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Abstract: The main goal of this paper is to study shape preserving properties of univariate Lototsky-
Bernstein operators Ln( f ) based on Lototsky-Bernstein basis functions. The Lototsky-Bernstein basis
functions bn,k(x) (0 ≤ k ≤ n) of order n are constructed by replacing x in the ith factor of the generating
function for the classical Bernstein basis functions of degree n by a continuous nondecreasing function
pi(x), where pi(0) = 0 and pi(1) = 1 for 1 ≤ i ≤ n. These operators Ln( f ) are positive linear operators
that preserve constant functions, and a non-constant function γp

n (x). If all the pi(x) are strictly increas-
ing and strictly convex, then γp

n (x) is strictly increasing and strictly convex as well. Iterates LM
n ( f ) of

Ln( f ) are also considered. It is shown that LM
n ( f ) converges to f (0) + ( f (1) − f (0))γp

n (x) as M → ∞.
Like classical Bernstein operators, these Lototsky-Bernstein operators enjoy many traditional shape p-
reserving properties. For every (1, γp

n (x))−convex function f ∈ C[0, 1], we have Ln( f ; x) ≥ f (x); and
by invoking the total positivity of the system {bn,k(x)}0≤k≤n, we show that if f is (1, γp

n (x))−convex, then
Ln( f ; x) is also (1, γp

n (x))−convex. Finally we show that if all the pi(x) are monomial functions, then for
every (1, γp

n+1(x))−convex function f , Ln( f ; x) ≥ Ln+1( f ; x) if and only if p1(x) = · · · = pn(x) = x.
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1 Introduction
The primary goal of this paper is to study the shape preserving properties of the Lototsky-

Bernstein operators. The Lototsky-Bernstein operators are generalizations of the classical poly-
nomial Bernstein operators. The classical polynomial Bernstein operators are defined by

Bn( f ; x) :=
n∑

k=0

f
(

k
n

)
bn

k(x),

where f ∈ C[0, 1] and {bn
k(x), 0 ≤ k ≤ n} denotes the Bernstein basis for the space of polynomials

of degree at most n:

bn
k(x) =

(
n
k

)
xk(1 − x)n−k, 0 ≤ k ≤ n.

The Bernsetin operators Bn have been the object of intense research, and have been generalized
in several directions, for example, the q−Bernstein operators [26] and the h−Bernstein operators
([31]). The polynomials Bn( f ) converge uniformly to f , although the convergence might be very
slow ([10], p.166). Moreover the operators Bn reduce the variation and preserve the shape of f .
Also the derivative of Bn( f ) of a function of class C1 converges uniformly to f ′ (see [10]). For all
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these reasons Bernstein bases and Bernstein operators are fundamental in approximation theory
and computer aided geometric design (CAGD).

In Approximation Theory and CAGD one is often interested in approximating functions, and
rendering curves and surfaces not given by polynomial functions. Thus it is natural to try to extend
polynomial methods to nonpolynomial settings, while keeping as many of the good properties of
Bernstein bases and Bernstein operators as possible.

From the binomial theorem, we can derive generating functions for the classical Bernstein
basis functions

(xw + (1 − x))n =

n∑

k=0

bn
k(x)wk. (1.1)

We can generalize these generating functions for the classical Bernstein basis functions bn
k(x) to

generating functions for the Lototsky-Bernstein basis functions bn,k(x) (0 ≤ k ≤ n). Let {pi(x), 0 ≤
i ≤ n} denote a sequence of real-valued functions on [0, 1]. Define

b0,0(x) = 1, b0,k(x) = 0, k > 0, (1.2)
n∏

j=1

(
wp j(x) + 1 − p j(x)

)
=

n∑

k=0

bn,k(x)wk. (1.3)

By simple computations from (1.3) it is straightforward to confirm that

bn,k(x) =
∑

K
⋃

L={1,2,··· ,n}
|L|=n−k,|K|=k

∏

m∈L

(1 − pm(x))
∏

l∈K

pl(x), (1.4)

Thus the Lototsky-Bernstein basis functions bn,k(x) are generalizations of the classical Bernstein
basis functions bn

k(x).
The Lototsky-Bernstein operators Ln are defined for each function f ∈ C[0, 1] by

Ln( f ; x) =

n∑

k=0

f
(

k
n

)
bn,k(x). (1.5)

Throughout this paper, we always assume that pi(x) ∈ C[0, 1] (1 ≤ i ≤ n) and that 0 < pi(x) < 1
for x ∈ (0, 1) and pi(0) = 0, pi(1) = 1. The canonical and most important examples of such
functions are the monomials pi(x) = xNi (1 ≤ i ≤ n), where Ni is a positive integer. We impose the
assumption pi(0) = 0, pi(1) = 1 in order to guarantee that the operators Ln( f ) satisfy the endpoint
interpolation property. Indeed we observe immediately from (1.5) that with these assumptions,
Ln( f ; 0) = f (0) and Ln( f ; 1) = f (1). When it is necessary to emphasize the dependence of Ln( f )
upon pi(x), we will replace Ln( f ; x) by Ln( f ; x;Pn), where Pn(x) := (p1(x), · · · , pn(x)).

Several authors have studied these operators. King [21] discusses conditions on the sequence
of real-valued functions p j(x) that ensure the uniform convergence of Ln( f ; x) to f (x). Eisen-
berg and Wood [12] discuss uniform approximation of analytic functions by means of Lototsky-
Bernstein operators. Several other authors also discuss convergence properties of the operators
Ln( f ) in special cases. Whenever all the pi(x) are equal to a suitably chosen function r∗n(x) such
that lim

n→∞
r∗n(x) = x, the operators Ln( f ) reduce to the King-type operators Kn( f ) [22]. The King-

type operators Kn( f ) converge to the identity on C[0, 1] and preserve ei(x) = xi, i = 0, 2. For
different choices of r∗n(x), many approximation properties of Kn( f ) such as rates of convergence,
shape preservation, fixed points, asymptotic behavior and saturation have been investigated (see
[5, 6, 7, 14, 15]). However, a systematic study of the general operators Ln( f ), especially shape
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preserving properties of Ln( f ), has yet to appear, except for some basic convergence results in
[12, 21].

The present paper is devoted to investigating the shape preserving properties of the operators
Ln( f ). A systematic treatment of the general convergence properties of the operators of Ln( f ) (eg.,
Voronowskaja Theorem, and convergence in terms of pi(x)(1 ≤ i ≤ n)) will appear in a separate
paper [34].

We proceed in the following fashion. In Section 2 we describe some basic properties of the
Lototsky-Bernstein basis functions bn,k(x) (0 ≤ k ≤ n). We study the first and second derivatives
of the Lototsky-Bernstein operators Ln( f ) in Section 3. In Section 4, we find a non-constant
fixed point γp

n (x) of the operators Ln( f ), and we discuss approximation properties of the functions
γ

p
n (x). Limits of the iterates of Ln( f ) are also derived in terms of the functions γp

n (x). In Section
5, we prove that for a strictly increasing and convex function ϕ on [0,∞), the function Ln( f ) is
ϕ−total variation diminishing. We also show that the operators Ln( f ) enjoy many traditional shape
preserving properties. For example, for every (1, γp

n )-convex function f ∈ C[0, 1], we have Ln( f ) ≥
f . If f is (1, γp

n )-convex, then Ln( f ) is (1, γp
n )-convex as well, and if f is convex in the standard

sense, then Ln( f ) is (1,
n∑

k=1
pk(x))-convex. In addition, in Section 5.2 we discuss total positivity

and the variation diminishing property for special cases of the Lototsky-Bernstein basis functions.
In Section 6, we show that if f is increasing, then the operators Ln( f ) behave in a natural way
when we vary some pi(x), i.e., given Pn(x) = (p1(x), · · · , pn(x)) and Qn(x) = (q1(x), · · · , qn(x)),
if pi(x) ≥ qi(x) for all i, then Ln( f ; x;Pn) ≥ Ln( f ; x;Qn); moreover γp

n (x) ≥ γ
q
n(x). In Section 7,

we give a general result on the monotonicity of {Ln( f ; x)}n≥1 with respect to n. If all the pi(x) are
monomial functions, we show that for every (1, γp

n+1(x))−convex function f we have Ln( f ; x) ≥
Ln+1( f ; x) if and only if p1(x) = · · · = pn(x) = x. Some additional results on the fixed points of
Ln( f ; x) are also derived. In particular, if for all n, γp

n (x) = γ
p
n+1(x), we show that all the pi(x)

(i ≥ 2) must interpolate the same point (1/2, 1/2) and the zeroes of all the pi(x), i ≥ 1 possess the

same multiplicities at x = 0; in addition,
n∑

k=1
pk(x)/n must converge to %(x) = x. Furthermore if for

all n, p1(x) = · · · = pn(x) are convex, then γp
n (x) ≥ γp

n+1(x).

2 Lototsky-Bernstein bases

We now present some basic properties of the Lototsky-Bernstein bases bn,k(x) (0 ≤ k ≤ n),
which we shall need later in this paper. We shall see shortly that the Lototsky-Bernstein bases
bn,k(x) (0 ≤ k ≤ n) are related to elementary symmetric functions.

Definition 2.1. The rth (1 ≤ r ≤ n) elementary symmetric function σr(x1, · · · , xn), is the sum of
all products of r distinct variables chosen from n variables. That is

σr(x1, · · · , xn) =
∑

1≤ii<···<ir≤n

xi1 · · · xir , (2.1)

and we define σ0(x1, · · · , xn) = 1.

Now we list some basic properties of the Lototsky-Bernstein bases bn,k(x) (0 ≤ k ≤ n).
i ) If x ∈ (0, 1), then bn,k(x) > 0, 0 ≤ k ≤ n.
ii) Each bn,k(x) has a zero of order at least k (1 ≤ k ≤ n) at 0 and a zero of order at least n − k

(0 ≤ k ≤ n − 1) at 1, and bn,0(0) = 1, bn,n(1) = 1.

iii)
n∑

k=0
bn,k(x) = 1.
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iv) The functions {bn,0(x), bn,1(x), · · · , bn,n(x)} are linearly independent.
v) The functions {bn,0(x), bn,1(x), · · · , bn,n(x)} form a non-negative, normalized basis for the

space
Un := span{σ0(p1(x), · · · , pn(x)), · · · , σn(p1(x), · · · , pn(x))}.
vi) The Lototsky-Bernstein basis of order n + 1 may be generated from the Lototsky-Bernstein

basis of order n through the recurrence relation

bn+1,k(x) = pn+1(x)bn,k−1(x) + (1 − pn+1(x))bn,k(x), (2.2)

for 0 ≤ k ≤ n + 1, where we define bn,k(x) = 0 if k < 0 or k > n, and initiate the recursion with
b0,0(x) ≡ 1.

vii)

σk(p1(x), · · · , pn(x)) =

n∑

j=k

(
j
k

)
bn, j(x), k = 0, · · · , n. (2.3)

viii)

bn,k(x) =

n∑

j=k

(−1) j−k

(
j
k

)
σ j(p1(x), · · · , pn(x)). (2.4)

Properties i)-vi) are straightforward from (1.3) and (1.4); properties vii) and viii) can be derived
from the Lototsky-Bernstein blossom (see [13] for an introduction to blossoming, for more details
see [33]).

