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Let ðO;A; P Þ be a measurable space and L � A a sub-s-lattice of the s-algebra
A: For X 2 L1ðO;A; P Þ we denote by PLX the set of conditional 1-mean (or best

approximants) of X given L1ðLÞ (the set of all L-measurable and integrable

functions). In this paper, we obtain characterizations of the elements in PLX ; similar

to those obtained by Landers and Rogge for conditional s-means with 15s51:
Moreover, using these characterizations we can extend the operator PL to a bigger

space L0ðO;A; P Þ: When, in certain sense, Ln goes to L1; we will be able to prove

theorems about convergence and we will obtain bounds for the maximal function

jsupn PLnX j: A sharper characterization of conditional 1-means for certain particular

s-lattice was proved in previous papers. In the last section of this paper we generalize

those results to all totally ordered s-lattices. # 2002 Elsevier Science (USA)

Key Words: best approximants; maximal inequalities; a.e. convergence.
1. INTRODUCTION AND NOTATION

Let ðO;A; P Þ be a probability space and 05s51: As is usual, we denote
by MðO;A; P Þ the set of the equivalence classes of A-measurable functions
and by LsðO;A; P Þ the classical Lebesgue spaces. Moreover, the space
L0ðO;A; P Þ is defined as the system of all equivalence classes of A-
measurable functions that are finite a.e.

LetL � A be a s-lattice, that is,L is closed under countable unions and
intersections and |;O 2 L: By %LL we denote the dual s-lattice of L; i.e.,
%LL :¼ fD :O=D 2 Lg: We say that X :O ! R is L-measurable if fX > ag 2
L for every a 2 R: As in [7] we let LsðLÞ denote the system of all equivalence
classes in LsðO;A; P Þ containing a L-measurable function.
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Let L be a s-lattice and X 2 LsðO;A; P Þ: An element Y 2 LsðLÞ is called a
conditional s-mean of X given the s-lattice L if

jjX � Y jjs4jjX � Zjjs for every Z 2 LsðLÞ:

It is well known, see [6], that for s51 there exists a conditional s-mean for
every X 2 Ls: Moreover it is unique for s > 1: But for s ¼ 1 the uniqueness
can fail. In any case we let Ps

LX denote the set of all conditional s-means.
Henceforth, for simplicity, we write PLX instead of P 1

LX :
In several papers Landers and Rogge studied conditional means, see for

example [6–9]. They studied the above situation in more general settings, for
example in [6, 8, 9]. In [7] Landers and Rogge established results about
characterization, a.e. convergence, and boundedness of maximal functions
for conditional s-means with 15s51: In the present paper we are
interested in considering the case s ¼ 1: The non-uniqueness of conditional
1-means presents an additional difficulty. However, as we will see, the
conditional 1-mean has advantages over any other s-mean. For example, we
can define the conditional 1-mean for any measurable finite almost
everywhere function.

Conditional 1-means were also studied for particular s-lattices, see for
example [2–4, 10, 11]. We denote by Bn the Borel s-algebra of ½0; 1
n and by
Ln the s-lattice defined by the condition C 2 Ln iff x 2 C and x4y imply
y 2 C; (x4y means that xi4yi; i ¼ 1; . . . ; n with xi and yi denoting the
coordinates of x and y; respectively). When n ¼ 1 by we write B and L

instead of B1 and L1 for short. In [4] Huotari, Meyerowitz and Sheard gave
a sharper characterization of conditional 1-means for the measurable space
ð½0; 1
; dxÞ; where dx denotes the Lebesgue measure, and for the s-lattice L: In
the last section of this paper we prove a generalization of this characteriza-
tion to an arbitrary probability measurable space and a totally ordered s-
lattice. In [11, p. 185] Marano and Quesada generalized the previous result
obtained in [4] to LF spaces. However, the underlying space and the s-lattice
considered in that paper are the same as the ones considered in [4].

We want to point out that the techniques in this paper are different from
the ones used in the previous papers already mentioned. Moreover, they are
elementary. For example, we do not use arguments about approximate
continuity, as was done in [4, 11]. Finally, we want to mention that
conditional s-means have applications to statistical inference, see for
example [1] and the most recent paper [5].

The organization of the paper is as follows. In Section 2 we prove a
characterization of conditional 1-mean. As a corollary of this we obtain
previous results of Shintani and Ando [12] about characterization of the
conditional 1-mean given a s-algebra. In Section 3 we extend the operator
PL to the space L0ðO;A; P Þ and we obtain results about the structure of the
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set PLX : We also prove results about a.e. convergence and obtain
boundedness for certain maximal functions in Section 4. Except the last
one result, these are immediate consequences of Proposition 3.5, which is a
corollary of our characterization given in Theorem 2.1 and the analogous
property for the operator PL : L1 ! L1: In Section 5 we consider a totally
ordered s-lattice and we extend previous results of Huotari, Meyerowitz and
Sheard about monotone approximation.

2. A CHARACTERIZATION OF PLX

The aim of this section is to prove a characterization of the conditional
1-mean similar to the one proved in [7], for s > 1; see for example
Theorem 3.4 and Corollary 3.5. Here the main difficulty to overcome is the
non-uniqueness which was important in the arguments used in [7, Theorem
3.4]. The main result of this section is the following theorem.

Theorem 2.1 Let X 2 L1ðO;A; P Þ and Y 2 L1ðLÞ: The following facts are

equivalent:

(1) Y 2 PLX :
(2) For every Z 2 L1ðLÞ we haveZ

fX=Y g
sgnðX � Y ÞðZ � Y Þ dP4

Z
X¼Y

jZ � Y j dP :

(3) For every a 2 R; C 2 L and D 2 %LL we get (a)P ðfX4 Y g \ C\
fY5agÞ5P ðfX > Y g \ C \ fY5agÞ;
(b)P ðfX5Y g \ D\ fY > agÞ5P ðfX5Y g \ D \ fY > agÞ:

(4) For every a 2 R; D 2 %LL and C 2 L; (a)P ðfX5ag \ C \ fY5agÞ5
1
2
P ðC \ fY5agÞ; (b)P ðfX > ag \ D \ fY > agÞ51

2
P ðD\ fY > agÞ:

(5) For every C 2 L; D 2 %LL and B 2 B we have (a)P ðfX4Y g \ C\
Y �1ðBÞÞ51

2
P ðC \ Y �1ðBÞÞ; (b)P ðfX5Y g \ D\ Y �1ðBÞÞ51

2
P ðD \ Y �1ðBÞÞ:

(6) For every B-measurable function f :R ! ½0;1Þ and Z 2 L1ðLÞ:Z
fX=Y g

sgnðX � Y ÞZfðY Þ dP4
Z
fX¼Y g

jZjfðY Þ dP ;

if the integral exists.

