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Abstract

The cyclic projections algorithm is an important method for determining a point in the intersection of a
finite number of closed convex sets in a Hilbert space. That is, for determining a solution to the “convex
feasibility” problem. We study the rate of convergence for the cyclic projections algorithm. The notion of
angle between convex sets is defined, which generalizes the angle between linear subspaces. The rate of
convergence results are described in terms of these angles.
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1. Introduction

A frequent problem that arises in various areas of mathematics and physical sciences is to
determine a point in the intersection of finitely many closed convex sets in a Hilbert space. This is
called the convex feasibility problem. (See [5] for a nice review of this problem and of the various
projection algorithms for solving this problem, and [10] for an in-depth exposition on the convex
feasibility problem as it pertains to image recovery.) The cyclic projections algorithm (CPA) is
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arguably the most important and useful of all the algorithms for solving the convex feasibility
problem (see, e.g., [9,12,5,6]).

In this paper we investigate the rate of convergence for the CPA. In the special case when all
the convex sets are linear subspaces, this has already been considered in the papers [28,12,24,15].
For that situation, it was seen that (upper bounds on) the rate of convergence could be described in
terms of angles between the various subspaces involved as well as the norms of various products
of orthogonal projections. For general convex sets, this has motivated us to define a (localized)
angle between convex sets, which generalizes the well-known notion of angle between linear
subspaces. Then we show how to describe the rate of convergence of the CPA in terms of these
angles.

In Section 2 we describe the problem and record some basic facts. In Section 3, we give a
localized definition of the dual cone of a set—called the ε-dual cone (which reduces to the usual
dual cone if the set happens to be a convex cone). Then we show that the error vector at the nth step
of the CPA lies in the closure of a sum of certain ε-dual cones. This result provides the motivation
for the definition of ε-angle between convex sets in Section 4. The ε-angle is a localized version of
angle (which reduces to the usual—global—notion of angle when the sets are linear subspaces),
and allows us to prove the main rate of convergence result (Theorem 4.6). When we specialize this
convergence result to the case of two linear subspaces, we recover the well-known (and sharp!)
rate-of-convergence result of Aronszajn [2] and Kayalar and Weinert [24] (Corollary 4.8).

In a sequel to this paper [16], we show that (the cosines of) these angles can often be expressed in
terms of the norms of certain nonlinear operators: namely, the product of certain metric projections
onto convex sets. Moreover, in the applications, it is important to know exactly when such cosines
are strictly less than 1, and we will also give such conditions in [16].

We conclude this Introduction by noting that while the notion of angle appears explicitly in
some areas of mathematics (see, e.g., [13] and the references cited therein), it often appears
implicitly in many other areas. For example, it can be shown to appear (implicitly) in probability
and statistics, tensor analysis and Grassman algebras, and in signal processing. To see this, we
will provide a very simple example for these areas mentioned. Suppose u = (u1, u2, . . . , un)

and v = (v1, v2, . . . , vn) are vectors in Rn with norm one, 〈u, v〉 := ∑n
1 uivi �0, and

∑n
1 ui =∑n

1 vi = 0. Then the cosine of the angle between u and v is defined by c := 〈u, v〉. If two random
variables U and V take on the values in {u1, u2, . . . , un} and {v1, v2, . . . , vn} respectively with
equal frequency, then the covariance and the correlation [18] of U and V are both c. The covariance
matrix corresponding to the vectors u and v is given by

A =
[ 〈u, u〉 〈u, v〉

〈v, u〉 〈v, v〉
]

.

The largest (resp., smallest) eigenvalue of A is given by 1 + c (resp., 1 − c) since c�0. A
principal component of the data set {(ui, vi) | i = 1, 2, . . . , n} is the span of the eigenvector of
the covariance matrix A corresponding to the largest eigenvalue (1 + c). The condition number
‖A‖ ‖A−1‖ of the covariance matrix A [21, p. 25] is given by (1+c)/(1−c). For the tensor analysis
example [7], if the operator h : Rn × (Rn)∗ → R is defined by h(x, y∗) = 〈u, x〉 y∗(v), then h
is in the tensor product space T 1

1 (Rn). The contraction of h is defined by
∑n

1 h(ei, e
∗
i ), where the

vectors e1, e2, . . . , en and e∗
1, e∗

2, . . . , e∗
n are the canonical bases in Rn and (Rn)∗, respectively.

