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Let (Q, .o/, P) be a measurable space and ¥ < .o/ a sub-g-lattice of the g-algebra
o/. For X € L|(Q, o/, P) we denote by P¢X the set of conditional 1-mean (or best
approximants) of X given L;(¥) (the set of all #-measurable and integrable
functions). In this paper, we obtain characterizations of the elements in PyX, similar
to those obtained by Landers and Rogge for conditional s-means with 1<s<oo.
Moreover, using these characterizations we can extend the operator Py to a bigger
space Lo(Q2, o7, P). When, in certain sense, .%, goes to ¥, we will be able to prove
theorems about convergence and we will obtain bounds for the maximal function
|sup, Pg,X|. A sharper characterization of conditional 1-means for certain particular
o-lattice was proved in previous papers. In the last section of this paper we generalize
those results to all totally ordered g-lattices. © 2002 Elsevier Science (USA)
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1. INTRODUCTION AND NOTATION

Let (Q, o7, P) be a probability space and 0 <s < 00. As is usual, we denote
by M(Q, <7, P) the set of the equivalence classes of .o7-measurable functions
and by Ly(Q,.o/,P) the classical Lebesgue spaces. Moreover, the space
Ly(Q, o/,P) is defined as the system of all equivalence classes of .o7-
measurable functions that are finite a.e.

Let & < .o/ be a o-lattice, that is, £ is closed under countable unions and
intersections and 0, Q2 € #. By % we denote the dual g-lattice of %, i.e.,
P ={D:Q\De Z}. We say that X : Q - R is #-measurable if {X >a} €
& for every a € R. Asin [7] we let Ly(¥) denote the system of all equivalence
classes in Ly(Q, .o/, P) containing a .%-measurable function.
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Let % be a o-lattice and X € Ly(Q, <7, P). An element Y € Ly(%) is called a
conditional s-mean of X given the o-lattice & if

X = Y|, <|IX — Z|, for every Z € L(%).

It is well known, see [6], that for s> 1 there exists a conditional s-mean for
every X € L,. Moreover it is unique for s > 1. But for s = 1 the uniqueness
can fail. In any case we let P{,X denote the set of all conditional s-means.
Henceforth, for simplicity, we write P¢X instead of PL.X.

In several papers Landers and Rogge studied conditional means, see for
example [6-9]. They studied the above situation in more general settings, for
example in [6,8,9]. In [7] Landers and Rogge established results about
characterization, a.e. convergence, and boundedness of maximal functions
for conditional s-means with 1<s<oo. In the present paper we are
interested in considering the case s = 1. The non-uniqueness of conditional
I-means presents an additional difficulty. However, as we will see, the
conditional 1-mean has advantages over any other s-mean. For example, we
can define the conditional I-mean for any measurable finite almost
everywhere function.

Conditional 1-means were also studied for particular o-lattices, see for
example [2-4, 10, 11]. We denote by B” the Borel g-algebra of [0, 1]" and by
" the o-lattice defined by the condition C e " iff x € C and x<y imply
yeC, (x<y means that x;<y;,, i=1,...,n with x; and y; denoting the
coordinates of x and y, respectively). When n =1 by we write B and L
instead of B' and L' for short. In [4] Huotari, Meyerowitz and Sheard gave
a sharper characterization of conditional 1-means for the measurable space
([0, 1], dx), where dx denotes the Lebesgue measure, and for the o-lattice L. In
the last section of this paper we prove a generalization of this characteriza-
tion to an arbitrary probability measurable space and a totally ordered o-
lattice. In [11, p. 185] Marano and Quesada generalized the previous result
obtained in [4] to Lg spaces. However, the underlying space and the o-lattice
considered in that paper are the same as the ones considered in [4].

We want to point out that the techniques in this paper are different from
the ones used in the previous papers already mentioned. Moreover, they are
elementary. For example, we do not use arguments about approximate
continuity, as was done in [4,11]. Finally, we want to mention that
conditional s-means have applications to statistical inference, see for
example [1] and the most recent paper [5].

The organization of the paper is as follows. In Section 2 we prove a
characterization of conditional 1-mean. As a corollary of this we obtain
previous results of Shintani and Ando [12] about characterization of the
conditional 1-mean given a o-algebra. In Section 3 we extend the operator
Py to the space Ly(Q, <7, P) and we obtain results about the structure of the



ISOTONIC APPROXIMATION IN L, 281

set PyX. We also prove results about a.e. convergence and obtain
boundedness for certain maximal functions in Section 4. Except the last
one result, these are immediate consequences of Proposition 3.5, which is a
corollary of our characterization given in Theorem 2.1 and the analogous
property for the operator Py :L; — L. In Section 5 we consider a totally
ordered o-lattice and we extend previous results of Huotari, Meyerowitz and
Sheard about monotone approximation.

2. A CHARACTERIZATION OF PyX

The aim of this section is to prove a characterization of the conditional
I-mean similar to the one proved in [7], for s>1, see for example
Theorem 3.4 and Corollary 3.5. Here the main difficulty to overcome is the
non-uniqueness which was important in the arguments used in [7, Theorem
3.4]. The main result of this section is the following theorem.

THEOREM 2.1 Let X € L1(, o/, P) and Y € L(Z). The following facts are
equivalent:

(1) Y e PyX.
(2) For every Z € L\(Z) we have

/ sgn(X—Y)(Z—Y)dPS/ |Z — Y|dP.
X#Y) X=Y

(3) For every aeR, Ce ¥ and De & we get (a)P(X< Y} nCn
{(Y<a})ZPE{X>Y}nCn{Y<a}),
OPEXZY DY >a)ZPHX <Y} nDn{Y>a}).

(4) For every a e R,De &% and C e ¥, (Q)P(X <a} nC N {Y<a})>
IP(C N {Y<a}), DPHX >a} "D N {Y >a})=1P(D A {Y > o).