The structure of the proof is the following: ð1Þ , ð2Þ ) ð3Þ , ð4Þ and
finally ð3Þ ) ð5Þ ) ð6Þ ) ð3Þ ) ð2Þ:
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ð1Þ , ð2Þ: This equivalence is a classical result about best approximants.
For completness sake we include the short proof of it. We consider the
following function:

jðtÞ :¼
Z

jX � ðY þ tðY � ZÞÞj dP :

We observe that for 04t41 we have Y þ tðY � ZÞ 2 L1ðLÞ and that
j : ½0; 1
 ! is a convex function. Therefore, Y 2 PLX iff j has a
minimum at 0, for every Z 2 L1ðLÞ: Hence Y 2 PLX iff jþð0Þ50
(where jþ denotes the right derivative of j). This implies that (1) is
equivalent to (2).

ð2Þ ) ð3Þ: It is sufficient to prove inequality (b) because inequality (a) is a
consequence of applying (b) to the functions �X ; � Y and the lattice %LL
(note that PLX ¼ �P %LLð�X Þ). Let n 2; An :¼ fY > aþ 1=ng and A :¼ fY >
ag ¼

S1
n¼1 An: Now for D 2 %LL we define the following functions:

ZnðwÞ :¼

Y ðwÞ if w =2 A \ D;

a if w 2 ðA � AnÞ \ D;

Y ðwÞ � 1
n if w 2 An \ D:

8><
>:

It is easy to check that Zn 2 L1ðLÞ: We denote by E; F ; G and H the sets
fX=Y g \ An \ D; fX=Y g \ ðA=AnÞ \ D; fX ¼ Y g \ An \ D and fX ¼ Y g
\ðA=AnÞ \ D; respectively. Then applying (2) to Zn we obtain

�
1

n

Z
E
sgnðX � Y Þ dP þ

Z
F
sgnðX � Y Þða� Y Þ dP4

1

n

Z
G
dP þ

Z
H
ja� Y j dP :

We have that �14nða� Y ðwÞÞ50; for every w 2 A � An and P ðA=AnÞ ! 0;
for n ! 1: Therefore, multiplying the above inequality by n and taking the
limit as n ! 1 we get the inequality

�
Z
fX=Y g\A\D

sgnðX � Y Þ dP4
Z
fX¼Y g\A\D

dP :

So this inequality implies the inequality in (3)(b).
ð3Þ , ð4Þ: We observe that inequalities (3)(a) and (b) are trivially

equivalent to the following inequalities:

P ðfX4Y g \ C \ fY5agÞ51
2
P ðC \ fY5agÞ ð2:1Þ

and

P ðfX5Y g \ D \ fY > agÞ51
2
P ðD \ fY > agÞ: ð2:2Þ
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Clearly (2.1) and (2.2) imply (4)(a) and (b), respectively. Now consider the
reverse implications. We assume that X and Y satisfy (4)(a) and (b). Let
D 2 %LL; a 2 R and n 2 N: Then, as a consequence of (4)(b) we get

P fX > ag \ D\ Y4aþ
1

n

� �
\ fY > ag

	 


5
1

2
P D \ a5Y4aþ

1

n

� �	 

:

This implies

P X > Y �
1

n

� �
\ D\ a5Y4aþ

1

n

� �	 


5
1

2
P D \ a5Y4aþ

1

n

� �	 

:

By applying the above inequality to aþ k=n with k 2 N[ f0g instead of a;
we obtain for Ak :¼ faþ k=n5Y4aþ ðk þ 1Þ=ng;

P X > Y �
1

n

� �
\ D \ Ak

	 

5

1

2
P ðD \ AkÞ:

Now since fY > ag ¼
S

k50 Ak ; we get

P X > Y �
1

n

� �
\ D\ fa5Y g

	 

5

1

2
P ðD \ fa5Y gÞ:

Taking the limit as n ! 1 we obtain (2.2). Hence, we have proved that
(4)(b) implies (2.2) for everyL: Applying this fact to the lattice %LL and to the
functions �X ; � Y and �a we get (2.1).

ð4Þ ) ð5Þ: Let a;b 2 R with a5b: Since C \ fb5Y g 2 L; from (4)(a) we
obtain

P ðfX4Y g \ C \ fb5Y5agÞ51
2
P ðC \ fb5Y5agÞ

for every C 2 L; and a;b 2 R: Let B 2 B: We consider two measures over
B : P1ðBÞ :¼ P ðfX4Y g \ C \ Y �1ðBÞÞ and P2ðBÞ :¼ 1=2P ðC \ Y �1ðBÞÞ: From
the last inequality we have that P1ðBÞ5P2ðBÞ; where B is an interval of R:
Therefore, the inequality holds for every B 2 and thus we obtain (5)(a). By
repeating the arguments already used we obtain (5)(b).

ð5Þ ) ð6Þ: We can assume that f is a simple function, otherwise f is the
uniform and non-decreasing limit of simple, positive and B-measurable
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functions. We observe that from (5)(a) we obtainZ
fX=Y g

sgnðX � Y Þ1C1BðY Þ dP4
Z
fX¼Y g

1C1BðY Þ dP

for every C 2 L and B 2 B: Therefore, we getZ
fX=Y g

sgnðX � Y Þ1CfðY Þ dP4
Z
fX¼Y g

1CfðY Þ dP ð2:3Þ

for every C 2 L: Let Z 2 L1ðLÞ: We suppose that Z is a simple and positive
function. Then Z ¼

Pn
i¼1 ai1Ci ; with Ci 2 L; C1 � � � � � Cn and ai50: So

from (2.3) we obtainZ
fX=Y g

sgnðX � Y ÞZfðY Þ dP4
Z
fX¼Y g

ZfðY Þ dP : ð2:4Þ

Since every positive Z 2 L1ðLÞ is a non-decreasing limit of simple, positive
and L-measurable functions, we have (2.4) for every Z50 and Z 2 L1ðLÞ:

Let Z40 be a L-measurable function. If we apply (2.4) to �X ; �Y ; �Z;
%LL and f0ðxÞ ¼ fð�xÞ we deduceZ

fX=Y g
sgnðX � Y ÞZfðY Þ dP4

Z
fX¼Y g

jZjfðY Þ dP : ð2:5Þ

Now, let Z 2 L1ðLÞ be such that the integrals in (6) exist. We put
Z ¼ Zþ � Z�: Since 04Zþ 2 L1ðLÞ and 05� Z� 2 L1ðLÞ from (2.4) and
(2.5) we obtainZ

fX=Y g
sgnðX � Y ÞZfðY Þ dP4

Z
fX=Y g

sgnðX � Y ÞZþfðY Þ dP

þ
Z
fX=Y g

sgnðX � Y Þð�Z�ÞfðY Þ dP

4
Z
fX¼Y g

ZþfðY Þ dP

þ
Z
fX¼Y g

jZ�jfðY Þ dP

¼
Z
fX¼Y g

jZjfðY Þ dP :