Remark 2.2. Theorem 5.4 in Section 5 provides an example where the system (bn,0(x), · · · , bn,n(x))
is a Chebyshev system. But by ii), the Lototsky-Bernstein basis function bn,k(x) (0 ≤ k ≤ n)
may have more than n zeros (counting multiplicities) in [0, 1]; therefore the system need not be
an Extended Chebyshev system. Thus Ln( f ) are positive linear operators not necessarily in the
framework of Extended Chebyshev systems. For Bernstein operators in the framework of Extended
Chebyshev systems, see [1, 2, 3].

3 Derivatives
We are now going to compute the first and second derivatives of Ln( f ; x). To simplify our

notation, let

ν1,k,i(x) :=
∑

K
⋃

L={1,2,··· ,n}\{i}
|L|=(n−1−k),|K|=k

∏

m∈L

(1 − pm(x))
∏

l∈K

pl(x), 1 ≤ i ≤ n, 0 ≤ k ≤ n − 1, (3.1)

and

ν2,k,i, j(x) :=
∑

K
⋃

L={1,2,··· ,n}\{i, j}
|L|=(n−2−k),|K|=k

∏

m∈L

(1 − pm(x))
∏

l∈K

pl(x), 1 ≤ i , j ≤ n, 0 ≤ k ≤ n − 2. (3.2)

Proposition 3.1. Let pi(x) be differentiable on [0, 1] for 1 ≤ i ≤ n. Then the first derivative of
Ln( f ; x) is given by

L′n( f ; x) =

n−1∑

k=0

(
f
(
k + 1

n

)
− f

(
k
n

)) n∑

i=1

p′i(x)ν1,k,i(x). (3.3)
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Proof. By equation (1.3)

n∑

k=0

bn,k(x)wk =

n∏

j=1

(
wp j(x) + 1 − p j(x)

)
.

Differentiating this equation with respect to x yields:

n∑

k=0

b′n,k(x)wk =

n∑

i=1

p′i(x) · (w − 1)
∏

j,i

(wp j(x) + 1 − p j(x))

=

n−1∑

k=0

n∑

i=1

p′i(x)ν1,k,i(x)wk+1 −
n−1∑

k=0

n∑

i=1

p′i(x)ν1,k,i(x)wk

=

n∑

k=0

n∑

i=1

p′i(x)(ν1,k−1,i(x) − ν1,k,i(x))wk.

Noting that ν1,−1,i(x) = ν1,n,i(x) = 0 and equating the coefficient of wk on both sides of this equality
yields

b′n,k(x) =

n∑

i=1

p′i(x)(ν1,k−1,i(x) − ν1,k,i(x)). (3.4)

Thus

L′( f ; x) =

n∑

k=0

n∑

i=1

p′i(x)(ν1,k−1,i(x) − ν1,k,i(x)) f (k/n)

=

n−1∑

k=0

( f ((k + 1)/n) − f (k/n))
n∑

i=1

p′i(x)ν1,k,i(x). (3.5)

�

Remark 3.2. Suppose that f (x) is increasing and that pi(x) is differentiable and p′i(x) is nonneg-
ative on [0, 1] for all 1 ≤ i ≤ n. Then from (3.3) L′n( f ; x) ≥ 0 on [0, 1]. This inequality implies that
Ln( f ; x) is increasing on [0, 1]. Also, by assumption, pi(0) = 0, pi(1) = 1 (1 ≤ i ≤ n), so the first
derivatives at the endpoints

L′n( f ; 0) =

n∑

i=1

p′i(0)
(

f
(
1
n

)
− f

(
0
n

))
, L′n( f ; 1) =

n∑

i=1

p′i(1)
(

f
(n
n

)
− f

(
n − 1

n

))
, (3.6)

are proportional to the slopes of f at the two first and last two abscissae.

Proposition 3.3. Let pi(x) be twice differentiable on [0, 1] for 1 ≤ i ≤ n. Then the second
derivative of Ln( f , x) is given by

L′′n ( f ; x) =

n−1∑

k=0

(
f
(
k + 1

n

)
− f

(
k
n

)) n∑

i=1

p′′i (x)ν1,k,i(x)

+

n−2∑

k=0

(
f
(
k + 2

n

)
− 2 f

(
k + 1

n

)
+ f

(
k
n

)) n∑

i=1

p′i(x)
∑

j,i

p′j(x)ν2,k,i, j(x). (3.7)

Proof. The proof proceeds by differentiating (3.3), using arguments identical to those used in the
proof of (3.3). �
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Remark 3.4. Suppose that f (x) is increasing and convex, and that pi(x) is twice differentiable
nondecreasing and convex on [0, 1] for 1 ≤ i ≤ n. Then from (3.7), L′′n ( f ; x) ≥ 0. This inequality
implies that Ln( f ) is convex in [0, 1].

Also, the second derivatives of Ln( f ; x) at the end points of [0, 1] are given by

L′′n ( f ; 0) =

n∑

i=1

p′′i (0)
(

f
(
1
n

)
− f

(
0
n

))
+

n∑

i=1

p′i(0)
∑

j,i

p′j(0)
(

f
(
2
n

)
− 2 f

(
1
n

)
+ f

(
0
n

))
;

L′′n ( f ; 1) =

n∑

i=1

p′′i (1)
(

f
(n
n

)
− f

(
n − 1

n

))
+

n∑

i=1

p′i(1)
∑

j,i

p′j(1)
(

f
(n
n

)
− 2 f

(
n − 1

n

)
+ f

(
n − 2

n

))
.

The divided difference f [0, 1/n, 2/n] is given by

f
[
0,

1
n
,

2
n

]
= n2

(
f
(
2
n

)
− 2 f

(
1
n

)
+ f

(
0
n

))
.

Similarly,

f
[
n − 2

n
,

n − 1
n

,
n
n

]
= n2

(
f
(n
n

)
− 2 f

(
n − 1

n

)
+ f

(
n − 2

n

))
.

Therefore we have the following proposition.

Proposition 3.5. Suppose that all the pi(x) (1 ≤ i ≤ n) are differentiable of order 2, and p′′i (0) =

0, p′′(1) = 0. Then the second derivatives of Ln( f ; x) at the endpoints of [0, 1] are given by

L′′n ( f ; 0) =

n∑
i=1

p′i(0)
∑
j,i

p′j(0)

n2 f
[
0,

1
n
,

2
n

]
,

L′′n ( f ; 1) =

n∑
i=1

p′i(1)
∑
j,i

p′j(1)

n2 f
[
n − 2

n
,

n − 1
n

,
n
n

]
.

Thus the second derivatives at the endpoints are proportional to the second order finite differences
of f at the first three and last three abscissae.

4 Fixed points and iteration
Iterates of the Lototsky-Bernstein operators Ln( f ) are defined recursively by

(Ln)M+1 ( f ; x) = Ln

(
(Ln)M ( f ; ·); x

)
,M = 1, 2, · · · ,

where (Ln)1 ( f ; x) = Ln( f ; x). For the classical Bernstein polynomials, the iterates converge to
linear end point interpolation on [0, 1]. Kelisky and Rivlin [20] consider this problem both when
M depends on n and when M is independent of n. Iterates of Bernstein operators are also studied
from the point of view of operator semigroups by Karlin and Ziegler [19] and by Micchelli [24].
Cooper and Waldron [9] investigate iterates of Bernstein operators using their eigenvalues and
eigenvectors. Corresponding results for q−Bernstein operators can be found in [25]. In [29]
the authors use a contraction principle to study the iterates of a class of positive linear operators
preserving affine functions. The results in [29] can be applied to any finitely defined operators.

Before we state the main theorem of this section, we recall the Banach Fixed Point Theorem.
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Lemma 4.1. (Banach Fixed Point Theorem [35]) Let (X, d) be a complete metric space and let
T : X → X be a contractive transformation. Then T has a unique fixed-point x∗ in X (i.e.
T (x∗) = x∗). Furthermore, x∗ can be found as follows: start with an arbitrary element x0 in X and
define a sequence {xn} by xn = T (xn−1); then xn → x∗ as n→ ∞.

Theorem 4.2. The operators Ln possess a unique nonconstant fixed point γp
n (x) with respect to

pi(x) (1 ≤ i ≤ n), i.e.

Ln(γp
n ; x) = γp

n (x), (4.1)

with γp
n (0) = 0, γp

n (1) = 1. Moreover, for f ∈ C[0, 1]

lim
M→∞

(Ln)M ( f ; x) = f (0) + ( f (1) − f (0)) γp
n (x). (4.2)

Proof. We shall prove this result by invoking the Banach Fixed Point Theorem. Consider the
complete metric space (C[0, 1], || · ||) ([11]), where ‖ · ‖ is the max norm on [0, 1]. Let Xα,β := { f ∈
C[0, 1] : f (0) = α, f (1) = β}, α, β ∈ R. Then:

(a) Xα,β is a closed subset of C[0, 1];
(b) Xα,β is an invariant subset of Ln for all α, β ∈ R, i.e., if f ∈ Xα,β, then Ln( f ) ∈ Xα,β;
(c) C[0, 1] =

⋃
α,β∈R Xα,β.

Now we will prove that Ln|Xα,β : Xα,β → Xα,β is a contraction.
First, note that for 0 ≤ x ≤ 1

0 < m := min
0≤x≤1
{bn,0(x) + bn,n(x)} < 1.

Now for all f , g ∈ Xα,β

|Ln( f )(x) − Ln(g)(x)| = |Ln( f − g)(x)| =
∣∣∣∣∣∣∣

n−1∑

k=1

bn,k(x)( f − g)
(

k
n

)∣∣∣∣∣∣∣
≤

∣∣∣1 − bn,0(x) − bn,n(x)
∣∣∣ ‖ f − g‖ ≤ |1 − m| ‖ f − g‖.

Therefore

‖Ln( f )(x) − Ln(g)(x)‖ ≤ |1 − m| ‖ f − g‖.

Thus Ln is a contraction from Xα,β to Xα,β.
Since Ln( f ) interpolates at the endpoints 0 and 1, it follows by applying the Banach Fixed

Point Theorem on the space X0,1 that there exists a unique function γp
n (x) such that

Ln(γp
n ; x) = γp

n (x), (4.3)

where γp
n (0) = 0 and γp

n (1) = 1. Moreover, by the Banach Fixed Point Theorem applied to the
space Xα,β, the operators Ln( f ) also have a unique fixed point function γp

n,α,β(x) = α+ (β− α)γp
n (x)

such that
Ln(γp

n,α,β; x) = γ
p
n,α,β(x),

with γ
p
n,α,β(0) = α, γp

n,α,β(1) = β. Therefore since each f ∈ C[0, 1] lies in some space Xα,β, it
follows by the Banach Fixed Point Theorem that the iterates (Ln)M( f ; x) converge to f (0)+ ( f (1)−
f (0))γp

n (x) as M → ∞. �
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From (4.1), the fixed point function γp
n (x) depends on the basis functions bn,k(x) (0 ≤ k ≤ n).

Moreover, we can compute an explicit expression for the function γp
n (x) in the following way.

Note that γp
n (0) = 0, γp

n (1) = 1; therefore equation (4.3) becomes

n−1∑

k=1

γp
n

(
k
n

)
bn,k(x) + bn,n(x) = γp

n (x). (4.4)

To derive γp
n (x) from (4.4), we assign x different values k/n, k = 1, · · · , n − 1. Thus we generate

the following system of linear equations


(
bn,1

(
1
n

)
− 1

)
γp

n

(
1
n

)
+ bn,2

(
1
n

)
γp

n

(
2
n

)
+ · · · + bn,n−1

(
1
n

)
γp

n

(
n − 1

n

)
= −bn,n

(
1
n

)

bn,1

(
2
n

)
γp

n

(
1
n

)
+

(
bn,2

(
2
n

)
− 1

)
γp

n

(
2
n

)
+ · · · + bn,n−1

(
2
n

)
γp

n

(
n − 1

n

)
= −bn,n

(
2
n

)

...

bn,1

(
n − 1

n

)
γp

n

(
1
n

)
+ bn,2

(
n − 1

n

)
γp

n

(
2
n

)
+ · · · +

(
bn,n−1

(
n − 1

n

)
− 1

)
γp

n

(
n − 1

n

)
= −bn,n

(
n − 1

n

)
.