Note that
n∑
1

h(ei, e
∗
i ) =

n∑
1

〈u, ei〉e∗
i (v) =

n∑
1

uivi = c,
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that is, the contraction of h is c. If n = 3, then the vector u ∧ v, defined by

u ∧ v = (u2v3u3v2)(e2 ∧ e3) + (u1v3u3v1)(e1 ∧ e3) + (u1v2u2v1)(e1 ∧ e2),

is in the Grassman algebra
∧2

(R3) (see [7, pp. 92–95]), and is the familiar cross product. The
cross product has norm equal to the sine of the angle between u and v. Lastly, in signal processing,
the angle of arrival of an incoming signal across a receiver array is often found by maximizing
the Friedrichs angle between the steering vector and the noise subspace [27].

2. The problem

Throughout the paper H will denote a real Hilbert space with inner product 〈x, y〉 and induced
norm ‖x‖ = √〈x, x〉. If K is a nonempty closed convex subset of H, the well-known result of
Riesz [26] states that each x ∈ H has a unique best approximation (or nearest point) PK(x) in K.
That is,

‖x − PK(x)‖ < ‖x − y‖ for every y ∈ K\{PK(x)}.
The mapping PK : H → K thus defined is called the metric projection onto K.

If D ⊂ H , the (negative) dual cone of D is the set

D◦ := {x ∈ H | 〈x, d〉�0 for every d ∈ D}.
The dual cone is a closed convex cone in H. Recall that a convex cone is a convex set C with the
property that �x ∈ C whenever x ∈ C and ��0. The conical hull of a set A, denoted cone A,
is the intersection of all convex cones that contain A. The closure of cone A will be denoted by
cone A. The interior of the set A is denoted by int A. Throughout the paper, we use the term
subspace to mean linear subspace. All other undefined terminology and notation is standard and
can be found, for example, in [14].

We will repeatedly be using some facts that we list here for convenience.

Fact 2.1 (Characterization of best approximations). Let K be a closed convex set in H, x ∈ H ,
and x0 ∈ K . Then x0 = PK(x) if and only if x − x0 ∈ (K − x0)

◦. That is, if and only if

〈x − x0, y − x0〉�0 for every y ∈ K.

Fact 2.2 (Best approximations from translates). If D is a closed convex set and y is any point in
H, then

PD−y(x) = PD(x + y) − y for every x ∈ H.

Fact 2.3. Let K be a nonempty closed convex subset of H and let ∅ �= S ⊂ H .

(1) If 0 ∈ K , then K ∩ K◦ = {0}.
(2) PK◦(S) = {0} if and only if S ⊂ cone (K).
(3) If 0 ∈ K , then PK(S) = {0} if and only if S ⊂ K◦.

Fact 2.4 (Metric projections are nonexpansive). If K is a nonempty closed convex subset of H,
then PK is nonexpansive; that is,

‖PK(x) − PK(y)‖�‖x − y‖ for all x, y ∈ H.
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In particular, if 0 ∈ K , then

‖PK(x)‖�‖x‖ for all x ∈ H.

Fact 2.5 (Commuting metric projections). Let M and N be closed (linear) subspaces in H. Then
PM and PN commute if and only if PMPN = PM∩N .

In particular, since M∩N ⊂ M , PM and PM∩N must commute. It follows that PM and P(M∩N)⊥
must also commute, and hence that PMP(M∩N)⊥ = PM∩(M∩N)⊥ always holds.

Fact 2.1 goes back at least to Aronszajn [2] (see also [14, Theorem 4.1, p. 43]), while Fact 2.3
follows easily from Fact 2.1. Fact 2.2 is well-known and easy to prove (see [14, Theorem 2.7, p.
25]). Fact 2.4 is from Phelps [25] (see also, [14, Theorem 5.5, p. 72]). Finally, Fact 2.5 is classical
(see, e.g., [14, Theorem 9.2, p. 194]).

Now let us describe the cyclic projections algorithm. Let C1, C2, . . . , Cr be closed convex
subsets of the Hilbert space H with C := ⋂r

1 Ci �= ∅. To determine a point in C, the cyclic
projections algorithm (CPA) is an iterative scheme that can be described as follows. Start with
any point x ∈ H , and define the sequence (xn) by

x0 = x and xn = PC[n](xn−1) (n = 1, 2, . . .), (2.1)

where [·] : N → {1, 2, . . . , r} is the function “mod r” with values in {1, 2, . . . , r}. That is,

[n] := {1, 2, . . . , r} ∩ {n − kr | k = 0, 1, 2, . . .} (n = 1, 2, . . .).