(5) For every Ce ¥, De ¥ and Be B we have (Q)P{X<Y} nCn
Y Y (B)=IP(C n Y7 '(B)), B)P{X =Y} nD N Y '(B)=1P(D N Y (B)).

(6) For every B-measurable function ¢ : R — [0,00) and Z € L\(%L):

/ sgn(X — Y)Zp(Y) dPS/ |Z|p(Y) dP,
(X#Y} }

if the integral exists.

The structure of the proof is the following: (1) < (2) = (3) < (4) and
finally (3) = (5) = (6) = (3) = (2).
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(1) = (2): This equivalence is a classical result about best approximants.
For completness sake we include the short proof of it. We consider the
following function:

o(t) = / X — (Y + Y — Z))| dP.

We observe that for 0<¢<1 we have Y +#«Y —2)eL;(¥) and that
¢:[0,1] » is a convex function. Therefore, Y € PoX iff ¢ has a
minimum at 0, for every ZeL|(¥). Hence Y ePgX iff ¢ (0)=0
(where ¢ denotes the right derivative of ¢). This implies that (1) is
equivalent to (2).

(2) = (3): It is sufficient to prove inequality (b) because inequality (a) is a
consequence of applying (b) to the functions —X, — Y and the lattice &
(note that Py X = —Pz(—X)). Let ne, 4, ={Y>a+1/n} and 4 = {Y >
a} = U, 4,. Now for D € # we define the following functions:

Y(w) if w¢AdnD,
Z,(w) =< «o if we—4,) nD,
Y(w)—% if wed, nD.
It is easy to check that Z, € L;(¥). We denote by E, F, G and H the sets

(X#£Y' A, "D, {(X#Y}n(A\4,) "D, {X =Y} nA4,nD and {X =Y}
n(4\4,) N D, respectively. Then applying (2) to Z, we obtain

1 1
——/sgn(X—Y)dP+/sgn(X—Y)(oc—Y)dP<—/dP+/ loo — Y| dP.
nJg F njg H

We have that —1 <n(x — Y(w)) <0, for every w € 4 — 4, and P(4\4,) — 0,
for n —» oo. Therefore, multiplying the above inequality by n and taking the
limit as n — oo we get the inequality

—/ sgn(X — Y) dP</ dP.
{(X#Y}ndnD {X=Y}nAnD

So this inequality implies the inequality in (3)(b).
(3) = (4): We observe that inequalities (3)(a) and (b) are trivially
equivalent to the following inequalities:
PUX<Y}nCn{Y<a})=1P(Cn {Y<a}) (2.1)

and

PUX=Y} nD A {Y>a)=LP(D A (Y >a}). (2.2)
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Clearly (2.1) and (2.2) imply (4)(a) and (b), respectively. Now consider the
reverse implications. We assume that X and Y satisfy (4)(a) and (b). Let
De ¥, xeR and n e N. Then, as a consequence of (4)(b) we get

P<{X>o<} NDnN {Y<a+%} r\{Y>a})

1 1
>—P(Dm {oc<Y<oc+—}).
2 n

1 1
P( X>Y——}an{oc<Y<oc+—}>
n n
: ( { 1}>
>—P{Dnqoa<Y<a+—-, .
2 n

By applying the above inequality to o + k/n with k € N U {0} instead of o,
we obtain for 4y .= {a+ k/n<¥Y<a+ (k+ 1)/n},

This implies

1 1
P<{X> Y——} NnD mAk) ZEP(DmAk).
n

Now since {Y > a} = (J;5 4k, We get
1 1
Pl{X>Y——,nDn{a<t} ZEP(Dm {a<Y}).
n

Taking the limit as n — oo we obtain (2.2). Hence, we have proved that
(4)(b) implies (2.2) for every . Applying this fact to the lattice % and to the
functions —X, — Y and —a we get (2.1).

(4) = (5): Let o, p € R with a<f. Since C n {f< Y} € &, from (4)(a) we
obtain

PUX<Y}nCn{f<Y<a})=iP(Cn{f<Y<a})

for every Ce %, and «, f € R. Let Be B. We consider two measures over
B:P(B) =P({X<Y}nCn Y (B)and P,(B) = 1/2P(C n Y~ !(B)). From
the last inequality we have that P;(B) > P,(B), where B is an interval of R.
Therefore, the inequality holds for every B € and thus we obtain (5)(a). By
repeating the arguments already used we obtain (5)(b).

(5) = (6): We can assume that ¢ is a simple function, otherwise ¢ is the
uniform and non-decreasing limit of simple, positive and B-measurable
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functions. We observe that from (5)(a) we obtain

/ sgn(X — Y)lc15(Y) dps/ lcls(Y) dP
(X#Y} (X=v}

for every C € & and B € B. Therefore, we get

/ sgn(X — Y)lc(Y)dP < / le(Y) dP 2.3)
X#Y}

x=r}

for every C € Z. Let Z € L(&¥). We suppose that Z is a simple and positive
function. Then Z = Y7, a;1¢, with C;e &, C; < --- = C, and 4;>0. So
from (2.3) we obtain

/ sgn(X — Y)Zp(Y) dP< / Z(Y) dP. (2.4)
X#Y} Y}

Since every positive Z € L1(¥) is a non-decreasing limit of simple, positive
and Z-measurable functions, we have (2.4) for every Z>0 and Z € L|(%).
_Let Z<0 be a #-measurable function. If we apply (2.4) to —X, —Y, —Z,
& and ¢y(x) = ¢(—x) we deduce

/ sgn(X — Y)Zp(Y)dP< / 1Z|p(Y) dP. (2.5)
(X#Y} Y}

=1Ly

Now, let Ze Li(¥) be such that the integrals in (6) exist. We put
Z=7"—27.Since 0<ZT e L|(¥) and 0> — Z~ € L{(&) from (2.4) and
(2.5) we obtain