So (6) is proved.
ð6Þ ) ð3Þ: We obtain immediately (3)(a) putting f ¼ 1ð�1;aÞ and Z ¼ 1C :

Inequality (3)(b) is obtained in a similar way.
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ð3Þ ) ð2Þ: Let Z 2 L1ðLÞ: For n 2 N and k 2 Z we define the set Ak;n :¼
fk=n5Y4ðk þ 1Þ=ng and for m 2 nN (i.e. m is a multiple of n) and j 2 Z we
put Bj;m :¼ fZ5j=mg: Moreover, we define Ej;m :¼ Bj;m � Bð j�1Þ;m and the
following functions:

Yn :¼
X1

k¼�1

k
n
1Ak;n and Zm :¼

X1
j¼�1

j
m
1Ej;m :

We have that Yn;Zm 2 L1ðLÞ and Yn ! Y as n ! 1 uniformly and Zm ! Z
as m ! 1 uniformly.

Fix n; k;m and let jn :¼ km=n ð jn 2 ZÞ: We have the following equality:

ðYn � ZmÞ1Ak;n1Bjn ;m
¼

1

m

Xjn�1

j¼�1

1Bj;m

 !
1Ak;n1Bjn ;m

: ð2:6Þ

Now putting D ¼ Bj;m \ fY4ðk þ 1Þ=ng and a ¼ k=n we obtain from
(3)(b)

P ðfX5Y g \ Bj;m \ Ak;nÞ5P ðfX5Y g \ Bj;m \ Ak;nÞ;

or equivalently

�
Z
fX=Y g

sgnðX � Y Þ1Bj;m1Ak;n dP4
Z
fX¼Y g

1Bj;m1Ak;n dP :

Now multiplying by m�1 and summing over j5jn we obtain from (2.6)

�
Z
fX=Y g

sgnðX � Y ÞðYn � ZmÞ1Ak;n1fZ5Yng dP

4
Z
fX¼Y g

ðYn � ZmÞ1Ak;n1fZ5Yng dP :

Taking the limit as m ! 1 we get

Z
fX=Y g

sgnðX � Y ÞðZ � YnÞ1Ak;n1fZ5Yng dP4
Z
fX¼Y g

ðYn � ZÞ1Ak;n1fZ5Yng dP :

Summing over k 2 Z we have

Z
fX=Y g

sgnðX � Y ÞðZ � YnÞ1fZ5Yng dP4
Z
fX¼Y g

ðYn � ZÞ1fZ5Yng dP : ð2:7Þ
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Since 1fZ5Yng ! 1fZ5Y g a.e. when n ! 1 we obtain from (2.7)Z
fX=Y g

sgnðX � Y ÞðZ � Y Þ1fZ5Y g dP4
Z
fX¼Y g

ðY � ZÞ1fZ5Y g dP : ð2:8Þ

Hence, we have shown that for every s-lattice the inequality in (3)(b)
implies (2.8). We can apply this fact to the lattice %LL and to the functions
�X ;�Y and �Z: Therefore, we getZ

fX=Y g
sgnðX � Y ÞðZ � Y Þ1fZ>Y g dP4

Z
fX¼Y g

ðZ � Y Þ1fZ>Y g dP : ð2:9Þ

Now (2.8) and (2.9) imply (2). ]

We finish this section with some consequences of Theorem 2.1. WhenL is
a s-algebra, a characterization of the conditional 1-mean was obtained by
Shintani and Ando [12, Theorem 2, Corollary 3]. We can get this
characterization as a consequence of our Theorem 2.1. As is usual we
denote by EL the conditional expectation operator EL : L1ðO;A; P Þ !
L1ðO;A; P Þ which is defined, for X 2 L1ðO;A; P Þ; by the following two
conditions: (i) ELX is a L-measurable function and (ii) for every C 2 L we
have Z

C
ELX dP ¼

Z
C
X dP : ð2:10Þ

It is well known that for X 2 L2ðO;A; P Þ; ELX is the conditional 2-mean of
X : The mentioned result of Shintani and Ando is the following.

Corollary 2.2. Let L be a s-algebra and let X 2 L1ðO;A; P Þ and Y 2
L1ðLÞ: Then Y 2 PLX iff the following inequalities holds:

ELðfX4Y gÞ :¼ ELð1fX4Y gÞ51
2
;

ELðfX5Y gÞ :¼ ELð1fX5Y gÞ51
2
: ð2:11Þ

Proof. We use inequalities (2.1) and (2.2), which are equivalent to all
items in Theorem 2.1. Since L is a s-algebra, (2.1) and (2.2) are equivalent
to

P ðfX4Y g \ CÞ51
2
P ðCÞ;

P ðfX5Y g \ CÞ51
2
P ðCÞ ð2:12Þ

for every C 2 L: The ‘‘if’’ part of the corollary is obtained by integrating
inequalities (2.11) over C and using equality (2.10). For the ‘‘only if’’ part,
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we suppose that (2.11) is not true. We can also assume that there exists a L
measurable set C with P ðCÞ > 0 such that for every o 2 C;

ELðfX4Y gÞðoÞ51
2
:

Now, integrating this inequality over C and using (2.10) we obtain P ðfX
4Y g \ CÞ51=2P ðCÞ: This contradicts (2.12). ]

The following is an immediate consequence of Corollary 2.2.

Corollary 2.3. Let L be a s-algebra and let X 2 L1ðO;A; P Þ and

Y 2 L1ðLÞ: Suppose that Y14Y4Y2; where Y1; Y2 2 PLX : Then Y 2 PLX :

3. EXTENSION OF THE OPERATOR PL

In this section we will extend the operator PL to the space L0ðO;A; P Þ:We
recall that in [7] Landers and Rogge extended the operator PL

s : Ls ! Ls to
the space Ls�1: They used a density argument. More precisely, they took a
function X 2 Ls�1 bounded from below by a function in Ls and then they
defined PL

s X :¼ limn2N PL
s ðX ^ nÞ: If X 2 Ls is an arbitrary function then

X _ n is bounded from below by a function in Ls: As consequence of all this,
they could define PL

s X :¼ limn2N PL
s ðX _ nÞ: This technique is not appro-

priate for the case s ¼ 1 since the operator PL is set valued. However, we
can use Theorem 2.1 for our objective.

