f(xj41) — f(x))] 2
1D -+ D) =1 —x = -
@jrr D =6+ D =xj01 - x; £/ Lf' )]
L A=8 1 1”
= C = C ’

j=12...k-1 (3
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with suitable number§; € (x;, x;+1). Similarly
_ [f(xjr)— fx))] _ 2

|f/(E))] L))
S (1_55)3/2 > (1—x]'+l)3/2
- C - C

Q—=xj41) — A —xj) =xj11—xj

 j=k+1k+2,....2n
(4)

with suitable number§; € (x;, x;+1). Letm € N . It follows from (3) that the set

1

Kp=1je{l,2 .. k-1 :———
{Je{ } D)2

1
<xj+1ém}

has at most6 + 2 elements. Indeed, if € K,,, then (3) implies

(x,-+1)3/2> 1 11 1
C “Cm+1376C \m2  (m+1)2

xjm+D - +DH>

and our claim follows. Therefore

k-1 © 4
Z(X./+l)<(6c+2)2—zglzc+4. 5)
j=1 m:lm

Similarly, it follows from (4) that the set

Ly=1jelk+1k+2....2n: ———
{J€{+ + }(erl)2

1 < —l
< —X;i X

I m2
has at most6 + 2 elements. Indeed, if € L,,, then (4) implies

(1—x)%2 1 1 /1 1
> >— (=5 - ———
C C(m+1)37 6C \m? (m + 1)2

Q-x)—AQ-xj41) 2

and our claim follows. Therefore

2n o) 1
> d—xj)<((6C+2)) 5<12C +4. (6)
m
j=k+1 m=1

Now, combining (5), (6), and the interlacing property
“l<xi<yi<xa<y2<-<x-1<ym-1<x2@<1,

we obtain

k
> (vj+D<12C +8 )
j=1
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and
-1
Z (1-y;)<12C +4. 8
Jj=k+1

Using the condition for the non-densenessAifis, ap, . ..), we have

o0 o0
Y @-1n<ry ) Jat —1<Cy, )
j=1 j=1

whereC; andC; are constants depending only on the sequénge Observe that ifio €
R\ [—1, 1], thenx — yop = A(x + 1) + B(1 — x) with some constanta andB satisfying
AB > 0. Writing the factorx — yg in (2) as the sum of the tern®s(x + 1) and B(1 — x),
with some constantd > 0 andB > 0 satisfying

AB >0, (10)
we obtain

F(x) = fix) + fa(x), (11)
where

_ (x+D(x —y1) - (x — y2n-1)

fi(x) = oA D) e (12)
and

) = ap LTG0 & = yann) 13)

(x2 — a%)(x2 — a%) cee (22— a,%)
andAB > 0 implies

[ f)] and [f20l<[f(0)], xe[-11].
Assume now thalf f|lj-1,1)<1. Then| fillj—1. <1 and| f2[-1,11<1 . By E.7 on p. 153
in [1], for the factorszA in (12) andxB in (13), we have

A< Cs| filli-1. < Call fll-1.11 < C3 (14)

and

aB < C3ll falli-1 < C3ll flli-1,11 < C3 (15)

with a constantC3z > 0 depending only on the sequen@g) (this exercise can be eas-
ily solved by using the explicit formula for the Chebyshev “polynomial” for the space
Py(a1, az, ...,a,)on[—1, 1] and by observing that for every fixéd= 0, 1, ..., n, inthe
extremal problem

D |
up—o—,
I fll-1n
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where the supremum is taken for all “polynomialg™e 2, (a1, az, ..., a,) of the form
n b
f(x)=b0+z / ) b07b1""7bn€R5
- X — a,'
j=1 '
the extremal “polynomial” is the Chebyshev “polynomial” for the spatéas, as, . . ., a,)

on[—1, 1] (in fact, we need this observation only whiea= 0). This latter observation can
be easily seen by a standard zero-counting argument by noting that if one drops an element
from the system

{1 rt ot } (16)

9 9 b b
X—a1 x—az X —ay

then the remaining elements form a Chebyshev systeri-dnl] (zA andoB are the
coefficients of the basis element 1fnand f2, respectively, if one writes them as the linear
combinations of the basis elements in (16)).
Observe that (7), (8), ané — n| <2 imply
k

k k
vi+1
[Trzo=yil=]Tlzo+D = 0y + Di<lzo+ 1 ] <1+ : +1’>
j=1 j=t j=1 o
< lzo+11"3Cy (17)

and

- one1 2n—1 1_y.
[T 1zo—yi= [ 1@-20-a-ypI<ii-zo ] (H‘l— ]>
j=k+1 j=ht e ’

< |1 — 20" 3¢y (18)

with some constants > 0 depending only on the sequen@g) and|1 — zq|. Further, it
follows from (9) that

n n n aZ_l
[Tro-afi=Tl1@-D-@-Di=ix5-1"[]|1- 53—
j=1 j=1 j=1 0

> Cslzd — 1" (19)

with some constar@s > 0 depending only oK) and|z(2) — 1. The theorem now follows
from (2) and (10)—(19).
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