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Abstract

Let K be a non-polar compact subset of C and µK be its equilibrium measure. Let µ be a unit Borel
measure supported on K . We prove that a Szegő condition in terms of the Radon–Nikodym derivative
of µ with respect to µK implies that

inf
n

∥Pn(·; µ)∥L2(C;µ)

Cap(K )n > 0.

We show that
∥Pn (·;µK )∥L2(C;µK )

Cap(K )n ≥ 1 for any compact non-polar set K . We also prove that under an

additional assumption, boundedness of the sequence
(

∥Pn (·;µK )∥L2(C;µK )
Cap(K )n

)
implies that K satisfies the

Parreau–Widom condition.
c⃝ 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Let µ be a unit Borel measure with an infinite compact support on C. We denote by Pn(z; µ)
the nth degree monic orthogonal polynomial associated with µ, i.e.,

∥Pn(·; µ)∥L2(C;µ) = inf
Q∈Pn

∥Q∥L2(C;µ) (1.1)

where Pn is the set of all nth degree monic (complex) polynomials and ∥ · ∥L2(C;µ) denotes
the L2 norm associated with µ.
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For a general treatment of logarithmic potential theory, see e.g. [13,15]. Let us denote
the logarithmic capacity by Cap(·). For a non-polar compact subset K of C, we denote the
equilibrium measure of K by µK . For the component of C \ K that contains ∞, we use ΩK .
By gΩK (z) := gΩK (z; ∞), we mean the Green function for the domain ΩK at infinity. If K is
a regular compact subset of C with respect to the Dirichlet problem, let

PW(K ) :=

∑
gΩK (cn)

where {cn}n is the set of critical points of gΩK counting multiplicity. If PW(K ) < ∞ then K
is called a Parreau–Widom set and ΩK is called a Parreau–Widom domain.

Let Wn(µ) :=
∥Pn (·;µ)∥L2(C;µ)

Cap(supp(µ))n where supp(·) denotes the support of µ. Since Cap(supp(µK)) =

Cap(K ) (see Lemma 1.2.7 in [17]) we use these two expressions interchangeably.
The Szegő theorem on Parreau–Widom sets is as follows [5]:

Theorem 1.1. Let K be a regular Parreau–Widom subset of R. Let µ be unit Borel measure
on R such that dµ = f (x)dx+dµs where dµs is the singular part with respect to the Lebesgue
measure and suppose that the support of µ, except possibly the isolated point masses, is equal
to K . Denote the set of isolated points of the support by {xk}. On condition that∑

k

gΩK (xk) < ∞

we have

lim sup
n→∞

Wn(µ) > 0 ⇐⇒

∫
K

log f (x) dµK (x) > −∞. (1.2)

The main result of the paper is a generalization of one half of the Szegő theorem. This
generalization is based on replacing the Szegő condition (the condition on the right hand side
of (1.2)) by another condition which was suggested in [4] (see Section 6) . We refer the reader
to [7,12,19] for the previous generalizations of the Szegő theorem. Our result reads as follows:

Theorem 1.2. Let K be a non-polar compact subset of C and let µ be a unit Borel
measure supported on K . Let µs denote the singular part of µ with respect to µK and h
be a non-negative measurable function on ∂ΩK such that

• dµ = h dµK + dµs .
• M :=

∫
log h dµK > −∞.

Then infn∈N(Wn(µ))2
≥ eM .

For a given compact infinite set K in C, the polynomial Tn,K (z) = zn
+ · · · satisfying

∥Tn,K ∥K = min{∥Qn∥K : Qn monic polynomial of degree n}

is called the nth Chebyshev polynomial for K where ∥ · ∥K is the sup norm on K .
For a non-polar compact set K ⊂ C, let

Mn,K := ∥Tn,K ∥K /Cap(K )n.

For a review of the recent results for these ratios we refer the reader to [8] and many basic
results regarding the asymptotics of L2 and L∞ extremal polynomials can be found in [16].

The following result is a generalization of Theorem 3 in [3]:
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Corollary 1.3. Let K be a non-polar compact subset of C. Then infn∈N Wn(µK ) ≥ 1. The
inequality is sharp: If K = T then dµK = dθ/(2π ) and Wn(µK ) = 1 for all n ∈ N.

Remark. We would like to draw the reader’s attention to the similarity between the general
results regarding the lower bounds of Wn(µK ) and Mn,K : It is well known that Mn,K ≥ 1, see
Theorem 5.5.4 in [13] and the equality is obtained for all n on the unit circle.