In particular,

xnr = (PCr PCr−1 · · · PC1)
n(x) (n = 0, 1, 2, . . .). (2.2)

The following result is well-known [9]. We include a brief proof for completeness.

Proposition 2.6. The sequence (xn) defined in (2.1) is Fejer monotone relative to C. That is, for
each c ∈ C and each n�1,

‖xn − c‖�‖xn−1 − c‖. (2.3)

Proof. Since the PCi
are nonexpansive, it follows that for each c ∈ C and n ∈ N,

‖xn − c‖ = ‖PC[n](xn−1) − c‖ = ‖PC[n](xn−1) − PC[n](c)‖�‖xn−1 − c‖. � (2.4)

The following result shows among other things that the sequence (xn) generated by the CPA
always converges weakly to some point in C.

Theorem 2.7. The sequence (xn) defined in (2.1) converges weakly to some point x∞ ∈ C:

xn → x∞ weakly as n → ∞. (2.5)

In particular,

xnr = (PCr PCr−1 · · · PC1)
n(x) → x∞ weakly as n → ∞.

Moreover,

lim
n→∞ ‖PC(xn) − x∞‖ = 0. (2.6)
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Remark. The first statement of Theorem 2.7 was proved by Bregman [9]. Baillon and Brezis [3]
essentially showed that (PC(xn)) converged in norm to some element of C. Bauschke [4, Theorem
6.2.2(iii)] established that the norm limit of (PC(xn)) was in fact the weak limit of (xn), i.e., he
established Eq. (2.6).

We should mention that in the special case when all the convex sets are affine sets (i.e., translates
of subspaces), then the CPA yields a stronger result than Theorem 2.7 (see also [14, p. 217]):

Theorem 2.8 (von Neumann–Halperin). Let A1, A2, . . . , Ar be closed affine sets in H with A :=⋂r
1 Ai �= ∅. Then for each x ∈ H ,

lim
n→∞ ‖(PAr PAr−1 · · · PA1)

n(x) − PA(x)‖ = 0. (2.7)

In other words, in this case x∞ = PA(x) and the sequence (xn) converges strongly to PA(x).

Actually, both von Neumann and Halperin stated their results for subspaces (von Neumann for
r = 2 and Halperin for general r), but it is not hard to show that their results also hold more
generally for affine sets.

This result shows that in the special case where all the convex sets are affine sets, the CPA
produces a sequence that actually converges strongly to the best approximation in the intersection
of the initial point!Also, in a finite-dimensional space, weak and norm convergence are equivalent,
so that the CPA iterates always converge in norm. Up to just recently, it was not known whether
the convergence in Bregman’s theorem must only be weak. However, Hundal [22] has constructed
an example of two convex cones in �2 for which the convergence of the iterates generated by the
CPA is not strong.

In contrast to the von Neumann–Halperin theorem, it is easy to construct an example of two
convex sets in the plane such that the sequence generated by the CPA converges in norm to a point
in the intersection that is not the best approximation of the initial point. (If one is specifically
interested in finding the nearest point in the intersection to any given point in the space, then
there is a beautiful method, due to Dykstra [19] in a special case and to Boyle and Dykstra [8]
(see also [14, Chapter 9]) in general, called Dykstra’s algorithm that does this. But it is generally
more complicated than the cyclic projections algorithm, and we shall not consider the Dykstra
algorithm in this paper.)

3. �-Dual Cones

To develop results concerning the rate of convergence of the sequence (xn) (defined in Theorem
2.7) to x∞, it turns out to be convenient to introduce the following variant of the notion of the
dual cone of a convex set.

Definition 3.1. For any closed convex set A ⊂ H and any ε�0, the ε-dual cone of A is the set

A◦,ε := cone {x − PA(x) | x ∈ B(0, ε)}, (3.1)

where B(y, ε) := {x ∈ H | ‖x − y‖�ε} is the closed ball centered at y with radius ε.

We collect a few simple but useful consequences of this definition in the following lemma.

Lemma 3.2. Let A be a closed convex set in H.