Definition 3.1. Let L be a s-lattice and X 2 L0ðO;A; P Þ: Then
Y 2 *PPLX iff Y is a L-measurable function and satisfies for every a 2 R;
C 2 L and D 2 %LL

(1) P ðfX5ag \ C \ fY5agÞ51
2
P ðC \ fY5agÞ;

(2) P ðfX > ag \ D \ fY > agÞ51
2
P ðD \ fY > agÞ:

Remark. In Theorem 3.4 we will prove that for every X 2 L0ðO;A; P Þ the
conditional 1-mean always exists (probably it is non-unique). Notice that
the proof of Theorem 2.1 is still valid if we change X 2 L1ðO;A; P Þ to X 2
L0ðO;A; P Þ: (The statement of item (2) should be modified adding to the
conditions the existence of the integral.) Also Corollaries 2.2 and 2.3 remain
true when L is a s-algebra. Throughout the rest of this paper we will use
these extended version of Theorem 2.1, Corollaries 2.2 and 2.3.

Now note that if X 2 L1ðO;A; P Þ then PLX ¼ *PPLX : This is an immediate
consequence of Theorem 2.1 and the following theorem.
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Theorem 3.2. Let X 2 L0ðO;A; P Þ and Y 2 *PPLX : Then

(1) P ðfjY j > agÞ42P ðfjX j > agÞ; for every a > 0:
(2) If X 2 LsðO;A; P Þ; for s50; then Y 2 LsðLÞ:
(3) In particular, if X 2 L1ðO;A; P Þ then Y 2 L1ðLÞ: Therefore by

Theorem (2.1) Y is a conditional 1-mean.

Proof. Property (1) is an immediate consequence of Definition 3.1
applied to C ¼ D ¼ O; a and �a; with a > 0: Property (2) is easily obtained
from (1) for s > 0 by using the equality

Z
O
jZjs dP ¼ s

Z 1

0

as�1P ðfjZj > ag da for every Z 2 MðO;A; P Þ; ð3:1Þ

and for s ¼ 0; it follows from the equality fjY j ¼ 1g ¼
T

n2NfjY j > ng: ]

As a consequence of (3), we may write PLX for every X 2 L0ðO;A; P Þ
instead of *PPLX : In the rest of this section, we prove some properties of the
extended operator PL:

Lemma 3.3. Let Xn 2 L0ðO;A; P Þ be a sequence of functions with Xn "
X 2 L0ðO;A; P Þ ðXn # X 2 L0ðO;A; P ÞÞ: Let Yn 2 PLXn be such that Yn " Y
(Yn # Y ). Then Y 2 PLX :

Proof. We will establish the increasing case. The decreasing case runs
similarly. The function Y is obviously L-measurable. Now, let us prove that
Y satisfies (1) of Definition 3.1. Let a 2 R; k 2 N and C 2 L: If An;k :¼
fXn5a� 1=kg and Bn;k :¼ fYn5a� 1=kg then

P ðAn;k \ C \ Bn;kÞ51
2
P ðC \ Bn;kÞ: ð3:2Þ

We have that, for n ! 1; An;k # Ak for some A-measurable set with fX5
a� 1=kg � Ak � fX4a� 1=kg: Similarly, Bn;k # Bk 2 L with fY5a�
1=kg � Bk � fY4a� 1=kg: Therefore, from (3.2) we obtain P ðAk \ C \
BkÞ51

2
P ðC \ BkÞ: We observe that 1Ak ! 1A a.e., where A :¼ fX5ag; and

1Bk ! 1B a.e., where B :¼ fY5ag: Taking the limit as k ! 1 and using the
Dominated Convergence Theorem we obtain (1) of Definition 3.1.
Inequality (2) in Definition 3.1 is proved similarly. ]

Theorem 3.4. Let L be a s-lattice and X 2 L0ðO;A; P Þ: Then PLX=|:

Proof. We suppose first that we have two functions Xi 2 L0ðO;A; P Þ;
i ¼ 1; 2; which are bounded from below by functions in L1ðO;A; P Þ and
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X14X2: For n 2 N we define Xn
i :¼ Xi ^ n for i ¼ 1; 2: Then Xn

i 2 L1ðO;A;
P Þ: Therefore from [6, Theorem 4] we can take Y n

i 2 PLXn
i : Moreover, since

the operator PL is monotone over L1ðO;A; P Þ (see [6, Theorem 18]), we
can assume Y n

i 4Y nþ1
i for i ¼ 1; 2; and Y n

1 4Y n
2 for every n 2 N: We put

Yi ¼ limY n
i : As a consequence of Lemma 3.3 we obtain Yi 2 PLXi for i ¼ 1; 2:

Moreover Y14Y2:
Now we suppose that X 2 L0ðO;A; P Þ is an arbitrary function. We define

Xn :¼ X _ ð�nÞ: These functions are bounded from below by functions in
L1ðO;A; P Þ: As a consequence of the first part of this proof, we can get
Yn 2 PLXn with Yn5Ynþ1: If Y ¼ lim Yn; then Lemma 3.3 implies that
Y 2 PLX : ]

The following property seems to be unknown even if X 2 L1ðO;A; P Þ: It is
very important for our purposes, since it simplifies the proof of many of our
statements by allowing a reduction to the case X 2 L1ðO;A; P Þ:

Proposition 3.5. Let X 2 L0ðO;A; P Þ and Y 2 PLX : Then for every

b 2 R we have Y ^ b 2 PLðX ^ bÞ and Y _ b 2 PLðX _ bÞ:

Proof. It is easy to see that the functions X ^ b and Y ^ b ðX _ b and
Y _ b) satisfy Definition 3.1. ]

Remark. The property in Proposition 3.5 does not hold for other
conditional s-means, with s > 1; as the following simple example shows. Let
O :¼ f0; 1g; P defined by P ðf0gÞ ¼ P ðf1gÞ ¼ 1=2 and L :¼ f|;Og: We
consider X :¼ 1f1g: Then it is easy to see that PL

s ðbX Þ ¼ b=2: Therefore
for 1=25b51 we have PL

s ðb^ X Þ ¼ PL
s ðbX Þ ¼ b=2=1=2 ¼ PL

s X ^ b:

Proposition 3.6. Let X 2 L0ðO;A; P Þ: Then

(1) The set PLX is a s-lattice (i.e., it is closed under suprema and infima

of countable subsets).
(2) It has a maximum (minimum) element ULX ðVLX Þ:
(3) PLX is a convex set.

Proof. For (1), let Y1; Y2 2 PLX and n;m 2 N: Then from
Proposition 3.5 we get Y m;n

i :¼ ð�mÞ _ Yi ^ n 2 PLðð�mÞ _ X ^ nÞ
for i ¼ 1; 2: Since Xm;n :¼ ð�mÞ _ X ^ n 2 L1ðO;A; P Þ then PLðXm;nÞ is a
lattice (see [6]). So Y m;n

1 _ Y m;n
2 ¼ ð�mÞ _ ðY1 _ Y2Þ ^ n 2 PLðXm;nÞ: There-

fore by Lemma 3.3 taking the limit as n;m ! 1 we obtain Y1 _ Y2 2 PLX :
Applying this last fact to the lattice %LL and the functions �X ; �Y1 and �Y2;
we obtain Y1 ^ Y2 2 PLX :
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Now given Yn 2 PLX we consider the increasing sequence Y1 _ � � � _ Yn 2
PLX : From Lemma 3.3 we obtain supn Yn 2 PLX : Analogously infn Yn 2
PLX : All of this proves that PLX is a s-lattice.