/ sgn(X — VZ¢(Y)dP< / sgn(X — Y)ZT¢(Y) dP
(X#Y} (X7}
+ /Xﬂ} sgn(X — Y)(—Z7)¢p(Y)dP
+
< /{X_Y}z H(Y) dP
“1p(Y)d
+ /{X_Y} 27 16(Y) dP
~ [z
X=r}

So (6) is proved.
(6) = (3): We obtain immediately (3)(a) putting ¢ = 1(— ) and Z = 1¢.
Inequality (3)(b) is obtained in a similar way.
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3) = (2): Let Ze Li(¥). For ne N and k € Z we define the set 4y, =
{k/n<Y<(k + 1)/n} and for m € nN (i.e. m is a multiple of n) and j € Z we

put B;,, = {Z<j/m}. Moreover, we define E;,, == B;,, — B(j—1)» and the
following functions:

o0 k .
Y, = Z ;1/”.” and Zy = Z %1@”1.

k=—00 Jj=—00

We have that Y,,Z,, € L1(¥) and Y, —» Y as n —» oo uniformly and Z,, —» Z
as m — oo uniformly.
Fix n,k,m and let j* .= km/n (j* € Z). We have the following equality:

1=
(Y,, - Zm)lAk,nlBj*w = (a Z ]Bf,m> 1Ak.:1]Bj*m,' (26)

j=—00

Now putting D =B;,, n{Y<(k+1)/n} and o =k/n we obtain from
(3)(b)

P({X> Y} N Bj,m mAk,l1)>P({AX<Y} N Bj,m mAk,n)a

or equivalently
_ / sen(X — V)l 1y, dP< / 15, 1, dP.
(X#Y)} ' ’ x=yy ’
Now multiplying by m~! and summing over j<;* we obtain from (2.6)
—/ sgn(X— Y)(Yn _Zm)lAanl{Z<Yn} dpP
(X7}

< / Yy — Zp)ly,, iz <y, dP.
x=v;
Taking the limit as m — oo we get

/ sgn(X — Y)(Z* Yn)lA,ml{Z<Y/,} dP< / (Yn — Z)IA;‘,,,I{Z<Y,,} dP.
XY}

x=r)

Summing over k € Z we have

[ s =@l dps [ (- Digeydr @)
(X£Y)

X=r}
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Since liz<y,y = liz<y, a.e. when n — oo we obtain from (2.7)

/ Sgl’l(X— Y)(Z— Y)l{z<y} dP< / (Y_Z)]{Z<Y} dP. (28)
X#Y} {(X=v}

Hence, we have shown that for every o-lattice the inequality in (3)(b)
implies (2.8). We can apply this fact to the lattice £ and to the functions
—X,—Y and —Z. Therefore, we get

/ sgn(X — Y)(Z — Y)lizoy; dP < / (Z—-Y)lizyydP. (2.9)
XY x=v}

Now (2.8) and (2.9) imply (2). 1

We finish this section with some consequences of Theorem 2.1. When % is
a g-algebra, a characterization of the conditional 1-mean was obtained by
Shintani and Ando [12, Theorem 2, Corollary 3]. We can get this
characterization as a consequence of our Theorem 2.1. As is usual we
denote by Eg the conditional expectation operator Eg:Li(Q,/,P) —
L1(Q,.</,P) which is defined, for X € L|(Q, </, P), by the following two
conditions: (i) E X is a #-measurable function and (ii) for every C € £ we
have

/EngP: /XdP. (2.10)
C C

It is well known that for X € L,(Q, 7, P), E X is the conditional 2-mean of
X. The mentioned result of Shintani and Ando is the following.

COROLLARY 2.2. Let &% be a o-algebra and let X € L{(Q,.</,P) and Y €
Li(&). Then Y € Py X iff the following inequalities holds:

Es({X<Y}) =Eg(lix<yy) =3
Ego({X=Y}) =Eg(lixsyy) =3 (2.11)

Proof. We use inequalities (2.1) and (2.2), which are equivalent to all
items in Theorem 2.1. Since .Z is a g-algebra, (2.1) and (2.2) are equivalent
to

PHX<Y} n O)=5P(0),
PH{X=Y} n C)=1P(C) (2.12)

for every C € #. The ““if”” part of the corollary is obtained by integrating
inequalities (2.11) over C and using equality (2.10). For the “only if”” part,
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we suppose that (2.11) is not true. We can also assume that there exists a &
measurable set C with P(C) > 0 such that for every w € C,

E4({X <Y})(0) <%

Now, integrating this inequality over C and using (2.10) we obtain P({X
<Y} n C)<1/2P(C). This contradicts (2.12). 1

The following is an immediate consequence of Corollary 2.2.

COROLLARY 2.3. Let % be a og-algebra and let X € L((Q,.</,P) and
Y € Li(Z). Suppose that Y\ <Y <Y,, where Y|,Y> € PoX. Then Y € Py X.

3. EXTENSION OF THE OPERATOR Py

In this section we will extend the operator Py to the space Ly(Q, .7, P). We
recall that in [7] Landers and Rogge extended the operator .7 : Ly — L; to
the space L, ;. They used a density argument. More precisely, they took a
function X € L;_; bounded from below by a function in Ly and then they
defined P;‘fX = lim,en P;‘Z)(X A n). If X € Lg is an arbitrary function then
X v nisbounded from below by a function in L. As consequence of all this,
they could define PZX = lim,ey PZ(X v n). This technique is not appro-
priate for the case s = 1 since the operator Py is set valued. However, we
can use Theorem 2.1 for our objective.