(1) A◦,ε is a convex cone, and A◦,ε ⊂ A◦,� for each 0�ε < �.
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(2) For each y ∈ H ,

(A − y)◦,ε = cone {x − PA(x) | x ∈ B(y, ε)}. (3.2)

(3) If y ∈ int A, then

(A − y)◦,ε = {0} = (A − y)◦

for each ε > 0 sufficiently small.
(4) In general, A◦,ε �= A◦.

Proof. (1) is obvious, while (2) follows using the easily verified fact that PA−y(x) = PA(x+y)−y

(see, e.g., [14, Theorem 2.7(1)(ii), p. 25]). Obviously, (3) is a simple consequence of (2).
Finally, to verify (4), let H = R2 and take A to be a unit disk centered at the point (0, 1). Then,

for any 0 < ε <
√

2, A◦,ε is a cone in the lower half of the plane whose “thickness” depends on
ε, while A◦ is a ray—the lower half of the vertical axis. More precisely, A◦ = cone {(0, −1)} and

A◦,ε = cone
{
(−ε, ε2−2√

4−ε2 ), (ε, ε2−2√
4−ε2 )

}
. �

In spite of statement (4) in Lemma 3.2, the next result shows that ε-dual cones may always be
expressed entirely in terms of ordinary dual cones!

Theorem 3.3. Let A be a closed convex set, y ∈ A, and ε > 0. Then

(A − y)◦,ε = cone

⎧⎨
⎩

⋃
x∈A∩B(y,ε)

(A − x)◦
⎫⎬
⎭ . (3.3)

In particular,

(A − y)◦,ε ⊃ (A − y)◦. (3.4)

Proof. Assume first that y = 0 ∈ A. We must show that

A◦,ε = cone

⎧⎨
⎩

⋃
x∈A∩B(0,ε)

(A − x)◦
⎫⎬
⎭ . (3.5)

Let D = {x − PA(x) | x ∈ B(0, ε)}. It follows by definition that cone D = A◦,ε. Let

E =
⋃

x∈A∩B(0,ε)

(A − x)◦.

Thus to verify (3.5), we must show that cone D = cone E. To do this, it suffices to show that
D ⊂ E, and for each e ∈ E there exists � > 0 such that �e ∈ D.

To prove D ⊂ E, let y ∈ D. Then y = x − PA(x) for some x ∈ B(0, ε). Thus

y = x − PA(x) ∈ (A − z)◦, where z = PA(x). (3.6)

Since 0 ∈ A, Fact 2.4 implies that

‖z‖ = ‖PA(x)‖ = ‖PA(x) − PA(0)‖�‖x − 0‖ = ‖x‖�ε.
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Thus z ∈ A ∩ B(0, ε) and hence

y ∈ (A − z)◦ ⊂
⋃

z′∈A∩B(0,ε)

(A − z′)◦ = E.

It remains to show that for each e ∈ E, there exists � > 0 such that �e ∈ D. Fix any e ∈ E. If
e = 0, then 1 · e = 0 ∈ D, since 0 ∈ A. Thus we may assume that e �= 0. Then e ∈ (A − x)◦ for
some x ∈ A ∩ B(0, ε). Let ε′ = 1

2 (ε − ‖x‖) and z = x + (ε′/‖e‖)e. Then ε′ �0 and

‖z‖�‖x‖ + ε′ = 1
2 (ε + ‖x‖)�ε

implies that z ∈ B(0, ε) and z − x ∈ (A − x)◦. Since x ∈ A, Fact 2.1 implies that x = PA(z).
Thus

ε′

‖e‖e = z − x = z − PA(z) ∈ D.

Taking � = ε′/‖e‖, we see that �e ∈ D. Thus we have verified (3.5).
Now let y ∈ A and ε > 0. Applying (3.5) to the set A − y (which does contain 0), we obtain

(A − y)◦,ε = cone

⎧⎨
⎩

⋃
x∈(A−y)∩B(0,ε)

(A − y − x)◦
⎫⎬
⎭ .

But x ∈ (A − y) ∩ B(0, ε) if and only if z := x + y ∈ A ∩ B(y, ε). Thus⋃
x∈(A−y)∩B(0,ε)

(A − y − x)◦ =
⋃

z∈A∩B(y,ε)

(A − z)◦,

and we obtain (3.3).
The inclusion (3.4) follows from (3.3) by noting that y ∈ A ∩ B(y, ε). �

In the case when C is a polyhedron and y ∈ C, the ε-dual cone of C − y is the same as its
ordinary dual cone whenever ε is sufficiently small. This is the content of our first corollary of
Theorem 3.3.