(4.5)
Let Qn−1 denote the determinant |qi, j| where

qi, j =



bn, j

( i
n

)
, i , j,

bn, j

( i
n

)
− 1, i = j.

(4.6)

In addition, let Q(i)
n−1 denote the determinant identical to Qn−1, except that the i-th column of Qn−1

is replaced by (
−bn,n

(
1
n

)
,−bn,n

(
2
n

)
, · · · ,−bn,n

(
n − 1

n

))T

.

Notice that the coefficient matrix {qi, j} of the system (4.5) is strictly diagonally dominant-that is,
for every row of the matrix, the magnitude of the diagonal entry is larger than the sum of the
magnitudes of all the other (non-diagonal) entries in that row. More precisely

∣∣∣∣∣bn,i

( i
n

)
− 1

∣∣∣∣∣ = 1 − bn,i

( i
n

)
>

n−1∑

j=1, j,i

bn, j

( i
n

)
.

Therefore by the Levy-Desplanques theorem [17], the coefficient matrix in (4.5) is nonsingular,
and hence (4.5) has a unique solution.

Solving (4.5) for γp
n

( i
n

)
(1 ≤ i ≤ n − 1) by Cramer’s rule, we find that

γp
n

( i
n

)
=

Q(i)
n−1

Qn−1
. (4.7)

Combining equations (4.4)-(4.7), we find an explicit expression for γp
n (x)

γp
n (x) =

n−1∑

k=1

Q(k)
n−1

Qn−1
bn,k(x) + bn,n(x). (4.8)
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Remark 4.3. Explicitly, γp
1 (x) = p1(x),

γ
p
2 (x) = p1(x)p2(x) +

p1( 1
2 )p2(1

2 )

1 − p1( 1
2 ) − p2(1

2 ) + 2p1(1
2 )p2( 1

2 )
[
p1(x) + p2(x) − 2p1(x)p2(x)

]
,

and

γ
p
3 (x) =

Q(1)
2

Q2
b3,1(x) +

Q(2)
2

Q2
b3,2(x) + p1(x)p2(x)p3(x),

where

Q2 =

(
b3,1

(
1
3

)
− 1

) (
b3,2

(
2
3

)
− 1

)
− b3,1

(
2
3

)
b3,2

(
1
3

)
,

Q(1)
2 = b3,3

(
2
3

)
b3,2

(
1
3

)
− b3,3

(
1
3

) (
b3,2

(
2
3

)
− 1

)
,

Q(2)
2 = b3,3

(
1
3

)
b3,1

(
2
3

)
− b3,3

(
2
3

) (
b3,1

(
1
3

)
− 1

)
.

It is straightforward to verify that when pi(x) = x (i = 1, 2, 3) (Q2 =
21
81
,Q(1)

2 =
7

81
,Q(2)

2 =
14
81

),

γ
p
3 (x) = x. This result coincides with the result for classical Bernstein operators. In fact, when

pi(x) = x (1 ≤ i ≤ n), we also have γp
n (x) = x. Indeed affine functions are the unique fixed

points for the classical Bernstein operators. (This result can also be derived from the fact that
f (x) − Bn( f , x) = ox(1/n) iff f is affine, see [4]). For the classical Bernstein operators γp

n (0) =

0, γp
n (1) = 1, and γp

n (x) = x, so

γp
n

( i
n

)
=

i
n
. (4.9)

Thus we have derived the seemingly nontrivial identities for the classical Bernstein basis func-
tions:

nQ(i)
n−1 = iQn−1, i = 1, · · · , n − 1. (4.10)

Almost all classical positive linear operators (such as the classical Bernstein, q−Bernstein,
BBH, Baskakov, Szász, Stancu operators) preserve linear functions. Since properties of linear
functions are clear, no literature is devoted to the study of fixed point functions of positive linear
operators.

Next we discuss some approximation properties on γp
n (x).

Proposition 4.4. The fixed point functions γp
n (x) for Ln( f ; x) satisfy the following properties:

1) 0 ≤ γp
n (x) ≤ 1;

2) if p′i(x) > 0 on (0, 1) for 1 ≤ i ≤ n (i.e., all the pi(x) are strictly increasing), then γp
n (x) is strictly

increasing as well, i.e. (Q(k)
n−1 − Q(k−1)

n−1 )/Qn−1 > 0 (2 ≤ k ≤ n − 1);
3) if p′i(x) > 0, p′′i (x) > 0 on (0, 1) for 1 ≤ i ≤ n (i.e., all the pi(x) are strictly increasing and strictly
convex), then γp

n (x) is strictly convex as well, i.e. (Q(k)
n−1 − Q(k−1)

n−1 )/Qn−1 > (Q(k−1)
n−1 − Q(k−2)

n−1 )/Qn−1

(3 ≤ k ≤ n − 1).

Proof. Since the matrix {qi, j}1≤i, j≤n is strictly diagonally dominant

sgn(Qn−1) = sgn
n−1∏

i=1

[
bn,i

( i
n

)
− 1

]
= (−1)n−1. (4.11)
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By (4.7) to prove 1), it is enough to prove that sgn(Q(i)
n−1) = sgn(Qn−1) for 1 ≤ i ≤ n − 1. It is

not difficult to derive the sign of Q(i)
n−1. We shall only derive the sign of Q(1)

n−1 (other cases may be
similarly verified). Thus we need only show that

sgn(Q(1)
n−1) = (−1)n−1. (4.12)

Indeed, subtracting column 2, column 3, · · · , column n − 1 from the 1st column, yields

Q(1)
n−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bn,0(1/n) + bn,1(1/n) − 1 bn,2(1/n) bn,3(1/n) · · · bn,n−1(1/n)
bn,0(2/n) + bn,1(2/n) bn,2(2/n) − 1 bn,3(2/n) · · · bn,n−1(2/n)
bn,0(3/n) + bn,1(3/n) bn,2(3/n) bn,3(3/n) − 1 · · · bn,n−1(3/n)

...
...

... · · · ...
bn,0(n − 1/n) + bn,1(n − 1/n) bn,2(n − 1/n) bn,3(n − 1/n) · · · bn,n−1(n − 1/n) − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which is another strictly diagonally dominant matrix. Therefore,

sgn(Q(1)
n−1) = sgn[bn,0(1/n) + bn,1(1/n) − 1] ·

n−1∏

i=2

[
bn,i

( i
n

)
− 1

]
= (−1)n−1.

Moreover

Qn−1 − Q(1)
n−1

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

bn,1(1/n) + bn,n(1/n) − 1 bn,2(1/n) bn,3(1/n) · · · bn,n−1(1/n)
bn,1(2/n) + bn,n(2/n) bn,2(2/n) − 1 bn,3(2/n) · · · bn,n−1(2/n)
bn,1(3/n) + bn,n(3/n) bn,2(3/n) bn,3(3/n) − 1 · · · bn,n−1(3/n)

...
...

... · · · ...
bn,1(n − 1/n) + bn,n(n − 1/n) bn,2(n − 1/n) bn,3(n − 1/n) · · · bn,n−1(n − 1/n) − 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since this matrix is also strictly diagonally dominant, again

sgn(Qn−1 − Q(1)
n−1) = (−1)n−1. (4.13)

From (4.11) and (4.12), we derive that Q(1)
n−1/Qn−1 > 0, and from (4.11) and (4.13), we conclude

that 1 − Q(1)
n−1/Qn−1 = (Qn−1 − Q(1)

n−1)/Qn−1 > 0. Therefore, 0 < Q(1)
n−1/Qn−1 < 1. Similarly,

0 < Q(i)
n−1/Qn−1 < 1(2 ≤ i ≤ n − 1); therefore from (4.7)

γp
n (0) = 0 < γp

n

( i
n

)
=

Q(i)
n−1

Qn−1
< 1 = γp

n (1), 1 ≤ i ≤ n − 1. (4.14)

Thus, the normalization of the basis functions bn,k(x) ((see iii) in Section 1) and (4.8) yields 0 ≤
γ

p
n (x) ≤ 1.

In order to prove 2), recall that γp
n (x) = Ln(γp

n ; x). Therefore by Proposition 3.1, we need to

prove only that γp
n

( i
n

)
< γ

p
n

(
i + 1

n

)
for all 0 ≤ i ≤ n − 1. Moreover from (4.14), we need only

prove γp
n

(
1
n

)
< γ

p
n

(
2
n

)
< · · · < γp

n

(
n − 1

n

)
.

Choose an increasing function f ∈ C[0, 1] such that f (0) = 0, f (1) = 1. If p′i(x) > 0 on
(0, 1) for 1 ≤ i ≤ n, then by Remark 3.2, Ln( f ; x) is also increasing. Repeatedly using Remark
3.2, we find that (Ln)2( f ; x) is increasing as well. Continuing this process, we find that for any
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positive integer M, (Ln)M( f ; x) is increasing. Since lim
M→∞

(Ln)M( f ; x) = γ
p
n (x), it follows that γp

n (x)
is nondecreasing, i.e.

γp
n

(
1
n

)
≤ γp

n

(
2
n

)
≤ · · · ≤ γp

n

(
n − 1

n

)
, (4.15)

Next, we need to prove that γp
n

( i
n

)
, γp

n

( j
n

)
whenever i , j. From (4.14) γp

n

(n
n

)
> γ

p
n

(
n − 1

n

)
.

Moreover, since by assumption p′i(x) > 0, we conclude from (3.3) and (4.15) that L′n(γp
n ; x) > 0

for x ∈ (0, 1); hence γp
n (x) = Ln(γp

n ; x) is strictly increasing. Thus none of the equalities in (4.15)
hold. Substituting (4.7) into (4.15) yields (Q(k)

n−1 −Q(k−1)
n−1 )/Qn−1 > 0 (2 ≤ k ≤ n− 1). This complete

the proof of 2).
To prove 3), suppose that p′i(x) > 0, p′′i (x) > 0 on (0, 1) for 1 ≤ i ≤ n. Choose an increasing

and convex function f ∈ C[0, 1] such that f (0) = 0, f (1) = 1. We know by Remark 3.4 that for
any positive integer M, LM

n ( f ) is increasing and convex. Thus γp
n (x) is convex as well by the same

arguments as in the proof of 2), i.e.