DE~FINITION 3.1. Let & be a o-lattice and X € Ly(Q,.o/,P). Then
YePyX iff Y is a #-measurable function and satisfies for every o e R,
Ce¥and De ¥

(1) P((X <o} A Cn (Y <a})>LP(C (Y <a}),
(2) PUX>a} n D {Y >a})=5P(D N {Y > a}).

Remark. In Theorem 3.4 we will prove that for every X € Ly(€2, .7, P) the
conditional I-mean always exists (probably it is non-unique). Notice that
the proof of Theorem 2.1 is still valid if we change X € L;(Q, .«/,P) to X €
Lo(Q, o/, P). (The statement of item (2) should be modified adding to the
conditions the existence of the integral.) Also Corollaries 2.2 and 2.3 remain
true when % is a g-algebra. Throughout the rest of this paper we will use
these extended version of Theorem 2.1, Corollaries 2.2 and 2.3.

Now note that if X € L(2, 7, P) then PyX = P ,X. This is an immediate
consequence of Theorem 2.1 and the following theorem.
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THEOREM 3.2. Let X € Ly(Q, o/,P) and Y € P4 X. Then

(1) P{|Y|> a})<2P({|X|> a}), for every a> 0.

(2) If X € Ly(Q, o/, P), for s=0, then Y € L(Z).

(3) In particular, if X € Li(Q,.o/,P) then Y € Li(¥). Therefore by
Theorem (2.1) Y is a conditional 1-mean.

Proof. Property (1) is an immediate consequence of Definition 3.1
applied to C = D = Q, o and —o, with o > 0. Property (2) is easily obtained
from (1) for s > 0 by using the equality

/ |Z|" dP = s/\ o~ P({|Z] > o} do for every Z e M(Q,.</,P), (3.1)
Q 0

and for s = 0, it follows from the equality {|Y| = oo} =, 1Y[>n}. 1

As a consequence of (3), we may write PgX for every X € Ly(Q, o/, P)
instead of P4X. In the rest of this section, we prove some properties of the
extended operator Pgy.

LemMaA 3.3. Let X, € Lo(Q, o/, P) be a sequence of functions with X, 1
XelLy(Q,,P) (X, | X € Lo(Q2,.o/,P)). Let Y, € PeX, be such that Y,TY
(Y, | V). Then Y € PyX.

Proof. We will establish the increasing case. The decreasing case runs
similarly. The function Y is obviously .#-measurable. Now, let us prove that
Y satisfies (1) of Definition 3.1. Let e R, keN and Ce Z. If 4, =
{X, <o — 1/k} and B, = {Y, <o — 1/k} then

P(Ani N C A Byi) =3 P(C 0 Buy). (3.2)

We have that, for n — 0o, A,x | Ax for some .o/-measurable set with {X <
o—1/k} = A4y = {X<o—1/k}. Similarly, B,; | Bre ¥ with {Y<o—
1/k} = By = {Y<o— 1/k}. Therefore, from (3.2) we obtain P(4; n C N
Bk)z%P(C N By). We observe that 14, — 14 a.e., where 4 := {X <a}, and
1p, = 1p a.e., where B = {Y <o}. Taking the limit as £ — oo and using the
Dominated Convergence Theorem we obtain (1) of Definition 3.1.
Inequality (2) in Definition 3.1 is proved similarly. 1

THEOREM 3.4. Let & be a o-lattice and X € Ly(Q, o/, P). Then Py X #0.

Proof. We suppose first that we have two functions X; € Ly(Q, <7, P),
i = 1,2, which are bounded from below by functions in L(L, .7, P) and
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X1 <X,. For neN we define X' :=X; A nfori=1,2. Then X" € L|(Q, o/,
P). Therefore from [6, Theorem 4] we can take Y € P¢X". Moreover, since
the operator Py is monotone over Li(Q,.oZ, P) (see [6, Theorem 18]), we
can assume Y/ <Y for i=1,2, and ¥/ <Y} for every neN. We put
Y; = limY". As a consequence of Lemma 3.3 we obtain ¥; € Po.X; fori=1,2.
Moreover Y < Y>.

Now we suppose that X € Ly(€Q, o7, P) is an arbitrary function. We define
X, =X v (—n). These functions are bounded from below by functions in
Li(Q,.o/,P). As a consequence of the first part of this proof, we can get
Y, € PyX, with Y,>Y,,,. If Y=1mY,, then Lemma 3.3 implies that
YePyX. 1

The following property seems to be unknown even if X € L(Q, ., P). It is
very important for our purposes, since it simplifies the proof of many of our
statements by allowing a reduction to the case X € L;(Q, .<Z, P).

ProrosITION 3.5. Let X € Ly(Q,.</,P) and Y € P¢X. Then for every
peR we have Y A fePy(X A f)andY v € Py(X v ).

Proof. It is easy to see that the functions X A fand Y A f (X v fand
Y v p) satisfy Definition 3.1. 1

Remark. The property in Proposition 3.5 does not hold for other
conditional s-means, with s > 1, as the following simple example shows. Let
Q:={0,1}, P defined by P({0})=P({1})=1/2 and ¥ = {0,Q}. We
consider X := ly;. Then it is easy to see that PZ(BX) = /2. Therefore
for 1/2<B<1 we have PZ(f A X) =PZ(BX) = B/2#1/2=P7X A p.

PROPOSITION 3.6. Let X € Ly(2, o/, P). Then

(1) The set P¢X is a a-lattice (i.e., it is closed under suprema and infima
of countable subsets).

(2) It has a maximum (minimum) element Uy X (VyX).

(3) PyX is a convex set.