Corollary 3.4 (ε-dual cone of a polyhedron). Let hi be a nonzero element of H, let �i be a real
scalar, and let

Hi := {x ∈ H | 〈x, hi〉��i} for i = 1, 2, . . . , r.

Then, for each y in the polyhedron P := ⋂r
1 Hi and each ε = ε(y) > 0 sufficiently small,

(P − y)◦,ε = cone {hi | i ∈ I (y)} = (P − y)◦ , (3.7)

where I (y) := {i | 〈y, hi〉 = �i} is the set of active indices for y relative to P .
In particular, for ε > 0 sufficiently small,

(P − y)◦,ε =
r∑
1

(Hi − y)◦,ε =
r∑
1

(Hi − y)◦ = (P − y)◦ . (3.8)
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Proof. Let I = {1, 2, . . . , r}. Without loss of generality, we may assume that ‖hi‖ = 1 for each
i ∈ I . By [14, Theorem 6.40, p. 115] we see that the second equality of Eq. (3.7) holds. Also,
using relation (3.4), we have that for each ε > 0,

(P − y)◦,ε ⊃ (P − y)◦ . (3.9)

Thus to complete the proof of the first statement, it suffices to show that for ε > 0 sufficiently
small,

(P − y)◦,ε ⊂ cone {hi | i ∈ I (y)}. (3.10)

We first show that there exists an ε > 0 such that for every x ∈ P ∩ B(y, ε), it follows that
I (x) ⊂ I (y). If I (y) = I , this is trivial: any ε > 0 works. Otherwise, for each i ∈ I\I (y), we
have that 〈y, hi〉 < �i . Choose any ε such that

0 < ε < min{�i − 〈y, hi〉 | i ∈ I\I (y)}.
Then for each x ∈ P ∩ B(y, ε) and each i ∈ I\I (y), we see that

〈x, hi〉 = 〈x − y, hi〉 + 〈y, hi〉�ε + 〈y, hi〉 < �i .

Thus I (x) ⊂ I (y) and using Theorem 3.3 and [14, Theorem 6.40, p. 115] again, we obtain

(P − y)◦,ε = cone

⎧⎨
⎩

⋃
x∈P∩B(y,ε)

(P − x)◦
⎫⎬
⎭

= cone

⎧⎨
⎩

⋃
x∈P∩B(y,ε)

cone {hi | i ∈ I (x)}
⎫⎬
⎭

⊂ cone

⎧⎨
⎩

⋃
x∈P∩B(y,ε)

cone {hi | i ∈ I (y)}
⎫⎬
⎭

= cone {cone {hi | i ∈ I (y)}} = cone {hi | i ∈ I (y)}.
This completes the proof of the first statement of the theorem.

To verify the last statement of the theorem, use the first statement (with r = 1) and [14, Theorem
6.40, p. 115]. �

There are also other strengthenings of Theorem 3.3 in the particular cases where A is a convex
cone or an affine set. We state them next.

Corollary 3.5. Let K be a closed convex cone, A a closed affine set, y ∈ A, and ε > 0. Then

K◦,ε = K◦ (3.11)

and

(A − y)◦,ε = (A − y)◦. (3.12)
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In particular, if M is a closed subspace and y ∈ M , then

(M − y)◦,ε = (M − y)◦ = M⊥. (3.13)

Proof. By Theorem 3.3, we have that

K◦,ε = cone

⎧⎨
⎩

⋃
x∈K∩B(0,ε)

(K − x)◦
⎫⎬
⎭

= cone

⎧⎨
⎩

⋃
x∈K∩B(0,ε)

(K◦ ∩ x⊥)

⎫⎬
⎭ using [14, Theorem 4.5(5), p. 46]

⊂ cone K◦ = K◦ since K◦ is a cone.

But since 0 ∈ K , it follows from (3.4) that K◦,ε ⊃ K◦. Thus (3.11) holds.
Since y ∈ A, we have that M := A − y is a subspace, hence a convex cone, so that by the first

part,

(A − y)◦,ε = M◦,ε = M◦ = (A − y)◦,

which proves (3.12). �

Unlike the polyhedron case in Corollary 3.4 and the affine set case in Corollary 3.5, when K
is a closed convex cone it is not true in general that (K − y)◦,ε = (K − y)◦ for each y ∈ K .
However, there is something positive we can say about the translated cone case.