The proof of (2) and (3) follows as in [6, Theorem 14] and the proof of (1)
in this theorem, respectively. ]

4. CONVERGENCE A.E. AND MAXIMAL INEQUALITIES

The a.e. convergence of the extended conditional 1-means is a
consequence of Proposition 3.5 and results previously known of conver-
gence, see [8].

We consider Ln � A; n 2 N[ f1g; s-lattices, such that Ln; n 2 N; is
increasing (decreasing) to L1; i.e. Ln � Lnþ1ðLnþ1 � LnÞ and L1 is the
s-lattice generated by

S
n LnðL1 ¼

T
n LnÞ:

Theoren 4.1. Let X 2 L0ðO;A; P Þ and Ln; n 2 N; be s-lattices increasing

or decreasing to the s-lattice L1: Suppose that Yn 2 PLnX : Then

(1) limn!1 Yn :¼ Y1 2 PL1X and limn!1 Yn :¼ Y1 2 PL1X :
(2) P ðfsupn jYnj > agÞ42P ðfsupn jYnj > ag \ fjX j > agÞ for every a > 0:

By analogy to the classical case, we call (2) a ‘‘weak inequality of type (0,0)’’.
(3) If X 2 LsðO;A; P Þ with s > 0 thenZ

O
sup

n
jYnj

s dP42

Z
O
jX js dP :

This is the strong inequality of type ðs; sÞ:
(4) If X 2 LsðO;A; P Þ; s > 0; and PL1X has only one element, namely Y ;

then Z
O
jY � Ynj

s dP ! 0 when n ! 1:

Proof. Let k;m 2 N: Define the functions Xk;m :¼ ð�kÞ _ X ^ m and
Y k;m
n :¼ ð�kÞ _ Yn ^ m: As a consequence of Proposition 3.5 we have Y k;m

n 2
PLnXk;m: Since Xk;m 2 L1ðO;A; P Þ we obtain from [8, Theorem 1] ð�kÞ _
Y1 ^ m 2 PL1Xk;m and ð�kÞ _ Y1 ^ m 2 PL1Xk;m: Applying Lemma 3.3
we get (1). Inequality (3) is consequence of (2) and (3.1). The convergence
result (4) is obtained from (1), (3) and the Dominanted Convergence
Theorem. Hence, it only remains to prove inequality (2). Let a > 0: As was
shown in [7] it suffices to prove the finite version of the maximal inequality,
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i.e. we will prove that for n 2 N;

P max
14i4n

jYij > a
� �	 


42P max
14i4n

jYij > a
� �

\ fjX j > ag
	 


: ð4:1Þ

Now, it is sufficient to prove (4.1) in the increasing case because if Li;
14i4n; is a decreasing finite sequence then Ln;Ln�1; � � � ;L1 is an
increasing sequence. Also we can suppose that X and Yi are positive, since
if X 2 L0ðO;A; P Þ is an arbitrary function, from Proposition 3.5 we have
that Y þ

i 2 PLXþ and Y �
i 2 P %LLX� (where Zþ ¼ Z _ 0 and Z� ¼ �Z ^ 0).

Therefore, assuming that the inequality is true for positive functions we
obtain

P max
i

jYij > a
� �	 


4 P max
i

Y þ
i > a

� �	 

þ P max

i
Y �
i > a

� �	 


4 2P max
i

Y þ
i > a

� �
\ fXþ > ag

	 


þ 2P max
i

Y �
i > a

� �
\ fX� > ag

	 


4 2P max
i

jYij > a
� �

\ fXþ > ag
	 


þ 2P max
i

jYij > a
� �

\ fX� > ag
	 


¼ 2P max
i

jYij > a
� �

\ fjX j > ag
	 


:

So we suppose X50 and Yi50 and fLig increasing for 14i4n: We
define Ai :¼ fY14a; . . . ; Yi�14a; Yi > ag: We observe the following facts
about Ai:

(i) Each Ai is of the form fYi > ag \ Di with Di 2 %LL:
(ii) The Ai’s are mutually disjoint sets.
(iii)

S
i Ai ¼ fmaxi Yi > ag:

Therefore from (2) of Definition 3.1 we obtain P ðfX > ag \ AiÞ5
1=2P ðAiÞ: Finally summing over i we get (4.1). ]

5. TOTALLY ORDERED s-LATTICES

We say that L is totally ordered if for each pair of sets C1;C2 2 L we have
C1 � C2 or C2 � C1: In this section, we will prove the results about the
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conditional 1-mean when the s-lattice L is totally ordered. When O ¼ ½0; 1

and A is the s-algebra of Lebesgue, an important example of a totally
ordered s-lattice is L :¼ fða; 1
 : 04a41g [ f½a; 1
 : 04a41g: In this case,
L1ðLÞ is the set of all integrable and non-decreasing functions. In [4] Huotari,
Meyerowitz and Sheard studied the conditional 1-mean by monotone
functions. They obtained a charaterization of which functions between VLX
and ULX are conditional 1-means. It is our purpose to generalize those
results to every probability measurable space and totally ordered s-lattice
and every X 2 L0ðO;A; P Þ: In [10] Marano considered totally ordered s-
lattices. He worked with an apparently more restrictive class of s-lattices,
namely s-lattices L such that there exists a map F : I ! L; where I is a
closed subset of ½0; 1
; such that F is one to one, F ðIÞ ¼ L; and F is
monotone and continuous in a certain sense. However, his definition is
equivalent to the statement that L is totally ordered. In fact, to see this we
can consider the set I :¼ P ðLÞ because if L is totally ordered then P ðC1Þ ¼
P ðC2Þ; with C1;C1 2 L; implies that C1 ¼ C2 a.e. Therefore, we can consider
F ¼ P�1

jL ; where PjL denotes the restriction of P toL: In [10] Marano proved
(in the discrete case) that best F-approximants given L are best
F-approximants with respect to an appropriate s-algebra. We shall prove
(see Theorem 5.3) that conditional 1-means given L are conditional 1-
means given an appropriate s-algebra AðLnÞ; whereLn depends on X : Our
results do not totally include the one given in [10] because we are considering
a particular norm. However, we hope that the techniques developed here
may be adapted to more general settings.