Proof. For (1), let Y,YePyX and n,meN. Then from
Proposition 3.5 we get Y™ :=(—m)Vv Y; AnePy((—m) v X A n)
for i=1,2. Since X, = (—m) v X A neli(Q,,P) then Py(Xy,) is a
lattice (see [6]). So Y["" v V""" = (—m) v (Y1 Vv Y2) A n € Py(X,,,). There-
fore by Lemma 3.3 taking the limit as n,m — 00 we obtain ¥ v Y, € PoX.
Applying this last fact to the lattice . and the functions —X, —Y; and —Y,,
we obtain Y] A Y, € PoX.
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Now given ¥, € PX we consider the increasing sequence ¥} v --- Vv ¥,
PyX. From Lemma 3.3 we obtain sup, ¥, € PX. Analogously inf, ¥,
Py X. All of this proves that P¢X is a o-lattice.

The proof of (2) and (3) follows as in [6, Theorem 14] and the proof of (1)
in this theorem, respectively. 1

=

€
€

4. CONVERGENCE A.E. AND MAXIMAL INEQUALITIES

The a.e. convergence of the extended conditional 1-means is a
consequence of Proposition 3.5 and results previously known of conver-
gence, see [8].

We consider ¥, = ./, n e N u {00}, o-lattices, such that Z,, ne N, is
increasing (decreasing) to ¥, 1.e. &, < L, 1(Lr1 © &£,) and & is the
o-lattice generated by |, Z(ZLw =, Ln)-

THEOREN 4.1. Let X € Ly(Q, o/, P) and ¥, n € N, be a-lattices increasing
or decreasing to the o-lattice L ~,. Suppose that Y, € Py X. Then

(1) lim, . Y, = Yy € Py _X and lim, ., ¥, .= Y® € Py _X.

(2) P({sup, [l > ) <2P({sup, Y, > 2} A {IX]> o)) for every o> 0.
By analogy to the classical case, we call (2) a “weak inequality of type (0,0)”.

(3) If X € Ly(Q, o, P) with s >0 then

/sup |Y,,|SdP<2/|X|SdP.
Q Q

n

This is the strong inequality of type (s, s).
4) If X e L(Q, o/, P), s> 0, and Py _X has only one element, namely Y,
then

/|Y—Yn|sdP—>0 when n — 0.
Q

Proof. Let k,m e N. Define the functions Xj, = (—k) v X A m and
Ykm = (—k) v Y, A m. As a consequence of Proposition 3.5 we have Y*" e
Py Xy . Since Xi,, € L1(£, .o/, P) we obtain from [8, Theorem 1] (—k) v
Yoo AmePy Xiy and (—k) v Y™ A me Py Xin. Applying Lemma 3.3
we get (1). Inequality (3) is consequence of (2) and (3.1). The convergence
result (4) is obtained from (1), (3) and the Dominanted Convergence
Theorem. Hence, it only remains to prove inequality (2). Let « > 0. As was
shown in [7] it suffices to prove the finite version of the maximal inequality,
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i.e. we will prove that for n e N,

P({ max |Yi|>oc}><2P({ max |I/i|>oc} N {|X|>oc}>. 4.1
1<i<n 1<i<n

Now, it is sufficient to prove (4.1) in the increasing case because if %;,
1<i<n, is a decreasing finite sequence then %,, %, ,---,%, is an
increasing sequence. Also we can suppose that X and Y; are positive, since
if X € Ly(Q, .o/, P) is an arbitrary function, from Proposition 3.5 we have
that ¥, € PoX* and ¥ € P X~ (where Z" =Z v 0 and Z~ = —Z A 0).
Therefore, assuming that the inequality is true for positive functions we
obtain

(oo <o) o )

< 2P({max Y, > oc} N{XT> oc})

+ 2P<{max Y7 > oc} N{X > oc}>
< 2P<{max |Y;| > ac} N{Xt> ac})

+ 2P<{max |Y;| > fx} N{X™ > oc})
:2P<{max |Y;| > oc} N {X|> oc}).

So we suppose X>0 and ¥;>0 and {¥;} increasing for 1<i<n. We
define 4; = {V1<a,...,Y_1<aY;>a}. We observe the following facts
about 4;:

(i) Each 4; is of the form {Y; > a} n D; with D; € #.
(i) The 4;’s are mutually disjoint sets.
(iii) (J; 4; = {max; ¥; > a}.

Therefore from (2) of Definition 3.1 we obtain P({X >a} nA4;)>
1/2P(4;). Finally summing over i we get (4.1). 1
5. TOTALLY ORDERED o¢-LATTICES

We say that % is totally ordered if for each pair of sets C}, C; € & we have
C) « Cy or C; < Cy. In this section, we will prove the results about the
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conditional 1-mean when the o-lattice . is totally ordered. When Q = [0, 1]
and ./ is the g-algebra of Lebesgue, an important example of a totally
ordered o-lattice is L := {(a,1]:0<a<1} U {[a,1]:0<a<1}. In this case,
L(L) is the set of all integrable and non-decreasing functions. In [4] Huotari,
Meyerowitz and Sheard studied the conditional 1-mean by monotone
functions. They obtained a charaterization of which functions between VX
and UgX are conditional 1-means. It is our purpose to generalize those
results to every probability measurable space and totally ordered o-lattice
and every X € Ly(Q,.oZ,P). In [10] Marano considered totally ordered o-
lattices. He worked with an apparently more restrictive class of o-lattices,
namely og-lattices ¥ such that there exists a map F:/ - &, where [ is a
closed subset of [0, 1], such that F is one to one, F(I) =%, and F is
monotone and continuous in a certain sense. However, his definition is
equivalent to the statement that # is totally ordered. In fact, to see this we
can consider the set 7 = P(%) because if & is totally ordered then P(C)) =
P(Cy), with Cy, Cy € &, implies that C; = C, a.e. Therefore, we can consider
F= PIQ)‘, where P ¢ denotes the restriction of P to &. In [10] Marano proved
(in the discrete case) that best @-approximants given ¥ are best
d-approximants with respect to an appropriate g-algebra. We shall prove
(see Theorem 5.3) that conditional 1-means given ¥ are conditional 1-
means given an appropriate o-algebra .oZ(.%*), where #* depends on X. Our
results do not totally include the one given in [10] because we are considering
a particular norm. However, we hope that the techniques developed here
may be adapted to more general settings.