γp
n

(
k + 2

n

)
− γp

n

(
k + 1

n

)
≥ γp

n

(
k + 1

n

)
− γp

n

(
k
n

)
(0 ≤ k ≤ n − 2). (4.16)

Moreover, since γp
n

(n
n

)
> · · · > γ

p
n

(
1
n

)
> γ

p
n

(
0
n

)
as in 2), we conclude from (4.16) and (3.7) by

an argument similar to the proof of 2) (note that L′′n (γp
n ; x) > 0 for x ∈ (0, 1)) that γp

n (x) is strictly
convex, that is

γp
n

(
k + 2

n

)
− γp

n

(
k + 1

n

)
> γp

n

(
k + 1

n

)
− γp

n

(
k
n

)
(0 ≤ k ≤ n − 2). (4.17)

Substituting (4.7) into (4.17) yields (Q(k)
n−1 − Q(k−1)

n−1 )/Qn−1 > (Q(k−1)
n−1 − Q(k−2)

n−1 )/Qn−1 (3 ≤ k ≤ n − 1).
This complete the proof of 3). �

Remark 4.5. Notice that if p′i(x) (or even p′′i (x)) has a finite number of zeros in [0, 1] and p′i(x) ≥ 0
(or p′′i (x) ≥ 0), then Proposition 4.4 2) and 3) may also be true. The most important such pi(x)
are monomial functions (p′i(0) = 0 and even p′′i (0) = 0 if possible). Another such pi(x) are the
functions defined in Proposition 5.8 (in this case p′i(0) = 0, p′i(1) = 0 and even p′′i (0) = 0, p′′i (1) =

0 if possible).

Corollary 4.6. Suppose that all the p′i(x) > 0, x ∈ (0, 1) and n − 1 ≥ s > t ≥ 1. Then sgn(Q(s)
n−1 −

Q(t)
n−1) = (−1)n−1. If, in addition, all the p′′i (x) > 0, x ∈ (0, 1), then sgn(Q(k+2)

n−1 − 2Q(k+1)
n−1 + Q(k)

n−1) =

(−1)n−1 (1 ≤ k ≤ n − 3).

An interesting question is what will be the corresponding result if p(r)
i (x) > 0, x ∈ (0, 1)

(1 ≤ i ≤ n) for some integer r ≤ n − 1. We mention in passing that we can prove by induction that

sgn(∆r(Q(1)
n−1)) = (−1)n−1−r,

where ∆ is the difference operator ∆(Q(k)
n−1) = Q(k)

n−1 − Q(k+1)
n−1 and where the entries, for example, in

∆3(Q(k)
n−1) are identical to the entries in ∆2(Q(k)

n−1) except that the 4-th column in ∆2(Q(k)
n−1) is replaced

by (
−bn,k

(
1
n

)
,−bn,k

(
2
n

)
, · · · ,−bn,k

(
n − 1

n

))T

,

for some k. Continuing this process, we can derive the sign of the determinant ∆r(Q(k)
n−1).
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5 Shape preservation
In this section we study shape preserving properties of Lototsky-Bernstein operators from

several different points of view, including bounded variation, total positivity and convexity.

5.1 Bounded variation
In order to study bounded variation of the Lototsky-Bernstein operators, we introduce a prob-

abilistic interpretation for the Lototsky-Bernstein operators Ln similar to the probabilistic inter-
pretation of the classical Bernstein operator Bn [23]. Let ξ1, · · · , ξn be a sequence of independent,
and on the interval [0, 1], uniformly distributed random variables and let

Sn(x) := I(ξ1≤p1(x)) + I(ξ2≤p2(x)) + · · · + I(ξn≤pn(x)),

where IC denotes the indicator function of the event C. Then Ln( f ) can be represented in the form

Ln( f ; x) = E f
(Sn(x)

n

)
, (5.1)

where E denotes expectation. Let Φ be the set of all real-valued strictly increasing convex func-
tions ϕ defined on [0,∞) such that ϕ(0) = 0. For ϕ ∈ Φ and any real-valued function f defined on
[0, 1], the ϕ−variation of f on [0, 1] is defined by

Vϕ( f ) := sup
n∑

i=1

ϕ (| f (xi) − f (xi−1)|) ,

where the supremum is taken over all finite sequences 0 = x0 ≤ x1 ≤ · · · ≤ xn = 1.

Theorem 5.1. Let f have bounded ϕ−variation on [0, 1] and suppose that all the pi(x) (1 ≤ i ≤ n)
are nondecreasing. Then

Vϕ(Ln( f )) ≤ Vϕ( f ). (5.2)

Proof. Let 0 ≤ x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1 and set Zx
n :=

Sn(x)
n

. Then

Zx0
n ≤ Zx1

n ≤ · · · ≤ Zxn
n .

Therefore, using the fact that ϕ is non-decreasing together with Jensen’s inequality (i.e., if X is a
random variable and φ is a convex function, then φ(E[X]) ≤ E[φ(X)], see [28], p.61), yields

n∑

i=1

ϕ (|Ln( f ; xi) − Ln( f ; xi−1)|) =

n∑

i=1

ϕ
(|E f (Zxi

n ) − E f (Zxi−1
n )|)

≤
n∑

i=1

ϕ
(
E| f (Zxi

n ) − f (Zxi−1
n )|)

≤ E


n∑

i=1

ϕ
(| f (Zxi

n ) − f (Zxi−1
n )|)



≤ Vϕ( f ).

�

Remark 5.2. Observe that (5.2) is an extension of the total variation diminishing property (ϕ(x) =

x).

12



5.2 Total Positivity and the Variation Diminishing Property
Here we focus on shape preservation based on total positivity and the variation diminishing

property.
A system of functions (u0(x), u1(x), · · · , un(x)) is (strictly) totally positive in an interval I if

every collocation matrix

M
(

u0 , · · · , un

t0 , · · · , tn

)
:=



u0(t0) · · · un(t0)
...

...
u0(tn) · · · un(tn)

 ,

with
t0 < · · · < tn, ti ∈ I, 0 ≤ i ≤ n,

is (strictly) totally positive, that is all its sub-determinants are (positive) nonnegative.
Totally positive systems lead in a natural way to the variation diminishing property. For any

real sequence c, finite or infinite, we denote by S −(c) the number of strict sign changes in c. For
f ∈ C[0, 1], we define S −( f ) to be the number of sign changes of f , that is

S −( f ) = sup S −( f (x0), · · · , f (xm)),

where the supremum is taken over all increasing sequences 0 ≤ x0 < · · · < xm ≤ 1 for all positive
integers m. We say that a sequence of positive linear operators {Ln}n≥1 is variation diminishing if
for all functions f ∈ C[0, 1]

S −(Ln( f )) ≤ S −( f ). (5.3)

Theorem 5.3. ([16]) If (bn,0(x), · · · , bn,n(x)) is totally positive on [0, 1], then the Lototsky-Bernstein
operator Ln is variation diminishing.

The connection between total positivity and shape preserving properties of bases is a classical
subject that has been widely studied ([16, 18]). In Section 5.3, we shall use the total positivity
of {bn,k(x)} to prove that the corresponding operators are generalized convexity preserving. Next
we study the total positivity of certain Lototsky-Bernstein basis functions, where the functions
pi(x) = xNi(1 ≤ i ≤ n) are monomials whose exponents Ni satisfy some special conditions.

Theorem 5.4. Suppose that pi(x) = xNi (1 ≤ i ≤ n) are monomial functions, such that N1 ≤ · · · ≤
Nn and

Nn ≤ N1 + N2,

Nn + Nn−1 ≤ N1 + N2 + N3,

... (5.4)
Nn + Nn−1 + · · · + N2 ≤ N1 + N2 + · · · + Nn.

Then the corresponding set of Lototsky-Bernstein basis functions (bn,0(x), bn,1(x), · · · , bn,n(x)) is
totally positive on [0, 1].

In order to prove Theorem 5.4, we need to invoke the following lemma.

Lemma 5.5. (Fekete’s Lemma) Suppose that C is an m × n (m ≤ n) matrix such that all (m − 1)st
order minors are strictly positive and the mth order minors composed from consecutive columns
are also strictly positive. Then all mth order minors of C are strictly positive. (see [27], Lemma
2.1)
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Proof of Theorem 5.4

Proof. First we prove that every collocation matrix on (0, 1) is strictly totally positive. We proceed
by induction on the order of the minors of the collocation matrix

(
bn,i(x j)

)
0≤i, j≤n

. The fact that all

minors of order 1 of the collocation matrix
(
bn,i(x j)

)
0≤i, j≤n

are positive follows from the positivity
of the system (bn,0(x), · · · , bn,n(x)) (see i in Section 2). We now assume that all the minors of order
r ≥ 1 are positive, and proceed to show that all the minors of order r + 1 are positive. By Lemma
5.5, it suffices to show that all minors of order r + 1 with consecutive columns are positive, i.e.,
fk(x0, x1 · · · , xr) > 0 for k = 0, · · · , n − r, with 0 < x0 < x1 < · · · < xn < 1, where

fk(x, x1, · · · , xr) :=

∣∣∣∣∣∣∣∣∣∣∣∣

bn,k(x) bn,k+1(x) · · · bn,k+r(x)
bn,k(x1) bn,k+1(x1) · · · bn,k+r(x1)

· · · · · · ... · · ·
bn,k(xr) bn,k+1(xr) · · · bn,k+r(xr)

∣∣∣∣∣∣∣∣∣∣∣∣
. (5.5)

Note that pi(x) = xNi , 1 ≤ i ≤ n and N1 ≤ · · · ≤ Nn. Removing common factors in (5.5), we get

fk(x, x1, · · · , xr) = xN1+···+Nk(1 − x)n−k−r

∣∣∣∣∣∣∣∣∣∣∣∣

cn,k(x) cn,k+1(x) · · · cn,k+r(x)
bn,k(x1) bn,k+1(x1) · · · bn,k+r(x1)

· · · · · · ... · · ·
bn,k(xr) bn,k+1(xr) · · · bn,k+r(xr)

∣∣∣∣∣∣∣∣∣∣∣∣
, (5.6)

where bn, j(x) = xN1+···+Nk(1 − x)n−k−rcn, j(x) (k ≤ j ≤ k + r). Denote the determinant in (5.6) by
gk(x, x1, · · · , xr). Now expand the determinant in (5.5) along the first row and denote by ak+t, 0 ≤
t ≤ r the determinant of the submatrix formed by deleting the first row and (t + 1)st column. Since
all the ak+t are minors of order r, they are all positive by the inductive hypothesis. Thus

fk(x, x1, · · · , xr) = akbn,k(x) − ak+1bn,k+1(x) + · · · + (−1)rak+rbn,k+r(x). (5.7)

Substituting (2.4) into (5.7), we derive

fk(x, x1, · · · , xr) = ak

(
k
k

)
σk(p1(x), · · · , pn(x)) −

(
ak

(
k + 1

k

)
+ ak+1

(
k + 1
k + 1

))
σk+1(p1(x), · · · , pn(x))+

· · · + (−1)n−k

(
ak

(
n
k

)
+ ak+1

(
n

k + 1

)
+ · · · + ak+r

(
n

k + r

))
σn(p1(x), · · · , pn(x)).

(5.8)

Therefore we can write fk as a polynomial

fk(x, x1, · · · , xr) = Nk,r(N1 + · · · + Nn)xN1+···+Nn + · · · + Nk,r(N1 + · · · + Nk)xN1+···+Nk , (5.9)

where Nk,r(N1 + · · · + Nn) is the coefficient of the highest power of fk, so

Nk,r(N1 + · · · + Nn) = (−1)n−k

(
ak

(
n
k

)
+ ak+1

(
n

k + 1

)
+ · · · + ak+r

(
n

k + r

))
, (5.10)

and Nk,r(N1 + · · · + Nk) is the coefficient of the lowest power of fk, so

Nk,r(N1 + · · · + Nk) = C0 · ak,C0 > 0. (5.11)

The constant C0 appears in (5.11) since there may be integers i1 ≤ · · · ≤ ik that satisfy N1 + · · · +
Nk = Ni1 + · · · + Nik . The coefficients of the other powers of fk are not important to our proof.
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By equating the coefficients of the highest power and the lowest power on both sides of equa-
tion (5.6) and by invoking equation (5.9), we derive the following expression for gk(x, x1, · · · , xr)

gk(x, x1, · · · , xr) = N′k,r(N1 + · · · + Nn)x(Nk+1−1)+···+(Nn−1)+r + · · · + N′k,r(N1 + · · · + Nk), (5.12)

where

N′k,r(N1 + · · · + Nn) = (−1)r

(
ak

(
n
k

)
+ ak+1

(
n

k + 1

)
+ · · · + ak+r

(
n

k + r

))
,

N′k,r(N1 + · · · + Nk) = Nk,r[N1 + · · · + Nk].