Lemma 3.6. Let K be a closed convex cone with y ∈ K and ε > 0.

(1) We have

(K − y)◦,ε = cone {PK◦(z) | z ∈ B(y, ε)}. (3.14)

(2) If y ∈ int K , then

(K − y)◦,ε = (K − y)◦ = {0} (3.15)

holds for ε > 0 sufficiently small.
(3) In general, however,

(K − y)◦,ε �= (K − y)◦. (3.16)

Proof. (1) Using Definition 3.1 and the fact that for cones K, x − PK(x) = PK◦(x) for each
x ∈ H (see [14, p. 74]), we obtain (3.14).

(2) This is a special case of Lemma 3.2(3).
(3) This is a consequence of the example given next. �

Example 3.7. Let H = R3, K = {x = (�, �, �) | ��0, �2 + �2 ��2}, and y = (1, 1, 0). Then
K is a closed convex cone, y ∈ K , K◦ = −K ,

(K − y)◦ = cone {(−1, 1, 0)},
and for each ε > 0, (K − y)◦,ε properly contains (K − y)◦.
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We outline the proof of this example. The proof that y ∈ K is obvious. To see that K is a closed
convex cone can be done by verifying that C := {(1, �, �) | �2 + �2 �1} is a convex set and
K = cone C = {�c | ��0, c ∈ C}. It follows that K◦ = (cone C)◦ = C◦. So to verify that
K◦ = −K , it suffices to verify that C◦ = −K . To this end, let x ∈ −K . Then x = −�(1, x2, x3),
where ��0 and x2

2 + x2
3 �1. For each c ∈ C, we have that c = (1, c2, c3), where c2

2 + c2
3 �1.

Using Schwarz’s inequality, we obtain

〈c, x〉 = �(−1 − c2x2 − c3x3) = �[−2 − 〈(1, c2, c3), (1, x2, x3)〉]
� �(−2 + ‖c‖ ‖(1, x2, x3)‖)��(−2 + √

2
√

2) = 0.

Hence x ∈ C◦ and thus −K ⊂ C◦. Conversely, suppose x ∈ C◦. Then for each c ∈ C, we have

0�〈x, c〉 = 〈(x1, x2, x3), (1, c2, c3)〉 = x1 + x2c2 + x3c3, (3.17)

In particular, choosing c = (1, 0, 0) in (3.17), we deduce that x1 �0. Similarly, choosing c =
(1, x2(x

2
2+x2

3 )−1/2, x3(x
2
2+x2

3 )−1/2), we deduce that
√

x2
2 + x2

3 �−x1 = |x1| and sox2
2+x2

3 �x2
1 .

Thus x ∈ −K and hence C◦ ⊂ −K . This proves that C◦ = −K; that is, K◦ = −K .
Next note that (K − y)◦ = K◦ ∩ y⊥ (see [14, Theorem 4.5(5), p. 46]). Moreover, it is easy

to check that y⊥ = span {(−1, 1, 0), (0, 0, 1)} and hence, since K◦ = −K , that (K − y)◦ =
cone {(−1, 1, 0)}.

By Theorem 3.3, we see that (K − y)◦,ε ⊃ (K − y)◦ for each ε > 0. Now let ε > 0
and z = (1, 1, ε) to complete the proof, it suffices to show that the element z0 := PK◦(z) ∈
(K − y)◦,ε\(K − y)◦. By Lemma 3.6(1), we see that z0 ∈ (K − y)◦,ε. By way of contradiction,
suppose that z0 ∈ (K − y)◦. Then by the above, z0 = �(−1, 1, 0) for some ��0. There are two
possibilities: � = 0 or � > 0. In the former case, z0 = 0 and by using Fact 2.1, we deduce that

(1, 1, ε) = z = z − z0 ∈ (K◦ − z0)
◦ = K◦◦ = K.

Thus we must have that 12 + ε2 �12, which is absurd. In the case when � > 0, we again use Fact
2.1 to deduce

z − z0 ∈ (K◦ − z0)
◦ = K◦◦ ∩ z⊥

0 = K ∩ z⊥
0 .

Hence

0 = 〈z − z0, z0〉 = 〈(1 + �, 1 − �, ε), (−�, �, 0)〉 = −2�2 �= 0,

which is absurd. This verifies the example.
The basis for all the rate of convergence results for the CPA that are given in this paper can be

stated as follows.