If G � A we denote by AðGÞ and LðGÞ the least s-algebra, s-lattice,
respectively, containing G: If for a certain A-measurable function Y ; we
have G ¼ ffY > ag; a 2 Rg then we write AðY Þ and LðY Þ instead of AðGÞ
and LðGÞ; respectively. Throughout this section we assume that L is a
totally ordered s-lattice. Let X 2 L0ðO;A; P Þ and E 2 A: We denote by LE

the s-lattice induced by L on the set E; i.e. LE :¼ fA \ E : A 2 Lg: Let
Y : E ! R be a LE-measurable function. We say that Y 2 PLðX ;EÞ if Y is a
conditional 1-mean with respect to the set E: When Y 2 PLðX ;EÞ and L is
the trivial lattice f|;Eg; we say that Y is a constant conditional 1-mean (note
that Y is a constant function in this case). Moreover, we define V ðX ;EÞ
(U ðX ;EÞ) as the minimum (maximum) of all constants conditional 1-mean
over E: These numbers satisfy the inequality

V ðX ;EÞ4U ðX ;EÞ: ð5:1Þ

Furthermore as a consequence of Definition 3.1, we have

P ðfX5U ðX ;EÞg \ EÞ51
2
P ðEÞ ð5:2Þ
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and

P ðfX4V ðX ;EÞg \ EÞ51
2
P ðEÞ: ð5:3Þ

Remark. The number U ðX ;EÞ ðV ðX ;EÞÞ is the maximum (minimum)
number satisfying (5.2) ((5.3)).

Definition 5.1. For X 2 L0ðO;A; P Þ we define Ln ¼ Ln

X as the set of
all the sets Cn 2 L such that for every C 2 L and D 2 %LL we have

V ðX ;C=CnÞ4U ðX ;Cn \ DÞ: ð5:4Þ

This definition is equivalent to the statement that there exists a number a
such that

P ðfX5ag \ Cn \ DÞ51=2P ðCn \ DÞ; ð5:5Þ

P ðfX4ag \ C=CnÞ51=2P ðC=CnÞ ð5:6Þ

for every C 2 L and D 2 %LL: Using this fact, one can easily check that Ln is
a totally ordered s-lattice (since L is totally ordered, it is sufficient to prove
that Ln is closed for increasing unions and decreasing intersections).

If Y 2 PLX and b 2 R then the set Cn ¼ fY > bg is Ln-measurable.
Inequality (5.5) follows directly from (2) of Definition 3.1 with a ¼ b:
Inequality (5.6) follows considering bn # b; using (1) of Definition 3.1 and
taking n ! 1: Therefore, every Y 2 PLX is a Ln-measurable function. This
implies that for every X 2 L0ðO;A; P Þ we have that

PLX ¼ PLnX : ð5:7Þ

Definition 5.2. Let B be a sub-s-algebra of the s-algebra A: We
define the set AtomðBÞ as the set of all atoms of the s-algebra B; i.e. B 2
AtomðBÞ iff B is B-measurable and for every B-measurable set E � B we
have that P ðEÞ ¼ 0 or P ðEÞ ¼ P ðBÞ:

If Y is a L-measurable function then A 2 AtomðAðY ÞÞ iff there exists a
number a with A ¼ fY ¼ ag a.e. and P ðfY ¼ agÞ > 0: Since O has finite
measure then AtomðBÞ is a countable set for every sub-s-algebra B:
Therefore, for every L-measurable function Y there exists a sequence ak

such that for the sets Bk ¼ fY ¼ akg we have that

AtomðAðY ÞÞ=AtomðAðLÞÞ ¼ fBk : k 2 Ng: ð5:8Þ

The following is the main result of this section.
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Theorem 5.3. Let X 2 L0ðO;A; P Þ; Y 2 PLX and Bk as in equality (5.8).
We define the set E :¼ O=

S
k Bk : Then we have

(1) Y 2 PAðLÞðX ;EÞ:
(2) PLX ¼ PLnX ¼ PAðLnÞX \ L0ðLnÞ:

Remark 1. Part (1) of the above theorem generalizes Corollary 2 in [4]
because in that case AðLÞ is the Borel s-algebra, with O ¼ ½0; 1
: Therefore if
Y 2 PAðLÞðX ;EÞ then X ¼ Y a.e. over E:

Remark 2. If L is non-totally ordered then Theorem 5.3 is not true in
general, as we show in the following simple example. Let O ¼ ½0; 1
2 with P
being the Lebesgue measure. Let us consider the lattice L ¼ L2: It is easy to
check that Z is a L2-measurable function iff Z is monotone non-decreasing in
each variable separately. Now, we consider the following function X :O !
R defined by X ðxÞ :¼ ðo2 � 1Þðo1 � 1Þ þ o2: Fix o2 2 ½0; 1
; then the
function *XX ðo1Þ :¼ X ðxÞ is a monotone decreasing function. Therefore,
the conditional 1-mean of *XX with respect to L is constant. To see this fact,
we can apply (2) of Theorem 5.3 because if *XX is non-increasing then
the s-lattice Ln is the trivial lattice Ln ¼ f|; ½0; 1
g: Now, it is easy to check
that the constant ð1þ o2Þ=2 is a conditional 1-mean of *XX : We define the
function Y ðxÞ ¼ ð1þ o2Þ=2 and let Z 2 L1ðL

2Þ: Then for every fixed o2 2
½0; 1
 we have Z 1

0

jX � Y j do14
Z 1

0

jX � Zj do1:

By Fubbini’s Theorem we obtain jjX � Y jj14jjX � Zjj1: Hence, Y is a
conditional 1-mean of X with respect to the lattice L2: Now notice that
AtomðAðY ÞÞ ¼ |: Therefore, the set E in (1) of Theorem 5.3 is equal to O:
We observe that the s-algebra AðL2Þ is the Borel s-algebra L2 of O:
Therefore if Y 2 PB2X then we would have Y ¼ X a.e., but this is not true.

Remark 3. Whether or not (2) of Theorem 5.3 is true for every s-lattice
it remains an open question.

Before proving Theorem 5.3 we give a corollary of it. This corollary
together with Theorem 5.3 generalizes [4, Theorem 8].

Corollary 5.4. Let X 2 L0ðO;A; P Þ then Y 2 PLX iff VLX4Y4ULX
and Y is Ln-measurable.