From Descartes’ law of signs, the number of positive roots (counting multiplicities) of the
polynomial fk(x, x1, · · · , xr) is less than or equal to the number of sign changes between consecu-
tive nonzero coefficients. Now notice that H j := Nn + · · · + Nn− j+1 and L j := N1 + · · · + N j are the
highest power and the lowest power of x in σ j(p1(x), · · · , pn(x)) (k ≤ j ≤ n). By (5.4) H j ≤ L j+1

(k ≤ j ≤ n − 1). If for all k ≤ j ≤ n − 1 we have the strict inequalities H j < L j+1, then by (5.8) the
number of sign changes between consecutive nonzero coefficients of fk is n − k. Suppose that for
some k ≤ j0 ≤ n − 1 we have H j0 = L j0+1. In this case, set A j equal to the absolute value of the
coefficient of σ j(p1(x), · · · , pn(x)) (k ≤ j ≤ n) in (5.8). Then

fk(x, x1, · · · , xr) =

· · · + (−1) j0−k
[
A j0σ j0(p1(x), · · · , pn(x)) − A j0+1σ j0+1(p1(x), · · · , pn(x))

]
+ · · · .

Thus the coefficient of xH j0 is (−1) j0−k(C1A j0 − C2A j0+1), where the constants C1,C2 appear here
for the same reason that the constant C0 appears in (5.11). If C1A j0 − C2A j0+1 > 0, we merge the
term (−1) j0−k+1C2A j0+1xL j0+1 into (−1) j0−kA j0σ j0; otherwise, we merge the term (−1) j0−kC1A j0 xH j0

into (−1) j0−k+1A j0+1σ j0+1. In either case, the number of sign changes between consecutive nonzero
coefficients of fk does not change. If, however, for some k ≤ j0 ≤ n − 2 we have H j0 = L j0+2, then
L j0+1 = H j0+1. Thus

L j0+1 = N1 + · · · + N j0+1 ≤ N2 + · · · + N j0+2 ≤ · · · ≤ Nn− j0 + · · · + Nn = H j0+1

⇒ (N2 − N1) + · · · + (N j0+2 − N j0+1) = · · · = (Nn− j0 − Nn− j0−1) + · · · + (Nn − Nn−1) = 0. (5.13)

By (5.13) and the fact that N1 ≤ · · · ≤ Nn, it follows that N1 = · · · = Nn. In this case, the proof
of total positivity is similar to the classical case (see [16]). Therefore the number of positive roots
of fk(x, x1, · · · , xr) is less than or equal to n − k. Furthermore, fk(x, x1, · · · , xr) = xN1+···+Nk(1 −
x)n−k−rgk(x, x1, · · · , xr). Hence, the number of positive roots of the polynomial gk(x, x1, · · · , xr) is
less than or equal to r. From (5.5) and (5.6) we know that g(x1, x1, · · · , xr) = · · · = gk(xr, x1, · · · , xr) =

0. Therefore, gk(x, x1, · · · , xr) has no positive root(s) other than x1, · · · , xr. Thus for 0 < x0 < x1 <
· · · < xr < 1, it follows that gk(x0, x1, · · · , xr) is either strictly positive or strictly negative. More-
over since

fk(x0, x1, · · · , xr) = xN1+···+Nk
0 (1 − x0)n−k−rgk(x0, x1, · · · , xr),

it follows that for 0 < x0 < x1 < · · · < xr < 1, we also have that fk(x0, x1, · · · , xr) is either strictly
positive or strictly negative. It remains then to show that these signs are positive. But by (5.12),
we have gk(0, x1, · · · , xr) > 0. Thus for 0 < x0 < x1 < · · · < xr < 1, we have gk(x0, x1, · · · , xr) > 0,
so fk(x0, x1, · · · , xr) > 0.

Finally total positivity of the basis (bn,0(x), bn,1(x), · · · , bn,n(x)) in [0, 1] follows by continuity
from the strict total positivity in (0, 1). �

Similarly, we can prove that the system of functions {σ0(p1(x), · · · , pn(x)), · · · , σn(p1(x), · · · , pn(x))}
is totally positive under the assumptions in (5.4).
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Lemma 5.6. Under the same hypotheses and with the same notation as in Theorem 5.4, the system
of functions {σ0(p1(x), · · · , pn(x)), · · · , σn(p1(x), · · · , pn(x))} are totally positive on [0,∞).

Proof. The proof is an almost verbatim extension of the reasoning given in Theorem 5.4. For
0 ≤ x0 < x1 < · · · < xn < ∞, set the determinant in (5.5) to f σk (x, x1, · · · , xr) (1 ≤ r ≤ n), where
for all u in (5.5) the functions bn, j(u) are replaced by the functions σ j(p1(u), · · · , pn(u)). Then
expanding this determinant, we get an equation similar to (5.7), i.e.,

f σk (x, x1, · · · , xr) =

aσk σk(p1(x), · · · , pn(x) − aσk+1σk+1(p1(x), · · · , pn(x)) + · · · + (−1)raσk+rσk+r(p1(x), · · · , pn(x)),
(5.14)

where aσv (k ≤ v ≤ k + r) have meaning similar to (i.e. cofactors) av (k ≤ v ≤ k + r) in (5.7). Thus
by (5.4), (5.14) and Descartes’ law of signs, the number of positive roots of f σk (x, x1, · · · , xr) is
less than or equal to r. But f σk (xi, x1, · · · , xr) = 0 (1 ≤ i ≤ r). Therefore f σk (x, x1, · · · , xr) has no
positive root(s) other than x1, · · · , xr. Moreover, we can rewrite f σk (x, x1, · · · , xr) as

f σk (x, x1, · · · , xr) = xN1+···+Nkgσk (x, x1, · · · , xr). (5.15)

It is not difficult to see that gσk (0, x1, · · · , xr) > 0. Therefore gσk (x0, x1, · · · , xr) > 0, so from (5.15)
we conclude that f σk (x0, x1, · · · , xr) > 0. �

The following lemma can easily be derived from the definition of total positivity (see [16]).

Lemma 5.7. Suppose that (φ0, · · · , φn) is totally positive on an interval I. If f is an increasing
function from an interval J into I, then (φ0 ◦ f , · · · , φn ◦ f ) is totally positive on J.

Using Theorem 5.4, we can deduce

Proposition 5.8. Let Ni (1 ≤ i ≤ n) satisfy the conditions in (5.4), and set pi(x) =
xNi

(1 − x)Ni + xNi
.

Then the Lototsky-Bernstein system (bn,0(x), bn,1(x), · · · , bn,n(x)) is totally positive on [0, 1].

Proof. By observing that pi(x)/(1 − pi(x)) = (x/(1 − x))Ni and invoking the increasing function
f (x) = x/(1 − x), we can apply Lemma 5.6 and Lemma 5.7 to show that for all sequences of
abscissae Xn = {0 ≤ x0 < · · · < xn ≤ 1} the following determinant is nonnegative:

det(bn,i(x j)) =

n∏

k=0

((1 − p1(xk)) · · · (1 − pn(xk)))det(σi(
p1(x j)

1 − p1(x j)
, · · · , pn(x j)

1 − pn(x j)
))

=

n∏

k=0

((1 − p1(xk)) · · · (1 − pn(xk)))det(σi( f (xN1
j ), · · · , f (xNn

j ))).

�

Remark 5.9. It is evident that for every positive integer N, the functions p(x) =
xN

(1 − x)N + xN

satisfy p′(x) =
NxN−1(1 − x)N−1

[(1 − x)N + xN]2 ≥ 0 on [0, 1], i.e., p(x) is strictly increasing, and p(0) = 0, p(1) =

1.
If N1 = · · · = Nn = 1, i.e. pi(x) = x, 1 ≤ i ≤ n, then (bn,0(x), bn,1(x), · · · , bn,n(x)) are the

classical Bernstein basis functions. If N1 = · · · = Nn−1 = 1,Nn = 2, then

bn,k(x) =
xk(1 − x)n−k

(1 − x)2 + x2

((
n − 1

k

)
(1 − x) +

(
n − 1
k − 1

)
x
)

(0 ≤ k ≤ n).
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We believe that if all the pi(x) (1 ≤ i ≤ n) are monomial functions, the Lototsky-Bernstein
basis functions are totally positive even though we can not currently prove this result.

Conjecture 5.10. Suppose that all the pi(x) (1 ≤ i ≤ n) are monomial functions. Then the
Lototsky-Bernstein basis functions (bn,0(x), bn,1(x), · · · , bn,n(x)) are totally positive on [0, 1].

Proposition 5.11. Assume that Conjecture 5.10 is correct. Suppose pi(x) = xρi , 1 ≤ i ≤ n are pow-
er functions where all the ρi are positive rational numbers. Then the system (bn,0(x), bn,1(x), · · · , bn,n(x))
is totally positive on [0, 1].

Proof. Since all the ρi, 1 ≤ i ≤ n are positive rational numbers, there must exist a positive integer
n0 such that for all i, the numbers n0 · ρi are positive integers. Thus by Conjecture 5.10, the
system (bq

n,0(x), bq
n,1(x), · · · , bq

n,n(x)) with respect to qi(x) = xn0·ρi is totally positive on [0, 1] . Set
f (x) = x1/n0 . Then f (x) is an increasing function on [0, 1]. Therefore by Lemma 5.7

(bq
n,0( f (x)), bq

n,1( f (x)), · · · , bq
n,n( f (x))) = (bn,0(x), bn,1(x), · · · , bn,n(x)),

is totally positive on [0, 1]. �

Corollary 5.12. Assume that Conjecture 5.10 is correct. Suppose pi(x) = xαi , αi ∈ R (1 ≤ i ≤ n).
Then the Lototsky-Bernstein system (bn,0(x), bn,1(x), · · · , bn,n(x)) is totally positive on [0, 1].