Let K be a non-polar compact subset of C. Following [11] (see p. 23–31), we say that
F is a multiplicative analytic (resp. meromorphic) function on ΩK if F is a multivalued
analytic function on ΩK with single valued absolute value |F(z)|. Each multiplicative analytic
function determines a unique character: Let us fix a base point O ∈ ΩK . Let FO be a single
valued branch of F at O and c be a closed curve in ΩK issuing from O . Then FO can be
analytically continued along c and the resulting function element at O is equal to ζF (c)FO

where |ζF (c)| = 1. Note that the value of ζF is the same for homotopic curves and it is
independent of the base point. Besides, if c1 and c2 are two closed curves issuing from O then
ζF (c1c2)FO = ζF (c1)ζF (c2)FO . Thus, ζF (·) is a character of the fundamental group Π (ΩK ).
We denote the character group by Π (ΩK )⋆.

As in the proof of Theorem 1.4 in [6] we need the function BΩK to prove Theorem 1.4.
We can find a local harmonic conjugate to −gΩK (z) for each z. Therefore, the equation
|BΩK (z)| = e−gΩK (z) determines a multiplicative analytic function on ΩK up to a multiplicative
constant. We fix it by requiring

BΩK (z) = Cap(K )/z + O(|z|−2) (1.3)

near ∞.
Let c be a rectifiable curve on ΩK such that c winds once around L ⊂ K and around

no other points of K , then the change of phase of BΩK around c is given by e−2π iµK (L), see
Theorem 2.7 in [8]. Using this we can determine ζBΩK

(·). Let us denote the character of Bn
ΩK

by χn
K for simplicity.

Multiplication of two characters ζ1 and ζ2 in Π (ΩK )⋆ is defined as pointwise multiplication:
(ζ1ζ2)(c) = ζ1(c)ζ2(c). This makes Π (ΩK )⋆ an abelian group. Let us equip Π (ΩK ) with
discrete topology. Then Π (ΩK )⋆ is a compact metrizable space with the topology of pointwise
convergence since Π (ΩK ) is countable. The map T ζ := χK ζ is ergodic with respect to the Haar
measure if and only if {χn

K }
∞
n=−∞

is dense in Π (ΩK )⋆, see Theorem 1.9 in [18]. If {χn
K }

∞
n=−∞

is dense then {χn
K }

∞

n=0 is also dense, see p. 132 in [18]. This fact is used in the proof of
Theorem 1.4.

When K ⊂ R, {χn
K }

∞
n=−∞

is dense in Π (ΩK )∗ if and only if the following condition is
satisfied, see Section 1 in [6]: Suppose that for each decomposition K = E1 ∪ · · · ∪ El into
closed disjoint sets and rational numbers {q j }

l−1
j=1, not all of which are zero, we have

l−1∑
j=1

q jµK (E j ) ̸= 0 (mod1). (1.4)

There are examples of Cantor sets K (γ ) such that Wn(µK (γ )) → ∞ as n → ∞, see Example
5.3, [4]. We emphasize that K (γ ) does not satisfy (1.4), see Section 4 in [2]. The next result
implies Theorem 1.4 in [6] in view of (2.10) and the proof is very similar.

Theorem 1.4. Let K be a regular compact subset of C. Suppose that {χn
K }

∞
n=−∞

is dense in
Π (ΩK )∗. If (Wn(µK ))∞n=1 is bounded then K is a Parreau–Widom set.
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As a corollary of Theorem 1.4 we obtain the following result which complements
Corollary 1.3 but the scope of Corollary 1.5 is much more limited. The proof of one of the
implications is quite trivial and the inverse implication follows from Theorem 1.4 in [8] and
Theorem 1.4.

Corollary 1.5. Let K be a regular compact subset of R and {χn
K }

∞
n=−∞

be dense in Π (ΩK )∗.
Then (Wn(µK ))∞n=1 is bounded if and only if (Mn,K )∞n=1 is bounded.

In Section 2, we prove the new results stated in the introduction.