If 9 = o/ we denote by ./(9) and ¥(%) the least g-algebra, o-lattice,
respectively, containing ¥. If for a certain .«/-measurable function Y, we
have ¥ = {{Y > a}, a € R} then we write o/(Y) and Z(Y) instead of .&/(%)
and #(%), respectively. Throughout this section we assume that ¥ is a
totally ordered o-lattice. Let X € Ly(Q2, .7, P) and E € o/. We denote by ¥
the o-lattice induced by # on the set E, ie. L ={AnE:Ae ¥}. Let
Y:E - R be a #g-measurable function. We say that ¥ € P¢(X,E)if Yisa
conditional 1-mean with respect to the set £. When Y € P¢(X,E) and ¥ is
the trivial lattice {(, £}, we say that Y is a constant conditional I-mean (note
that Y is a constant function in this case). Moreover, we define V(X,E)
(U(X,E)) as the minimum (maximum) of all constants conditional 1-mean
over E. These numbers satisfy the inequality

VX,E)Y<UX,E). (5.1)
Furthermore as a consequence of Definition 3.1, we have

P{X>UX,E)} nE)>1P(E) (5.2)
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and
PUX<V(X,E)} nE)=1P(E). (5.3)

Remark. The number U(X,E) (V(X,E)) is the maximum (minimum)
number satisfying (5.2) ((5.3)).

DEFINITION 5.1. For X € Ly(Q, .o/, P) we define &* = % as the set of
all the sets C* € £ such that for every C € ¥ and D € % we have

V(X,C\C*<UX,C* n D). (5.4)

This definition is equivalent to the statement that there exists a number o
such that

P({X>=a} nC* nD)=>1/2P(C* n D), (5.5)

P{X <a} n C\C*)=1/2P(C\C*) (5.6)

for every C € & and D € #. Using this fact, one can easily check that #* is
a totally ordered o-lattice (since .% is totally ordered, it is sufficient to prove
that #* is closed for increasing unions and decreasing intersections).

If YePyX and feR then the set C* = {Y > B} is F*-measurable.
Inequality (5.5) follows directly from (2) of Definition 3.1 with o = f.
Inequality (5.6) follows considering f3, | 8, using (1) of Definition 3.1 and
taking n — oo. Therefore, every Y € PyX is a #*-measurable function. This
implies that for every X € Ly(€2, o7, P) we have that

PyX = PysX. (5.7)

DEFINITION 5.2. Let 4 be a sub-g-algebra of the og-algebra .o/. We
define the set Atom(%) as the set of all atoms of the g-algebra 4, i.e. B €
Atom(Z%) iff B is #-measurable and for every #-measurable set £ = B we
have that P(E) = 0 or P(E) = P(B).

If Y is a ¥-measurable function then 4 € Atom(.7(Y)) iff there exists a
number o« with 4 = {Y =a} a.e. and P({Y = o})>0. Since Q has finite
measure then Atom(%) is a countable set for every sub-g-algebra 4.
Therefore, for every #-measurable function Y there exists a sequence oy
such that for the sets By = {Y = «;} we have that

Atom(.oZ(Y))\ Atom(.o/ (L)) = {By : k e N}. (5.8)

The following is the main result of this section.
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THEOREM 5.3. Let X € Ly(Q, .o/, P), Y € P¢X and By as in equality (5.8).
We define the set E = Q\ Uy Bk. Then we have

(1) Y € Py (X, E).

Remark 1. Part (1) of the above theorem generalizes Corollary 2 in [4]
because in that case .«Z(L) is the Borel g-algebra, with Q = [0, 1]. Therefore if
Y e Pyqy(X,E) then X =Y a.e. over E.

Remark 2. If & is non-totally ordered then Theorem 5.3 is not true in
general, as we show in the following simple example. Let Q = [0, 1]* with P
being the Lebesgue measure. Let us consider the lattice & = L. It is easy to
check that Z is a [.>-measurable function iff Z is monotone non-decreasing in
each variable separately. Now, we consider the following function X : Q —
R defined by X(w):=(w; — 1)(w; — 1)+ wy. Fix w; €][0,1], then the
function X(w;) = X(w) is a monotone decreasing function. Therefore,
the conditional 1-mean of X with respect to L is constant. To see this fact,
we can apply (2) of Theorem 5.3 because if X is non-increasing then
the o-lattice L* is the trivial lattice I* = {0, [0, 1]}. Now, it is easy to check
that the constant (1 + @y)/2 is a conditional 1-mean of X. We define the
function Y(w) = (1 4+ w,)/2 and let Z € Ly(L%). Then for every fixed w, €
[0,1] we have

1 1
/|X—Y|dw1</ X — Z|doo.
0 0

By Fubbini’s Theorem we obtain ||[X — Y||; <||X — Z||;- Hence, Y is a
conditional 1-mean of X with respect to the lattice 2. Now notice that
Atom(.«Z(Y)) = (. Therefore, the set E in (1) of Theorem 5.3 is equal to Q.
We observe that the o-algebra .«7(L%) is the Borel c-algebra 1> of Q.
Therefore if Y € Pp2X then we would have ¥ = X a.e., but this is not true.

Remark 3. Whether or not (2) of Theorem 5.3 is true for every o-lattice
it remains an open question.

Before proving Theorem 5.3 we give a corollary of it. This corollary
together with Theorem 5.3 generalizes [4, Theorem §].

COROLLARY 5.4. Let X € Lo(Q, o/ ,P) then Y € PoX iff VX <Y< UgX
and Y is ¥*-measurable.