Proof. This result follows from Proposition 5.11 by taking the limit of rational powers for all the
pi(x). �

5.3 Convexity
We begin our study of convexity by using the well known Abel transformation (5.16) to rewrite

formula (1.5). Suppose {xk} and {yk} are two real sequences, then
n∑

k=m

xk(yk − yk+1) = (xmym − xn+1yn+1) +

n∑

k=m

yk+1(xk+1 − xk). (5.16)

Using (5.16) first with xk = f (k/n) and yk =
n∑

j=k
bn, j(x) and then with xk = f ((k + 1)/n) − f (k/n),

and yk =
n−1∑
j=k

n∑
i= j+1

bn,i(x), it follows that

Ln( f ; x)

= f (0) +

n−1∑

k=0

(
f
(
k + 1

n

)
− f

(
k
n

)) n∑

j=k+1

bn, j(x)

= f (0) +

(
f
(
1
n

)
− f (0)

) n−1∑

j=0

n∑

i= j+1

bn,i(x) +

n−2∑

k=0

(
f
(
k + 2

n

)
− 2 f

(
k + 1

n

)
+ f

(
k
n

)) n−1∑

j=k+1

n∑

i= j+1

bn,i(x),

(5.17)

To simplify our notation, we define

V1,n,k(x) :=
n∑

j=k+1

bn, j(x) (0 ≤ k ≤ n − 1),

and

V2,n,k(x) :=
n−1∑

j=k+1

n∑

i= j+1

bn,i(x) =

n∑

j=k+2

( j − k − 1)bn, j(x) (−1 ≤ k ≤ n − 2).
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Remark 5.13. It is not difficult to show that V1,n,k(x) is increasing if all the pi(x) ∈ C1[0, 1] are
increasing. This result follows by setting f ( j/n) = 0 (0 ≤ j ≤ k), f ( j/n) = 1 (k+1 ≤ j ≤ n), so that
V1,n,k(x) = Ln( f ; x) and then using (3.3). Moreover V2,n,k(x) is convex if all the pi(x) ∈ C2[0, 1] are
increasing and convex. This result follows by setting f ( j/n) = 0 (0 ≤ j ≤ k + 1), f ( j/n) = j− k−1
(k + 2 ≤ j ≤ n), so that V2,n,k(x) = Ln( f ; x) and then using (3.7). Thus, if all the pi(x) ∈ C2[0, 1]
are increasing and convex, and if f (x) is increasing near the left end point of the interval [0, 1]
and convex on [0, 1], then by (5.17) for n sufficiently large, Ln( f ) is convex.

Next we are going to study general convexity preserving properties. To investigate this topic,
we begin with a few definitions.

Definition 5.14. The functions ( f0, f1) form a Haar pair on E ⊂ R if f0 > 0 and f1/ f0 is strictly
increasing on E.

Definition 5.15. A function f : E → R is called convex on E ⊂ R with respect to a Haar pair
( f0, f1), if for all x0, x1, x2 in E with x0 ≤ x1 ≤ x2, the determinant

Detx0,x1,x2( f ) := det


f0(x0) f0(x1) f0(x2)
f1(x0) f1(x1) f1(x2)
f (x0) f (x1) f (x2)

 ,

is non-negative. We shall also use the shorter expression ”( f0, f1)-convex”. Likewise, we say that
f is ( f0, f1)−concave if − f is ( f0, f1)-convex.

From Definition 5.15, it follows that (1, x)−convex is standard convexity.
The following theorem can be proved in a manner similar to the proof of Theorem 15 in [1],

see also Theorem 2 in [36].

Theorem 5.16. Suppose that pi(x) ∈ C[0, 1] (1 ≤ i ≤ n) are strictly increasing and pi(0) =

0, pi(1) = 1. Then for every (1, γp
n )-convex function f ∈ C[0, 1], we have Ln( f ; x) ≥ f (x).

Moreover, by the positivity of Ln

f (0) + ( f (1) − f (0))γp
n (x) ≥ · · · ≥ (Ln)M( f ) ≥ · · · ≥ (Ln)2( f ) ≥ Ln( f ) ≥ f , (5.18)

Remark 5.17. One of the standard definitions of convexity stipulates that the graph of f between
any two points must lie below the line segment joining these two points. From (5.18), an analo-
gous characterization holds for (1, γp

n (x))−convex functions, but with affine functions replaced by
(1, γp

n (x))−affine functions f (0) + ( f (1)− f (0))γp
n (x). This result is a straightforward consequence

of iteration.

In general, we have

Proposition 5.18. Suppose that pi(x) ∈ C[0, 1] (1 ≤ i ≤ n) are strictly increasing and pi(0) =

0, pi(1) = 1. If f is (1, γp
n (x))−convex, then for all 0 ≤ x1 < x2 ≤ 1

f (x) ≤ f (x1) + ( f (x2) − f (x1))
γ

p
n (x) − γp

n (x1)
γ

p
n (x2) − γp

n (x1)
, x ∈ [x1, x2]. (5.19)

Proof. Let L∗n( f ; x) = f (x1) + ( f (x2) − f (x1))
γ

p
n (x) − γp

n (x1)
γ

p
n (x2) − γp

n (x1)
. Then L∗n( f ; x) interpolates f at the

points x1 < x2, x1, x2 ∈ [0, 1]. From Definition 5.15, if f is (1, γp
n (x))−convex

Detx1,x,x2( f ) = Detx1,x,x2( f − L∗n( f )) = −( f (x) − L∗n( f ; x))(γp
n (x2) − γp

n (x1)) ≥ 0, (5.20)

Thus f (x) ≤ L∗n( f ; x). �
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To state our next convexity result, let X and Y be two subsets of R. A function K : X × Y → R
is called positive o f order m if det(K(xi, y j))1≤i, j≤m ≥ 0 for all x1 < · · · < xm in X and all
y1 < · · · < ym in Y (see [18]). Now let C(X) and C(Y) denote the spaces of continuous functions
on X and Y . Adopting the notation of [1], the following result is well known ([1], p.18); for more
details see [18] (p. 284).

Theorem 5.19. Suppose that X and Y are two subsets of R. Let (F0, F1) form a Haar pair on Y
and let K : X×Y → R be continuous and positive of order 3. Furthermore let µ be a non-negative
sigma-finite measure and let BK : C(Y)→ C(X) be defined by

BK(F)(x) :=
∫

Y

K(x, y)F(y)dµ(y).

Then (BKF0, BKF1) constitute a Haar pair on X. Moreover, if F is (F0, F1)-convex, then BK(F) is
(BKF0, BKF1)-convex.

Put X = [0, 1] and Y = {0, 1, · · · , n}. Then every F : Y → R is continuous. Set µ =
n∑

k=0
δk,

where δk is the Dirac measure at the point k ∈ {0, 1, · · · , n}. With K(x, k) = bn,k(x), define

BK(F)(x) :=
∫

Y

K(x, y)F(y)dµ(y) =

n∑

k=0

F(k)bn,k(x).

Now define the strictly increasing function ψ : Y → X by ψ(k) := k/n (k = 0, · · · , n). Then for
f : X → R, we know f ◦ ψ : Y → R is continuous, and

BK( f ◦ ψ)(x) =

n∑

k=0

f
(

k
n

)
bn,k(x) = Ln( f ; x). (5.21)

If f is ( f0, f1)−convex, then f ◦ ψ is ( f0 ◦ ψ, f1 ◦ ψ)−convex. (This result follows from Definition
5.15, since for every x0 < x1 < x2, we have ψ(x0) < ψ(x1) < ψ(x2) ). Applying Theorem 5.19 it
follows that if {bn,k(x)} is positive of order 3, then BK( f ◦ ψ) is (BK( f0 ◦ ψ), BK( f1 ◦ ψ))−convex.
Since f is ( f0, f1)−convex, it follows by (5.21) that Ln( f ; x) is (Ln( f0), Ln( f1))−convex. Therefore,
we have the following general shape preserving property for the operators Ln.

Theorem 5.20. Suppose that all the pi(x), 1 ≤ i ≤ n, satisfy one of the following two conditions:
1) pi(x) = xNi;

2) pi(x) =
xNi

(1 − x)Ni + xNi
.

where all the Ni (1 ≤ i ≤ n) satisfy the conditions in (5.4).
If f is (1, γp

n )-convex, then Ln( f ; x) is (1, γp
n )-convex. More generally, for a Haar pair ( f0, f1)

in C[0, 1], if f is ( f0, f1)-convex, then Ln( f ; x) is (Ln( f0), Ln( f1))-convex. Thus, it follows that if f

is convex in the standard sense, then Ln( f ; x) is (1,
n∑

k=1
pk(x))-convex.

Proof. From Theorem 5.4 and Proposition 5.8, we know that K(x, k) := bn,k(x) is totally positive,
so it is positive of order 3. Therefore these results follows from Theorem 5.19 (see also Theorem
22 in [1]). �

Remark 5.21. In Theorem 5.20, we use Ln(e1; x) =
n∑

k=1
pk(x)/n, where e1(x) = x. (see [21]).
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6 Dependence on pi(x)

In order to study the dependence of the operators Ln( f ) on the functions pi(x), we intro-
duce the following notation. Given two sequences Pn(x) = (p1(x), · · · , pn(x)) and Qn(x) =

(q1(x), · · · , qn(x)), if for all i ∈ {1, · · · , n}, pi(x) ≥ qi(x) for all x ∈ [0, 1], then we write Pn(x) ≥
Qn(x).

Theorem 6.1. Consider two sequences of functions Pn(x) and Qn(x) such that Pn(x) ≥ Qn(x). If f
is increasing, then

Ln( f ; x;Pn) ≥ Ln( f ; x;Qn). (6.1)

Proof. Since Ln( f ; x;Pn) is a symmetric function in the functions pi(x), 1 ≤ i ≤ n, we take, for
example pn(x) ≥ qn(x) and pi(x) = qi(x), 1 ≤ i ≤ n − 1 to explain the main idea of the proof.

By (2.2)

Ln( f ; x;Pn) =

n∑

k=0

bn,k(x) f (k/n)

=

n∑

k=0

(pn(x)bn−1,k−1(x) + (1 − pn(x))bn−1,k(x)) f (k/n)

=

n−1∑

k=0

bn−1,k(x) f (k/n) + pn(x)
n∑

k=0

(bn−1,k−1(x) − bn−1,k(x)) f (k/n)

=

n−1∑

k=0

bn−1,k(x) f (k/n) + pn(x)
n−1∑

k=0

( f ((k + 1)/n) − f (k/n))bn−1,k(x)

≥
n−1∑

k=0

bn−1,k(x) f (k/n) + qn(x)
n−1∑

k=0

( f ((k + 1)/n) − f (k/n))bn−1,k(x)

=

n∑

k=0

(qn(x)bn−1,k−1(x) + (1 − qn(x))bn−1,k(x)) f (k/n) = Ln( f ; x;Qn),

where the inequality follows because f is increasing. �

Corollary 6.2. If Pn(x) ≥ Qn(x), then γp
n (x) ≥ γ

q
n(x). Thus, if pi(x) ≤ x, (or pi(x) ≥ x) for all

1 ≤ i ≤ n, then γp
n (x) ≤ x (γp

n (x) ≥ x).

Proof. Set Lp
n( f ; x) := Ln( f ; x;Pn). If pi(x) ≥ qi(x), 1 ≤ i ≤ n, then by Theorem 6.1 Lp

n( f ; x) ≥
Lq

n( f ; x) for every increasing function f . Choose an increasing function f such that f (0) =

0, f (1) = 1. By repeatedly using (6.1) combined with the positivity of Ln, we find that

Lp
n( f ; x) ≥ Lq

n( f ; x)⇒ (Lp
n)2( f ; x) ≥ Lp(Lq

n)( f ; x) ≥ (Lq
n)2( f ; x)

· · · ⇒ (Lp
n)M( f ; x) ≥ (Lq

n)M( f ; x). (6.2)

Taking the limit of both sides of 6.2 as M → ∞, yields γp
n (x) ≥ γq

n(x). �

Remark 6.3. Suppose that pi(x) ∈ C[0, 1] (i ≥ 1) are strictly increasing with pi(x) ≤ x for all i
and pi(0) = 0, pi(1) = 1. If f ∈ C[0, 1] is strictly increasing, then Ln( f ; x;Pn) ≤ Bn( f ; x). If, in
addition, f is (1, γp

n (x))−convex, then by (6.1) and (5.18)

f (x) ≤ Ln( f ; x;Pn) ≤ Bn( f ; x). (6.3)
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Thus f is approximated better by the Lototsky-Bernstein operators Ln( f ; x,Pn(x)) than by the
classical Bernstein operators. This conclusion generalizes Theorem 1 of [6] and Theorem 9 of
[5]. Moreover, if for all n, f is (1, γp

n (x))−convex, then from (6.3) lim
n→∞

Ln( f ; x;Pn) = f (x). In this
case, by the strict monotonicity of f , we will see later by using Theorem 7.6 that

lim
n→∞

(p1(x) + · · · + pn(x))/n = x.