2. Proofs

Proof of Theorem 1.2. Let Pn(z) :=
∏n

j=1(z − τ j ). Then(∫
|Pn|

2h dµK +

∫
|Pn|

2dµs

)1/2

≥

(∫
|Pn|

2h dµK

)1/2

(2.1)

= e
log

((∫
|Pn |

2h dµK

)1/2
)

(2.2)

≥ e
∫

log (|Pn |h1/2) dµK (2.3)

= e
1
2

∫
log h dµK e

∫ ∑n
j=1 log |z−τ j |dµK (z) (2.4)

≥ e
1
2

∫
log h dµK Cap(K)n. (2.5)

Here, (2.3) follows from Jensen’s inequality and (2.5) holds since∫
log |z − τ | dµK (z) ≥ log Cap(K )

for all τ ∈ C by Frostman’s theorem, see Theorem 3.3.4 (a) in [13]. Note that Cap(K ) =

Cap(supp(µ)) by our assumptions. We obtain the desired inequality by squaring the left hand
side of (2.1) and (2.5). □

Proof of Corollary 1.3. We obtain infn∈N Wn(µK ) ≥ 1 by letting h ≡ 1 and µs = 0 in
Theorem 1.2.

The proof of the second part of the corollary is quite straightforward. Since |z| = 1 on the
unit circle, we get

∫
|z|2ndµT(z) = 1 for all n. In addition, Pn(z; µT) = zn and Cap(T) = 1.

Thus Wn(µT) = 1 for all n ∈ N. □

We denote by Hq (ΩK , ζ ) the multiplicative analytic functions F whose character is ζ for
which |F |

q has a harmonic majorant and H∞(ΩK , ζ ) means |F | is bounded. It is not difficult
to see that, 1 ≤ p ≤ q ≤ ∞ implies that Hq (ΩK ) ⊂ Hp(ΩK ).

The following characterization of the Parreau–Widom condition is due to Widom (see
Theorem 1 in [20] and also Section 2B, in Ch. 5 in [11]):

Theorem 2.1. Let K be a regular compact subset of C. Then ΩK is a Parreau–Widom domain
if and only if H2(ΩK , ζ ) ̸= {0} for all ζ ∈ Π (ΩK )∗.

In the proof of Theorem 1.4 we use ideas from Theorem 1.4 in [6] and from the proof
of Theorem in 5A, Ch. 5 (the main arguments of the proof can also be found in Theorem 3
in [20].) in [11].
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Proof of Theorem 1.4. Let M := supn Wn(µK ) and χ ∈ Π (ΩK )∗. Then there is a subsequence

n j → ∞ such that χ
n j
K → χ . Let F j (z) :=

Pn j (z;µK )B
n j
ΩK

(z)

Cap(K )n j . For each j , F j ∈ H∞(ΩK ) because
by the maximum principle

∥F j∥ΩK ≤ sup
z→∂ΩK

|F j (z)| = sup
z∈∂ΩK

|Pn j (z; µK )|Cap(K )−n j .

Hence we also have F j ∈ H2(ΩK ).
We denote the harmonic measure for ΩK at z by wΩK (z; ·). The harmonic measure

wΩK (∞; ·) at infinity is µK , see Theorem 4.3.14, [13]. If g is a Borel measurable function
on ∂ΩK such that

HΩK (z; g) :=

∫
∂ΩK

g dwΩK (z; ·) (2.6)

is integrable for some z ∈ ΩK then the integral in (2.6) is finite for all z ∈ ΩK , see Appendix
A.3 in [15]. In this case HΩK (z; g) is a harmonic function on ΩK and it is called the solution
of the Dirichlet problem corresponding to g and ΩK . If additionally, g is continuous on ∂ΩK
and K is regular with respect to the Dirichlet problem then limz→u HΩK (z; g) = g(u) for all
u ∈ ∂ΩK , see Corollary 4.1.8 in [13]. Hence if g is continuous and K is regular then HΩK (·; g)
can be extended continuously to ΩK . We denote the extension by HΩK

(z; g).
We say that γ : [0, 1] → C is a Jordan curve if it is simple and closed. A rectifiable Jordan

curve γ is C2+ if γ is C2 and the second derivative of γ satisfies a Lipschitz condition with
some positive exponent.

We call (Kn)∞n=1 a C2+ exhaustion of ΩK if (Kn)∞n=1 is increasing sequence of domains such
that

(a) ∂Kn consists of finitely many non-intersecting C2+ Jordan curves.
(b) Kn ⊂ Kn+1.
(c) ∪Kn = ΩK .