Proof. The “only if” part was already established. Let us see the “if”
part. We have that Vo X <Y <UgX and, as a consequence of (2) of Theorem
5.3, that Vo X, UgX € Py 4+ X. Since A (L*) is a o-algebra it follows, from
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Corollary 2.3 that Y € P, 4+X. Now, since Y is #*-measurable, again from
(2) of Theorem 5.3 we obtain that ¥ € PoX. 1

Proof (1) of Theorem 5.3. By the inequalities in (2.12) and the remark
following Definition 3.1, it is sufficient to prove

PUX<Y} nEnA)=LPE N A) (5.9)
and
P{X=Y} nEnA)=L1PE ~4) (5.10)

for every 4 € o/ (¥). We prove (5.10). The proof of (5.9) is a consequence of
inequality (5.10) applied to —X and —Y, using the fact that .«/(%) = #(Z).

The og-algebra /(%) is generated by the algebra of sets of the form
UL, C:nD;, with C;e & and D; € 2. By elementary facts of measure
theory, one can get, for every 4 € .o/(<) and ¢>0, a collection of sets
Cie ZandD;e #,i=1,...,nsuch that P(4 A |J_, C; n D;)<e. Since & is
a totally ordered o-lattice we can suppose C, < --- = C;. Now since & is
also totally ordered, we can assume that D; < --- = D,. Notice that if for
some i we have D;.| < D;, then C; nD; U Ci11 n D;; = C; n D;. Hence the
set Ciy1 mn D;y1 can be removed from the union. We put D; = D, N Cip1
(where C,11 :=0). Then |J,C; nD; =J; Ci n D;. So we can suppose that
the sets C; n D; are mutually disjoint. Thus, it is sufficient to prove (5.10) for
A=CnDwithCe Zand De £.

We define
o :Q\Lmj {Y = o}
i=1
For each m € N we have a permutationa: {1,...,m} — {l,...,m} such that
Olg() < Uit 1)- W€ put o) == —00 and dy(muq1) = 00. Then
E, = LmJ {oe) <Y <ttg(it1)}- (5.11)
0

Let Ce % and D e &. From (5.11) we obtain
CnDnNnE, ::UCl-mD,-, (5.12)
i=0

where C; := C N {Y > 0,43} and D; = D 0 {Y <og+1)}. Suppose C; N D; #0
for every i. We define

p;=supi{a:C; < {Y >oa}}.
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Trivially, C; < {Y=8;} and o, <f,; <0gt1). Since for o> f; we have
C; & {Y >u} and & is a totally ordered set then {Y > a} < C;. Now taking
o | fB; we get

{Y>B} = C = {Y=p}. (5.13)
Now we define sets 4; according to the following cases:

(1) If P({Y = p;}) = 0 then 4; .= {Y > f3,}. Here P(C; A 4;) = 0.

(2) P{Y = p;}) >0 and {Y = f;} € Atom(o/(¥)). In this case, we have
Ci={Y>p;} ae. or C;={Y=p,} ae. then we put 4, ={Y>p;} or
A; = {Y =p;}, respectively. Again we get P(C; A 4;) = 0. We observe that
the relation given in (3)(b) of Theorem 2.1 holds with {Y >«} in the place of
{Y >a}.

(3) P{Y = p;})>0 and {Y = f,} ¢ Atom(/(¥)) (we observe that in
this case f; is some ay,). Here defining 4, = {Y > f,} we get P(C; A
A)<P({Y = f;}). In this case if f; = o, then P(C; A 4;) = 0.

In any case P(C; A 4;)) =0 or P(C; A A;)<P({Y = o,}) with k; >m. By
virtue of the inequality o) <f; <ogi41) We can affirm that k; #k; if i#j.
Therefore, we obtain the inequality

P<Cr\DmEmA LmJAimD,)g > PHY = ou}). (5.14)

i=1 k=m

From (3)(b) of Theorem 2.1 we obtain
m 1 m
Pl{iX=Y} n DiﬁAi =>—P Dir\A,- .
(tror o Groa)eir(Ooos)
Given ¢ > 0 we choose M € N such that the right member of (5.14) is less

than ¢ for every m > M. Now since C; n D; D D; n 4;, by (5.14) we have

PUX=Y} mCmDr\Em)>P<{X>Y}mUDimA,»>
i=1

1 m
1
ZEP(CmDmE,,,)—a

for every m > M. Since ¢ is arbitrary, taking the limit as m goes to oo we
obtain (5.10) with 4 =Cn D. 1
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In order to prove (2) of Theorem 5.3 we will need the following lemmas.

LEMMA 5.5. Let E € o/ and y € R. Suppose that V(X,E)<y<U(X,E) or
VX,E)<y<UX,E). Then

P({X 27} nE) = PX <7} N E) = L P(E).

Proof. Suppose that V(X,E)<y<U(X,E). The other case is similar.
Then from (5.2) and (5.3) we obtain P({X >y} n E)>1/2P(E) and P({X <
v} N E)>=1/2P(E). These inequalities imply the statement of the lemma. 1

LEMMA 5.6. Suppose X € Lo(Q, o/,P) and Y € Py«X. Let A€ Atom
(A(Y))\Atom(Z(L)). Let ¥ be a sub-c-lattice of L* with the following
properties:

(1) If C* e &* satisfies P(A n C*) =0 or P(4 N C¥) = P(4) then C* e
/

.
(2) The set {Ce %" :0<P(4n C)<P(A)} is finite.