7 Nesting
The space Un := span{σ0(p1(x), · · · , pn(x)), · · · , σn(p1(x), · · · , pn(x))} defined in Section 2

is not generally nested, ie., Un ⊂ Un+1 does not hold except when all the pi(x) (1 ≤ i ≤ n) are
identical. Therefore, in general, we do not have a degree elevation formula like

bn,k(x) = λkbn+1,k(x) + (1 − λk+1)bn+1,k+1(x). (7.1)

Temple shows in [32] that for every standard convex ((1, x)−convex) function f the monotonicity
property

Bn( f ; x) ≥ Bn+1( f ; x), (7.2)

holds for the classical Bernstein operators Bn( f ; x). By using a degree elevation formula like (7.1)
Aldaz, Kounchev and Render [1] show for Bernstein operators Bn( f ; x) satisfying Bn( fi; x) = fi(x)
with fi ∈ Un (i = 0, 1) in Extended Chebyshev spaces Un which satisfy Un ⊂ Un+1 ⊂ Cn+1[0, 1]
that if f is ( f0, f1)−convex, then (7.2) holds as well.

However, for Lototsky-Bernstein operators Ln( f ; x) we have following proposition.

Proposition 7.1. Suppose that pi(x) ∈ C[0, 1] (i ≥ 1) are strictly increasing and pi(0) = 0, pi(1) =

1. If for every (1, γp
n+1(x))−convex function f

Ln( f ; x) ≥ Ln+1( f ; x), (7.3)

then γp
n (x) = γ

p
n+1(x).

Proof. Suppose that (7.3) holds for every (1, γp
n+1(x))−convex function f . By Theorem 5.16

Ln+1( f ; x) ≥ f . Therefore

Ln( f ; x) ≥ Ln+1( f ; x) ≥ f . (7.4)

So for every (1, γp
n+1(x))−convex function f , Ln( f ; x) ≥ f . Since both γ

p
n+1(x) and −γp

n+1(x) are
(1, γp

n+1(x))−convex functions, (7.4) implies that

Ln(γp
n+1; x) ≥ γp

n+1(x), (7.5)
Ln(−γp

n+1; x) ≥ −γp
n+1(x). (7.6)

Inequalities (7.5) and (7.6) yield

Ln(γp
n+1; x) = γ

p
n+1(x). (7.7)

But by Theorem 4.2 γp
n (x) is the unique fixed point of Ln( f ; x). Thus, γp

n (x) = γ
p
n+1(x). �

Remark 7.2. From the proof of Proposition 7.1, we see that one necessary condition for (7.3) to
hold is that for all n the fixed points of Ln( f ; x) must be identical.
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Next we discuss conditions on the sequence of real-valued functions pi(x) (i ≥ 1) which ensure
that for all n the fixed points γp

n (x) of Ln( f ; x) are identical.

Proposition 7.3. Suppose that p1(x) ∈ C[0, 1] is strictly increasing with p1(0) = 0, p1(1) = 1.
Then all the pi(x) (i ≥ 2) are uniquely determined by the recursive formula

pn+1(x) =

n∑
k=0

[
p1(k/n) − p1(k/(n + 1))

]
bn,k(x)

n∑
k=0

[
p1((k + 1)/(n + 1)) − p1(k/(n + 1))

]
bn,k(x)

, (7.8)

if and only if γp
n (x) = γ

p
n+1(x) for all n. Moreover, in this case, all the pi(x) (i ≥ 2) satisfy

0 < pi(x) < 1, x ∈ (0, 1) and pi(0) = 0, pi(1) = 1, pi(1/2) = 1/2.

Proof. Suppose that γp
n (x) = γ

p
n+1(x) for all n. By Remark 4.3 and equation (4.4)

γp
n (x) = p1(x) =

n∑

k=0

p1(k/n)bn,k(x). (7.9)

Moreover, by (2.2),

γ
p
n+1(x) =

n+1∑

k=0

p1(k/(n + 1))bn+1,k(x)

=

n+1∑

k=0

p1(k/(n + 1))
(
pn+1(x)bn,k−1(x) + (1 − pn+1(x))bn,k(x)

)

= pn+1(x)
n∑

k=0

p1((k + 1)/(n + 1))bn,k(x) + (1 − pn+1(x))
n∑

k=0

p1(k/(n + 1))bn,k(x). (7.10)

Therefore,

γp
n (x) = γ

p
n+1(x)⇒

n∑

k=0

p1(k/n)bn,k(x) = pn+1(x)
n∑

k=0

p1((k + 1)/(n + 1))bn,k(x) + (1 − pn+1(x))
n∑

k=0

p1(k/(n + 1))bn,k(x).

(7.11)

Now (7.8) follows since (7.8) is equivalent to (7.11).
Conversely, suppose that (7.8) holds, or equivalently for all n, (7.11) holds. We proceed by

induction on n to prove that γp
n (x) = γ

p
n+1(x) for all n. Recall from Remark 4.3 that p1(x) = γ

p
1 (x).

Now suppose that p1(x) = γ
p
1 (x) = · · · = γ

p
n (x), n ≥ 1. Then by the induction hypothesis and (7.11)

we find that

p1(x) = γp
n (x) =

n∑

k=0

p1(k/n)bn,k(x) =

n+1∑

k=0

p1(k/(n + 1))bn+1,k(x) = Ln+1(p1; x). (7.12)

Equation (7.12) implies that p1(x) is a fixed point of Ln+1( f ; x). But by Theorem 4.2 γp
n+1(x) is the

unique fixed point of Ln+1( f ; x). It follows that p1(x) = γ
p
n (x) = γ

p
n+1(x).

Since by assumption p1(x) is strictly increasing, p1((k + 1)/(n + 1)) ≥ p1(k/n) (0 ≤ k ≤ n).
Therefore by (7.8) 0 < pi(x) < 1, x ∈ (0, 1) and pi(0) = 0, pi(1) = 1 (i ≥ 2).
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In order to prove pi(1/2) = 1/2 (i ≥ 2), we also proceed by induction on n. For n = 2 since
γ

p
1 (x) = γ

p
2 (x), again by Remark 4.3,

p1(x) = p1(x)p2(x) +
p1(1

2 )p2( 1
2 )

1 − p1( 1
2 ) − p2(1

2 ) + 2p1( 1
2 )p2(1

2 )
[
p1(x) + p2(x) − 2p1(x)p2(x)

]
. (7.13)

Setting x =
1
2

, it follows that

p1(
1
2

)(1 − p1(
1
2

) − 2p2(
1
2

) + 2p1(
1
2

)p2(
1
2

)) = p1(
1
2

)(1 − p1(
1
2

))(1 − 2p2(
1
2

)) = 0.

Since p1(x) is strictly increasing with p1(0) = 0, p1(1) = 1, we have p1(1/2) , 0, p1(1/2) , 1;
therefore p2( 1

2 ) = 1
2 . Thus equation (7.13) simplifies to

p1(x) = p1(x)p2(x) + p1(
1
2

)
[
p1(x) + p2(x) − 2p1(x)p2(x)

]
. (7.14)

Now suppose that pi(1/2) = 1/2, 2 ≤ i ≤ n. Then by the induction hypothesis and (1.4)

bn,k(1/2) =

(
p1(1/2)

(
n − 1
k − 1

)
+ (1 − p1(1/2))

(
n − 1

k

))
2−n+1, 0 ≤ k ≤ n. (7.15)

Since pn+1(1/2) is uniquely determined by (7.8), it suffices to prove that substituting x = 1/2 in
the right-hand side of (7.8) yields 1/2. Equivalently, since (7.8) is equivalent to (7.11), it suffices
to prove that

p1(1/2) = 1/2
n∑

k=0

(
p1

(
(k + 1)/(n + 1)

)
bn,k(1/2) + p1

(
k/(n + 1)

)
bn,k(1/2)

)
(7.16)

= 1/2
n∑

k=0

p1((k + 1)/(n + 1))
(
bn,k(1/2) + bn,k+1(1/2)

)
.

But, by (7.15), for 0 ≤ k ≤ n,

bn,k(1/2) + bn,k+1(1/2)

=

(
p1(1/2)

[(
n − 1
k − 1

)
+

(
n − 1

k

)]
+ (1 − p1(1/2))

[(
n − 1

k

)
+

(
n − 1
k + 1

)])
2−n+1

= 2−n+1
(
p1(1/2)

(
n
k

)
+ (1 − p1(1/2))

(
n

k + 1

))
= 2bn+1,k+1(1/2).

Substituting this result into the right-hand side of (7.16), we obtain

1/2
n∑

k=0

p1((k + 1)/(n + 1))2bn+1,k+1(1/2) = p1(1/2), (7.17)

as required. �

Proposition 7.4. Suppose that all the pi(x) (i ≥ 1) are monomial functions. Then for all n

γp
n (x) = γ

p
n+1(x) (7.18)

if and only if pi(x) = x (i ≥ 1).
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Proof. ”⇐ ” is straightforward.
” ⇒ ”. We shall prove that all the pi(x), i ≥ 1 must be identical. We proceed by induction on

n. Setting p1(x) = xm, p2(x) = xr,m, r ∈ N, it follows from (7.14) that

xm = xm+r + p1(
1
2

)[xm + xr − 2xm+r]

⇒ (1 − p1(
1
2

))xm − p1(
1
2

)xr − (1 − 2p1(
1
2

))xm+r = 0. (7.19)

If m , r, then the system {xm, xr, xm+r} is linearly independent. From (7.19) it would then follow
that p1(1

2 ) = 1, p1( 1
2 ) = 0 and p1(1

2 ) = 1
2 , yielding a contradiction. Thus p1(x) = p2(x) = xm.

Combined with p2( 1
2 ) = 1

2 , it follows that p1(x) = p2(x) = x.
Now assume that p1(x) = · · · = pn(x) = x. Since for all n, γp

n (x) = γ
p
n+1(x) = p1(x), it follows

by equation (2.3) with k = 1 that

n∑

k=1

p1

(
k
n

)
bn,k(x) =

n+1∑

k=1

p1

(
k

n + 1

)
bn+1,k(x)

⇒ p1(x) + · · · + pn(x)
n

=
p1(x) + · · · + pn(x) + pn+1(x)

n + 1
⇒ pn+1(x) = x. (7.20)

�

Combining Equation (7.2), Proposition 7.1, Remark 7.2 and Proposition 7.4, we have

Proposition 7.5. Suppose that all the pi(x) (1 ≤ i ≤ n + 1) are monomial functions. For every
(1, γp

n+1(x))−convex function f

Ln( f ; x) ≥ Ln+1( f ; x) (7.21)

for all n if and only if p1(x) = · · · = pn+1(x) = x.