Proof. The ‘‘only if’’ part was already established. Let us see the ‘‘if’’
part. We have that VLX4Y4ULX and, as a consequence of (2) of Theorem
5.3, that VLX ;ULX 2 PAðLnÞX : Since AðLnÞ is a s-algebra it follows, from
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Corollary 2.3 that Y 2 PAðLnÞX : Now, since Y is Ln-measurable, again from
(2) of Theorem 5.3 we obtain that Y 2 PLX : ]

Proof (1) of Theorem 5.3. By the inequalities in (2.12) and the remark
following Definition 3.1, it is sufficient to prove

P ðfX4Y g \ E \ AÞ51
2
P ðE \ AÞ ð5:9Þ

and

P ðfX5Y g \ E \ AÞ51
2
P ðE \ AÞ ð5:10Þ

for every A 2 AðLÞ: We prove (5.10). The proof of (5.9) is a consequence of
inequality (5.10) applied to �X and �Y ; using the fact that AðLÞ ¼ Að %LLÞ:

The s-algebra AðLÞ is generated by the algebra of sets of the formSn
i¼1 Ci \ Di; with Ci 2 L and Di 2 %LL: By elementary facts of measure

theory, one can get, for every A 2 AðLÞ and e > 0; a collection of sets
Ci 2 L and Di 2 %LL; i ¼ 1; . . . ; n such that P ðA 4

Sn
i¼1 Ci \ DiÞ5e: Since L is

a totally ordered s-lattice we can suppose Cn � � � � � C1: Now since %LL is
also totally ordered, we can assume that D1 � � � � � Dn: Notice that if for
some i we have Diþ1 � Di; then Ci \ Di [ Ciþ1 \ Diþ1 ¼ Ci \ Di: Hence the
set Ciþ1 \ Diþ1 can be removed from the union. We put *DDi :¼ Di \ Ciþ1

(where Cnþ1 :¼ |). Then
S

i Ci \ Di ¼
S

i Ci \ *DDi: So we can suppose that
the sets Ci \ Di are mutually disjoint. Thus, it is sufficient to prove (5.10) for
A ¼ C \ D with C 2 L and D 2 %LL:

We define

Em :¼ O=
[m
i¼1

fY ¼ aig:

For each m 2 N we have a permutation s : f1; . . . ;mg ! f1; . . . ;mg such that
asðiÞ4asðiþ1Þ: We put asð0Þ :¼ �1 and asðmþ1Þ :¼ 1: Then

Em ¼
[m
0

fasðiÞ5Y5asðiþ1Þg: ð5:11Þ

Let C 2 L and D 2 %LL: From (5.11) we obtain

C \ D \ Em :¼
[m
i¼0

Ci \ Di; ð5:12Þ

where Ci :¼ C \ fY > asðiÞg and Di :¼ D \ fY5asðiþ1Þg: Suppose Ci \ Di=|
for every i: We define

bi :¼ supfa : Ci � fY > agg:
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Trivially, Ci � fY5big and asðiÞ4bi5asðiþ1Þ: Since for a > bi we have
Ci 6� fY > ag and L is a totally ordered set then fY > ag � Ci: Now taking
a # bi we get

fY > big � Ci � fY5big: ð5:13Þ

Now we define sets Ai according to the following cases:

(1) If P ðfY ¼ bigÞ ¼ 0 then Ai :¼ fY > big: Here P ðCi 4 AiÞ ¼ 0:
(2) P ðfY ¼ bigÞ > 0 and fY ¼ big 2 AtomðAðLÞÞ: In this case, we have

Ci ¼ fY > big a.e. or Ci ¼ fY5big a.e. then we put Ai :¼ fY > big or
Ai :¼ fY5big; respectively. Again we get P ðCi 4 AiÞ ¼ 0: We observe that
the relation given in (3)(b) of Theorem 2.1 holds with fY5ag in the place of
fY > ag:

(3) P ðfY ¼ bigÞ > 0 and fY ¼ big =2 AtomðAðLÞÞ (we observe that in
this case bi is some aki). Here defining Ai :¼ fY > big we get P ðCi 4
AiÞ4P ðfY ¼ bigÞ: In this case if bi ¼ asðiÞ then P ðCi 4 AiÞ ¼ 0:

In any case P ðCi 4 AiÞ ¼ 0 or P ðCi 4 AiÞ4P ðfY ¼ akigÞ with ki > m: By
virtue of the inequality asðiÞ4bi5asðiþ1Þ we can affirm that ki=kj if i=j:
Therefore, we obtain the inequality

P C \ D \ Em 4
[m
i¼1

Ai \ Di

 !
4
X
k5m

P ðfY ¼ akgÞ: ð5:14Þ

From (3)(b) of Theorem 2.1 we obtain

P fX5Y g \
[m
i¼1

Di \ Ai

 !
5

1

2
P

[m
i¼1

Di \ Ai

 !
:

Given e > 0 we choose M 2 N such that the right member of (5.14) is less
than e for every m > M : Now since Ci \ Di*Di \ Ai; by (5.14) we have

P ðfX5Y g \ C \ D \ EmÞ5 P fX5Y g \
[m
i¼1

Di \ Ai

 !

5
1

2
P

[m
i¼1

Di \ Ai

 !

5
1

2
P ðC \ D\ EmÞ � e

for every m > M : Since e is arbitrary, taking the limit as m goes to 1 we
obtain (5.10) with A ¼ C \ D: ]
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In order to prove (2) of Theorem 5.3 we will need the following lemmas.

Lemma 5.5. Let E 2 A and g 2 R: Suppose that V ðX ;EÞ4g5U ðX ;EÞ or

V ðX ;EÞ5g4U ðX ;EÞ: Then

P ðfX5gg \ EÞ ¼ P ðfX4gg \ EÞ ¼ 1
2
P ðEÞ:

Proof. Suppose that V ðX ;EÞ4g5U ðX ;EÞ: The other case is similar.
Then from (5.2) and (5.3) we obtain P ðfX > gg \ EÞ51=2P ðEÞ and P ðfX4
gg \ EÞ51=2P ðEÞ: These inequalities imply the statement of the lemma. ]

Lemma 5.6. Suppose X 2 L0ðO;A; P Þ and Y 2 PLnX : Let A 2 Atom

ðAðY ÞÞ=AtomðAðLÞÞ: Let L0 be a sub-s-lattice of Ln with the following

properties:

(1) If Cn 2 Ln satisfies P ðA \ CnÞ ¼ 0 or P ðA \ CnÞ ¼ P ðAÞ then Cn 2
L0:

(2) The set fC 2 L0 : 05P ðA \ CÞ5P ðAÞg is finite.