We can find a C2+ exhaustion for ΩK , see VII. 4.4 in [9] or Ch.2, 12D in [1]. Let (Kn)∞n=1
be a C2+ exhaustion of ΩK . Then wKn (z; ·) → wΩK (z; ·) in the weak-star sense (see Theorem
10.9 in Section 21.11 in [10] for the proof).

For a multivalued function F ∈ H2(ΩK ) we denote the least harmonic majorant for |F |
2 by

LHM(|F |
2)(·). The function |F |

2 is subharmonic. Then as a consequence of Harnack’s theorem
(see Theorem 1.3.9 in [13]), we get (see e.g. Eq. (2.1.2) in [14])

LHM(|F |
2)(z) = lim

n→∞

∫
|F |

2dwKn (z; ·).

In addition if |F |
2 can be extended continuously to ΩK then LHM(|F |

2)(z) = HΩK
(z; |F |

2).
since dwKn (z; ·) → dwΩK (z; ·).

Note that |F j |
2 can be extended continuously to ΩK since K is regular. Thus,

LHM(|F j |
2)(∞) =

∫
|Pn j (z; µK )|2 dµK (z)

Cap(K )2n j
= (Wn j (µK ))2

≤ M2. (2.7)

Since LHM(|F j |
2)(·) is a positive harmonic function on ΩK and the inequality (2.7) holds,

in view of Harnack’s inequality, (LHM(|F j |
2)(·))∞j=1 is uniformly bounded above by a positive

number on each compact subset of ΩK . By standard compactness argument based on Montel’s
theorem there is a convergent subsequence (F j(k))∞k=1. Let f be the limit of this subsequence.
Then ζ f (c) = limk→∞ ζF j(k) (c) = χ (c) for each closed curve c in ΩK issuing from O .
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Note that |F j(k)(∞)| = 1 for all k by (1.3). Therefore

| f (∞)| = 1. (2.8)

It remains to show that | f |
2 has a harmonic majorant. Note that |F j(k)(z)| → | f (z)|

uniformly on each compact subset of ΩK . Fix a positive integer n. Let ϵ > 0. Then there
is a number k0 such that

||F j(k)(z)|2 − | f (z)|2| < ϵ (2.9)

is satisfied on ∂Kn for all k ≥ k0.
Let us denote the least harmonic majorant of a function G restricted to a region E by

LHME (G)(·). Then by (2.9), for each k ≥ k0,

LHMKn (| f |
2)(z) ≤ LHMKn (|F j(k)|

2
+ ϵ)(z) ≤ LHMKn (|F j(k)|

2)(z) + ϵ

for z ∈ Kn .
Clearly, LHMKn (|F j(k)|

2)(z) ≤ LHM(|F j(k)|
2)(z). Since ϵ is arbitrary, we get

LHMKn (| f |
2)(z) ≤ lim sup

k→∞

LHM(|F j(k)|
2)(z).

By (2.7) and Harnack’s inequality, there is a constant C(z) depending only on z such
that lim supk→∞ LHM(|F j(k)|

2)(z) ≤ C(z)M2. Hence LHMKn (| f |
2)(z) ≤ C(z)M2. Since n is

arbitrary, LHMKr (| f |
2)(z) ≤ C(z)M2 for all r ∈ N.

For any fixed z ∈ ΩK , let l be an integer such that z ∈ Kl . Then (LHMKn (| f |
2)(z))∞n=l

is an increasing sequence bounded by C(z)M2. Let H (z) := limn→∞(LHMKn (| f |
2)(z)). Then

by Harnack’s theorem, H is a harmonic function on ΩK . Clearly LHM(| f |
2)(z) ≤ H (z) ≤

C(z)M2. Thus f is in H2(ΩK , χ). It is also non-zero by (2.8). Since χ is arbitrary, this proves
that ΩK is a Parreau–Widom domain by Theorem 2.1. □

Proof of Corollary 1.5. Suppose that (Wn(µK ))∞n=1 is bounded. Then by Theorem 1.4, ΩK

is Parreau–Widom and by Theorem 1.4 in [8], (Mn,K )∞n=1 is bounded. This proves the first
implication.

Suppose that (Mn,K )∞n=1 is bounded. Note that

∥Pn(·; µK )∥L2(C;µK ) ≤ ∥Tn,K ∥L2(C;µK ) ≤ ∥Tn,K ∥K . (2.10)

The inequality on the left in (2.10) follows from (1.1). Thus, Wn(µK ) ≤ Mn(K ) and this
implies that (Wn(µK ))∞n=1 is also bounded. □
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