To prove part (ii) of Proposition 7.7, we shall need to use the following theorem. To prove
this theorem, we shall make use of the following identities (see [21] ((9),(10), see also (2.3) with
k = 1): Let e1(x) = x and e2(x) = x2, then

Ln(e1; x) =

n∑

i=1

pi(x)/n, Ln(e2; x) =


n∑

i=1

pi(x)


2

/n2 −
n∑

i=1

p2
i (x)/n2 +

n∑

i=1

pi(x)/n2. (7.22)

Theorem 7.6. Suppose that pi(x) ∈ C[0, 1], 0 < pi(x) < 1 for x ∈ (0, 1) and pi(0) = 0, pi(1) = 1
(i ≥ 1). If (p1(x) + · · · + pn(x))/n converges, then for f ∈ C[0, 1] the sequence {Ln( f ; x)}∞n=1
converges to a bounded function L∞( f ; x), where

L∞( f ; x) = lim
n→∞

Ln( f ; x) = f
(
lim
n→∞

p1(x) + · · · + pn(x)
n

)
. (7.23)

Moreover, if lim
n→∞

(p1(x) + · · · + pn(x))/n converges uniformly on [0, 1], then the convergence in
(7.23) is uniform on [0, 1].

Conversely, if for some strictly monotone function f0 ∈ C[0, 1], the sequence {Ln( f0; x)}∞n=1
converges, then (p1(x) + · · · + pn(x))/n also converges.

24



Proof. The following proof is standard. Since f ∈ C[0, 1], there exists a positive number M > 0
such that | f (x)| ≤ M for x ∈ [0, 1]. Moreover, given any ε > 0, we can always find a δ > 0 such that
for any x, y ∈ [0, 1], we have | f (x)− f (y)| < εwhenever |x−y| < δ. If %n(x) := (p1(x)+· · ·+ pn(x))/n
converges, set µ(x) := lim

n→∞
%n(x); then ψn(x) := %n(x) − µ(x)→ 0 as n→ ∞. Therefore, for a fixed

x ∈ [0, 1]

|Ln( f ; x) − f (µ(x))|
≤

∑

|k/n−µ(x)|<δ
| f (k/n) − f (µ(x))|bn,k(x) +

∑

|k/n−µ(x)|≥δ
| f (k/n) − f (µ(x))|bn,k(x)

≤ ε
∑

|k/n−µ(x)|<δ
bn,k(x) +

2M
δ2

∑

|k/n−µ(x)|≥δ
(k/n − µ(x))2bn,k(x)

≤ ε +
2M
δ2

n∑

k=0

(k/n − µ(x))2bn,k(x)

= ε +
2M
δ2




n∑

k=1

(pk(x)/n) − µ(x)


2

+

n∑

k=1

pk(x)(1 − pk(x))/n2



≤ ε +
2M
δ2 (ψn(x)2 + 1/4n),

where the last two steps are derived from (7.22) and from the fact that 0 ≤ pk(x) ≤ 1 implies
pk(x)(1− pk(x)) ≤ 1/4. From this inequality, we see that |Ln( f ; x)− f (µ(x))| ≤ 2ε for n sufficiently
large. Since ε is arbitrary, (7.23) follows.

Suppose now that lim
n→∞

(p1(x) + · · · + pn(x))/n converges uniformly on [0, 1]. Then θn :=
sup

x∈[0,1]
|ψn(x)| → 0 as n → ∞. Thus the previous inequality is independent of x and the conver-

gence to f (µ(x)) is uniform in [0, 1].
Conversely, suppose that lim

n→∞
Ln( f0; x) exists for some strictly monotone function f0 ∈ C[0, 1].

If the sequence %n(x) = (p1(x) + · · · + pn(x))/n does not converge for every x ∈ [0, 1] as n →
∞, then since 0 ≤ %n(x) ≤ 1 is bounded for all n, it follows that for some x0 ∈ (0, 1), the
sequence %n(x0) has at least two limit points, say %1(x0) , %2(x0). Therefore, there exist two
sequences of natural numbers n1

k , n
2
k such that lim

k→∞
%ni

k
(x0) = %i(x0), i = 1, 2. By performing the

same arguments as in the first paragraph, we find that lim
k→∞

Lni
k
( f0; x0) = f0(%i(x0)) (i = 1, 2).

But, by assumption, lim
n→∞

Ln( f0; x) exists for every x ∈ [0, 1]; hence f (%1(x0)) = f (%2(x0)). Since

f0 is strictly monotone %1(x0) = %2(x0), a contradiction. Therefore if lim
n→∞

Ln( f0; x) exist, then
lim
n→∞

%n(x) = lim
n→∞

(p1(x) + · · · + pn(x))/n also exists.
�

Proposition 7.7. Suppose that p1(x) ∈ C[0, 1] is strictly increasing, and all the pi(x) (i ≥ 2) are
determined recursively by (7.8), or equivalently for all n, γp

n (x) = γ
p
n+1(x). Then

(i) if p1(x) ∈ C∞[0, 1], the roots at zero of all the pi(x), i ≥ 1 have the same multiplicities, i.e.
p(k)

i (0) = 0, 0 ≤ k ≤ m − 1, p(m)
i (0) , 0, i ≥ 1.

(ii) lim
n→∞

n∑
k=1

pk(x)/n = x.

Proof. First we prove that the roots at zero of all the pi(x), i ≥ 1 have the same multiplicities.
We proceed by induction on n. By assumption γp

n (x) = γ
p
1 (x) = p1(x). For n = 2, set p1(x) =

xmr1(x), p2(x) = xlr2(x),m, l ≥ 1, with r1(0) , 0, r2(0) , 0. Invoking (7.14), we find that

xmr1(x) = xm+lr1(x)r2(x) + p1(
1
2

)[xmr1(x) + xlr2(x) − 2xm+lr1(x)r2(x)]. (7.24)
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If m < l, dividing both sides of (7.24) by xm and then setting x = 0, we derive p1(1
2 ) = 1, a

contradiction, since by assumption p1(x) is strictly increasing. If m > l, dividing both sides of
(7.24) by xl and then setting x = 0, we derive p1(1

2 ) = 0, yielding yet another contradiction. Thus
m = l.

Now assume that pi(x) = xmri(x), 1 ≤ i ≤ n, with ri(0) , 0, and let pn+1(x) = xsrn+1(x) with
rn+1(0) , 0. Again since γp

n (x) = γ
p
n+1(x) = p1(x), it follows that

p1

(
1
n

)
bn,1(x) +

n∑

k=2

p1

(
k
n

)
bn,k(x)

= p1

(
1

n + 1

)
bn+1,1(x) +

n+1∑

k=2

p1

(
k

n + 1

)
bn+1,k(x). (7.25)

Therefore, by (2.4), (7.25) implies that there must exist suitable P(x),Q1(x),Q2(x) with P(0) ,
0,Qi(0) , 0, i = 1, 2 such that

p1(
1
n

)(xmr1(x) + · · · + xmrn(x)) + x2mP(x)

= p1(
1

n + 1
)(xmr1(x) + · · · + xmrn(x) + xsrn+1(x)) + x2mQ1(x) + xm+sQ2(x). (7.26)

If m < s, dividing both sides of (7.26) by xm and then setting x = 0, we derive p1(1
n ) = p1( 1

n+1 ),
a contradiction. If m > s, dividing both sides of (7.26) by xs and then setting x = 0, we derive
rn+1(0) = 0, yielding yet another contradiction. Thus m = s.

Again since γp
n (x) = p1(x)

γp
n (x) =

n∑

k=0

p1

(
k
n

)
bn,k(x) = Ln(p1; x). (7.27)

Therefore, taking the limit of both sides of (7.27), we get

p1(x) = lim
n→∞

γp
n (x) = L∞(p1; x). (7.28)

Since, by assumption, p1(x) is strictly increasing, it follows by the last part of Theorem 7.6 that
µ(x) := lim

n→∞
(p1(x) + · · · + pn(x)/n exists. Furthermore, again by Theorem 7.6

p1(x) = p1(µ(x)). (7.29)

Since p1(x) is strictly increasing, we conclude that µ(x) = x. �

Remark 7.8. Set p1(x) = x2. Then from (7.14), we can derive p2(x) =
3x2

2x2 + 1
. Similarly, by using

(7.8) recursively we can also derive p3(x) =
10x4 + 5x2

4x4 + 10x2 + 1
, p4(x) =

7x2(2x2 + 1)(4x4 + 10x2 + 1)
16x8 + 120x6 + 148x4 + 30x2 + 1

.

In general, if p1(x) = x2, we have the recursive formula

pn+1(x) =

n∑
k=0

(
k2/n2 − k2/(n + 1)2

)
bn,k(x)

n∑
k=0

(
(k + 1)2/(n + 1)2 − k2/(n + 1)2) bn,k(x)

=

(2n + 1)
n∑

k=0
k2/n2bn,k(x)

n∑
k=0

(2k + 1)bn,k(x)
=

(2n + 1)x2

1 + 2
n∑

k=1
pk(x)

, (7.30)
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where the first equality follows by (7.8), and the third equality follows by (7.27) and by equation
(2.3) with k = 1. Moreover by Proposition 7.7 lim

n→∞
(p1(x) + · · · + pn(x))/n = x. Combining this

result with (7.30), we conclude that lim
n→∞

pn(x) = x.

Corollary 7.9. i) Suppose that p1(x) ∈ C[0, 1] is strictly increasing and all the pi(x) (i ≥ 2) are
determined recursively by (7.8), or equivalently for all n, γp

n (x) = γ
p
n+1(x). If f ∈ C[0, 1], then

lim
n→∞

Ln( f ; x) = f (x) uniformly on [0, 1].
ii) Given any p(x) ∈ C[0, 1] such that p(x) is strictly increasing and p(0) = 0, p(1) = 1, there

exist Lototsky-Bernstein operators Ln( f ; x) that fix 1 and p(x), and lim
n→∞

Ln( f ; x) = f (x) uniformly
on [0, 1] for any f ∈ C[0, 1].

Proof. i) is straightforward by Proposition 7.7 (ii) and Korovkin’s Theorem (see [21]). ii) follows
by setting p1(x) = p(x) and computing pi(x) (i ≥ 2) recursively using (7.8). �

Proposition 7.10. Let r(x) ∈ C[0, 1] be increasing and convex in [0, 1] with r(0) = 0, r(1) = 1.
Suppose that all the pi(x) = r(x), i ≥ 1. Then

γp
n (x) ≥ γp

n+1(x). (7.31)

Moreover, γp
n (x) = γ

p
n+1(x) for all n if and only if r(x) = x.

Proof. From the assumptions of the Proposition, the operators Ln( f ) are King-type operators [22],
i.e.

Ln( f ; x) =

n∑

k=0

f
(

k
n

) (
n
k

)
rk(x)(1 − r(x))n−k. (7.32)

By applying the same method as in [32], we can prove that for any convex function f

Ln( f ; x) ≥ Ln+1( f ; x). (7.33)

Let f be increasing and convex in [0, 1] with f (0) = 0, f (1) = 1. Since r(x) is increasing and
convex, it follows from Remark 3.2 and Remark 5.13 that both Ln( f ) and Ln+1( f ) are increasing
and convex on [0, 1]. Repeatedly using 7.33 and the positivity of Ln( f ), we have

Ln( f ) ≥ Ln+1( f )⇒ (Ln)2( f ) ≥ Ln+1(Ln( f )) ≥ (Ln+1)2( f )

· · · ⇒ (Ln)M( f ) ≥ (Ln+1)M( f ). (7.34)

Taking the limit of both sides of (7.34) as M → ∞, yields γp
n (x) ≥ γp

n+1(x).
If for all n, γp

n (x) = γ
p
n+1(x), then by Proposition 7.7 (ii), r(x) = x. �
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