Then Y EPy/(f/)(X,A)

Proof. We recall that A={Y=0a},P(A)>0 and A¢ Atom
(/(%)). Suppose that the lattice induced by %’ over 4 is equal to {Cy N
A,...,C,n4}y with 0=CnAdc---cC,nd=A. Let E; =A4n
(Ci—Ci_1), i=1,...,n. We have that the c-algebra induced by .&/(¥’)
over A4 is equal to the g-algebra generated by the sets E; and the sets E; are
atoms of this g-algebra. Therefore, it is sufficient to prove that

VIX,E)<a<UX,E) fori=1,...,n. (5.15)
Before proving this fact, we will show that the following inequalities hold:
VX, A\C)<a<UWX,A4\C) fori=1,...,n (5.16)

and
VX, AN C)<oa<UX, A0 C) fori=1,...,n (5.17)
Let us first consider these inequalities in the case i = n. In this case just
inequality (5.17) has sense. In virtue of inequalities (5.2), (5.3) and the

remark following them, we have to prove that

P({X>zu} nA)=1P(4) and  PUX <o} nA)=1PA). (5.18)
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These inequalities are consequences of (5) of Theorem 2.1 putting B = {a}
and C =D = Q.
We suppose i <n. Putting B = {a}, D= Q\C; and C := C; in (5)(a) and
(b) of Theorem 2.1 we obtain
P{X =0} 0 (4\C)) =1 P(4\C) (5.19)
and

P{X<a} n (40 C)=1PA N C). (5.20)

Now from inequalities (5.2), (5.3) and the remark following them, we get

V(X,4 N C)<a<UWX,A\C)). (5.21)
Since C; € &¥*,i=1,...,n, we have from Definition 5.1 that
V(X,A\C)<SUX, AN C). (5.22)

If we can prove that V(X,4\C)<a<U(X,4 n C;), then we would have
proved (5.16) and (5.17). Suppose that this inequality is not true. We can
assume that a < V(X, 4\ C;) (the other case is similar). Then from (5.21) and
(5.22), we get V(X,4A N C))<a<U(X,A n C;). Lemma 5.5 implies that

P{X<a} nAnC))=1PANC). (5.23)
Since o< V (X, A\C;), from the remark following (5.3) we have
P({X <o} n (4\C) <L PA\C). (5.24)

Adding (5.23) and (5.24), we obtain P({X <a} nA4)<1/2P(4) which
contradicts (5.18).

From inequalities (5.16) and (5.17) we obtain (5.15) in the particular case
i =1 or i =n. Therefore in order to prove (5.15), we can suppose that
1 <i<n. Suppose that there exists i such that U(X,E;)<o (the case a<
V(X,E;) is similar). Then by virtue of Definition 5.1 (note that
A\C; = {Y =\ C)) and inequality (5.16), we get

V(X,A\C)<UWX,E)<a<UX,4\C). (5.25)

Let  be any number with U(X, E;)<f<U(X,A4\C;). Then V(X,4\C) <
B<U(X,A\C;) and P({X =B} N E;)<1/2P(E;). Therefore from Lemma 5.5
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we obtain P({X = f} n 4\C;) = 1/2P(4\C;). Hence,

PU{X =B} N (4\Ci1)) =P({X =B} 0 (4\C)
+ PUX =B} N E)
<iPA\Ciy).

Thus U(X,A4\Ci_1)<p, since f is an arbitrary number with U(X, E;)<f <
U(X,4\C;) we get UX,A4\Ci_)) <U(X, E;). Therefore,

VX,A N C)<SUX,A\C_ ) SUWX,E)<a<UWX, A Cy). (5.26)

Now, from (5.25), (5.26) and Lemma 5.5 we deduce the following two
inequalities:

P({X >0} 0 (4\G) =5 P(A\C)), (5.27)

P{X=u} nAnCiy) =1PA N Ciy). (5.28)
Moreover, since U(X, E;) <o, we obtain
P({X =0} N E)<1P(E). (5.29)

Finally, adding (5.27)-(5.29), we obtain P({X =a} N A)<%P(A) which
contradicts (5.18). 1

LemMMmA 5.7. Let X, Y and A as in Lemma 5.6. Then Y € P 4+(X,A).

Proof. We consider the set I = {P(C¥): C* € £* and 0<P(C* n A)<P
(4)}. Let {ry:k e N} be a dense and countable subset of /. Now we define
the following sequence of sub-g-lattices of #*. For every n we define £, by
the condition C € &, iff C e £* and P(C nA) =0 or P(C n A) = P(4) or
P(C) = r; for some k = 1,...,n. It is easy to check the following facts about
ZL,: () Z,’s are o-lattices; (i) o (ZL,) T A(L*). Therefore, the lemma is a
consequence of Lemma 5.6 and Theorem 4.1. 1

LEMMA 5.8. Let & be a sub-g-algebra of /. Suppose Ee€ ¥ and
F=Q\E. Then Y € PoX iff Y € Po(X,E) and Y € P4 (X, F).

Proof. Tt is a consequence of Corollary 2.2 and the well known
properties of the conditional expectation operator. 1

Proof of (2) of Theorem 5.3. 1t is sufficient (by virtue of (5.6)) to prove
that Py=X = P44 X 0 Lo(ZL™). Notice that the inclusion Py+X D P 44X
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NLy(£*) is clear. It only remains to prove that Pg+X < P gxX 0 Lo(ZL*).

If

Y € Py+X then, from (1) of Theorem 5.3 and (5.6) we obtain Y e

P.y#)(X,E). We recall that E = Q\ |J, By, where the Bjs are defined in (5.7).
Since Y is a .oZ(.#*)-measurable function we have Y € P g (X, E). On the
other hand, since E is a .«/(&*)-measurable set, in order to prove (2) of
Theorem 5.3 it is sufficient to show that Y € P, 4#(X, F), where F := Q\E =
(Ui Bx (see Lemma 5.7). Since each set By is .oZ(¥*)-measurable, again by
virtue of Lemma 5.7, we only need to prove that ¥ € P, o+(X, By) for every

k

1

and that was already proved in Lemma 5.7. 1
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