Then Y 2 PAðL0ÞðX ;AÞ:

Proof. We recall that A ¼ fY ¼ ag; P ðAÞ > 0 and A =2 Atom

ðAðLÞÞ: Suppose that the lattice induced by L0 over A is equal to fC0 \
A; . . . ;Cn \ Ag with | ¼ C0 \ A � � � � � Cn \ A ¼ A: Let Ei ¼ A\
ðCi � Ci�1Þ; i ¼ 1; . . . ; n: We have that the s-algebra induced by AðL0Þ
over A is equal to the s-algebra generated by the sets Ei and the sets Ei are
atoms of this s-algebra. Therefore, it is sufficient to prove that

V ðX ;EiÞ4a4U ðX ;EiÞ for i ¼ 1; . . . ; n: ð5:15Þ

Before proving this fact, we will show that the following inequalities hold:

V ðX ;A=CiÞ4a4U ðX ;A=CiÞ for i ¼ 1; . . . ; n ð5:16Þ

and

V ðX ;A \ CiÞ4a4U ðX ;A \ CiÞ for i ¼ 1; . . . ; n: ð5:17Þ

Let us first consider these inequalities in the case i ¼ n: In this case just
inequality (5.17) has sense. In virtue of inequalities (5.2), (5.3) and the
remark following them, we have to prove that

P ðfX5ag \ AÞ51
2
P ðAÞ and P ðfX4ag \ AÞ51

2
P ðAÞ: ð5:18Þ
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These inequalities are consequences of (5) of Theorem 2.1 putting B ¼ fag
and C ¼ D ¼ O:

We suppose i5n: Putting B :¼ fag; D :¼ O=Ci and C :¼ Ci in (5)(a) and
(b) of Theorem 2.1 we obtain

P ðfX5ag \ ðA=CiÞÞ51
2
P ðA=CiÞ ð5:19Þ

and

P ðfX4ag \ ðA \ CiÞÞ51
2
P ðA \ CiÞ: ð5:20Þ

Now from inequalities (5.2), (5.3) and the remark following them, we get

V ðX ;A \ CiÞ4a4U ðX ;A=CiÞ: ð5:21Þ

Since Ci 2 Ln; i ¼ 1; . . . ; n; we have from Definition 5.1 that

V ðX ;A=CiÞ4U ðX ;A \ CiÞ: ð5:22Þ

If we can prove that V ðX ;A=CiÞ4a4U ðX ;A \ CiÞ; then we would have
proved (5.16) and (5.17). Suppose that this inequality is not true. We can
assume that a5V ðX ;A=CiÞ (the other case is similar). Then from (5.21) and
(5.22), we get V ðX ;A \ CiÞ4a5U ðX ;A \ CiÞ: Lemma 5.5 implies that

P ðfX4ag \ A \ CiÞÞ ¼ 1
2
P ðA \ CiÞ: ð5:23Þ

Since a5V ðX ;A=CiÞ; from the remark following (5.3) we have

P ðfX4ag \ ðA=CiÞÞ51
2
P ðA=CiÞ: ð5:24Þ

Adding (5.23) and (5.24), we obtain P ðfX4ag \ AÞ51=2P ðAÞ which
contradicts (5.18).

From inequalities (5.16) and (5.17) we obtain (5.15) in the particular case
i ¼ 1 or i ¼ n: Therefore in order to prove (5.15), we can suppose that
15i5n: Suppose that there exists i such that U ðX ;EiÞ5a (the case a5
V ðX ;EiÞ is similar). Then by virtue of Definition 5.1 (note that
A=Ci ¼ fY5ag=Ci) and inequality (5.16), we get

V ðX ;A=CiÞ4U ðX ;EiÞ5a4U ðX ;A=CiÞ: ð5:25Þ

Let b be any number with U ðX ;EiÞ5b5U ðX ;A=CiÞ: Then V ðX ;A=CiÞ5
b5U ðX ;A=CiÞ and P ðfX5bg \ EiÞ51=2P ðEiÞ: Therefore from Lemma 5.5
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we obtain P ðfX5bg \ A=CiÞ ¼ 1=2P ðA=CiÞ: Hence,

P ðfX5bg \ ðA=Ci�1ÞÞ ¼ P ðfX5bg \ ðA=CiÞÞ

þ P ðfX5bg \ EiÞ

5 1
2
P ðA=Ci�1Þ:

Thus U ðX ;A=Ci�1Þ5b; since b is an arbitrary number with U ðX ;EiÞ5b5
U ðX ;A=CiÞ we get U ðX ;A=Ci�1Þ4U ðX ;EiÞ: Therefore,

V ðX ;A \ Ci�1Þ4U ðX ;A=Ci�1Þ4U ðX ;EiÞ5a4U ðX ;A \ Ci�1Þ: ð5:26Þ

Now, from (5.25), (5.26) and Lemma 5.5 we deduce the following two
inequalities:

P ðfX5ag \ ðA=CiÞÞ ¼ 1
2
P ðA=CiÞ; ð5:27Þ

P ðfX5ag \ A \ Ci�1Þ ¼ 1
2
P ðA \ Ci�1Þ: ð5:28Þ

Moreover, since U ðX ;EiÞ5a; we obtain

P ðfX5ag \ EiÞ51
2
P ðEiÞ: ð5:29Þ

Finally, adding (5.27)–(5.29), we obtain P ðfX5ag \ AÞ51
2
P ðAÞ which

contradicts (5.18). ]

Lemma 5.7. Let X ; Y and A as in Lemma 5.6. Then Y 2 PAðLnÞðX ;AÞ:

Proof. We consider the set I ¼ fP ðCnÞ : Cn 2 Ln and 05P ðCn \ AÞ5P
ðAÞg: Let frk : k 2 Ng be a dense and countable subset of I : Now we define
the following sequence of sub-s-lattices of Ln: For every n we define Ln by
the condition C 2 Ln iff C 2 Ln and P ðC \ AÞ ¼ 0 or P ðC \ AÞ ¼ P ðAÞ or
P ðCÞ ¼ rk for some k ¼ 1; . . . ; n: It is easy to check the following facts about
Ln : (i) Ln’s are s-lattices; (ii) AðLnÞ " AðLnÞ: Therefore, the lemma is a
consequence of Lemma 5.6 and Theorem 4.1. ]

Lemma 5.8. Let L be a sub-s-algebra of A: Suppose E 2 L and

F ¼ O=E: Then Y 2 PLX iff Y 2 PLðX ;EÞ and Y 2 PLðX ; F Þ:

Proof. It is a consequence of Corollary 2.2 and the well known
properties of the conditional expectation operator. ]

Proof of (2) of Theorem 5.3. It is sufficient (by virtue of (5.6)) to prove
that PLnX ¼ PAðLnÞX \ L0ðLnÞ: Notice that the inclusion PLnX*PAðLnÞX
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\L0ðLnÞ is clear. It only remains to prove that PLnX � PAðLnÞX \ L0ðLnÞ:
If Y 2 PLnX then, from (1) of Theorem 5.3 and (5.6) we obtain Y 2
PAðLÞðX ;EÞ: We recall that E ¼ O=

S
k Bk ; where the B0

ks are defined in (5.7).
Since Y is a AðLnÞ-measurable function we have Y 2 PAðLnÞðX ;EÞ: On the
other hand, since E is a AðLnÞ-measurable set, in order to prove (2) of
Theorem 5.3 it is sufficient to show that Y 2 PAðLnÞðX ; F Þ; where F :¼ O=E ¼S

k Bk (see Lemma 5.7). Since each set Bk is AðLnÞ-measurable, again by
virtue of Lemma 5.7, we only need to prove that Y 2 PAðLnÞðX ;BkÞ for every
k and that was already proved in Lemma 5.7. ]
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