Theorem 3.8. Let C1, C2, . . . , Cr be closed convex sets with a nonempty intersection, let x ∈ H ,
let the sequence (xn) be defined as in (2.1), and let x∞ be its weak limit (see (2.5)). Let ε > 0, let
m be a nonnegative integer, and suppose that ‖xm − x∞‖�ε. Then for every integer n�m,

xn − x∞ ∈
r∑
1

(Ci − x∞)◦,ε. (3.18)

In particular, for any ε > 0 with ε�‖x − x∞‖, relation (3.18) holds for all n�0.
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Proof. By Proposition 2.6, we have ‖xn − x∞‖�ε for each n�m. Fix any k > n + r . Then,
using Fact 2.2, we obtain

xk =
k∑

i=n+1

(xi − xi−1) + xn =
k∑

i=n+1

[
P[i](xi−1) − xi−1

]+ xn

= −
k∑

i=n+1

(xi−1 − P[i](xi−1)) + xn

= −
k∑

i=n+1

[(xi−1 − x∞) − (P[i](xi−1) − x∞)] + xn

= −
k∑

i=n+1

[(xi−1 − x∞) − PC[i]−x∞(xi−1 − x∞)] + xn

∈ −
k∑

i=n+1

(C[i] − x∞)◦,ε + xn.

Since k − (n + 1)�r and the sets (C[i] − x∞)◦,ε are all convex cones, it follows that

k∑
i=n+1

(C[i] − x∞)◦,ε =
r∑

j=1

(Cj − x∞)◦,ε.

Thus we obtain that

xk ∈ −
r∑

j=1

(Cj − x∞)◦,ε + xn,

or

xn − xk ∈
r∑

j=1

(Cj − x∞)◦,ε. (3.19)

Since xk → x∞ weakly and since the weak and norm closures of a convex set are the same, we
let k → ∞ in (3.19) to obtain the result. �

4. �-angles

We will now define the notion of ε-angle between two convex sets. This concept will turn out
to be very useful in further developing and refining an error analysis for the cyclic projections
algorithm. First recall that the angle between two closed subspaces M and N is the angle in the
interval [0, �/2] whose cosine is given by

c(M, N) := sup{〈x, y〉 | x ∈ M ∩ (M ∩ N)⊥ ∩ BH , y ∈ N ∩ (M ∩ N)⊥ ∩ BH }, (4.1)

where BH := B(0, 1) is the closed unit ball in H. (This angle was first defined and used by
Friedrichs [20]. See [13] for an exposition on the angle between subspaces.)

It is not hard to verify that (see [12])

c(M, N) = ‖PN∩(M∩N)⊥PM∩(M∩N)⊥‖. (4.2)
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It follows that (assuming M �= {0})
c(M, N) (4.3)

= sup

{ ‖PN∩(M∩N)⊥PM∩(M∩N)⊥x‖
‖x‖

∣∣∣∣ ‖x‖ = 1

}

= sup

{ ‖PN∩(M∩N)⊥PM∩(M∩N)⊥x‖
‖x‖

∣∣∣∣ ‖x‖ = ε

}

= sup

{ ‖PN∩(M∩N)⊥PM∩(M∩N)⊥x‖
‖x‖

∣∣∣∣ x ∈ M ∩ (M ∩ N)⊥, ‖x‖ = ε

}

= sup

{ ‖PN∩(M◦,ε+N◦,ε)PM∩(M◦,ε+N◦,ε)x‖
‖x‖

∣∣∣∣ x ∈ M ∩ (M◦,ε + N◦,ε), ‖x‖ = ε

}
(4.4)

for any ε > 0, since for subspaces

(M ∩ N)⊥ = M⊥ + N⊥ = M◦ + N◦ = M◦,ε + N◦,ε (4.5)

by Corollary 3.5.
It turns out that it is this latter way of expressing the cosine (i.e., Eq. (4.4)) that suggests a

very useful generalization to arbitrary closed convex sets. Moreover, in contrast to the subspace
case, simple examples in the Euclidean plane show that any reasonable definition of the angle
between two arbitrary intersecting convex sets will likely have to depend on a particular point in
the intersection, as well as a prescribed length of vectors that one restricts his attention to.

Specifically, consider the following definition of ε-angle between two convex sets.

Definition 4.1. Let D1, D2 be closed convex sets with 0 ∈ D1 ∩ D2, ε�0, and i ∈ {1, 2}. The
ith ε-angle between the ordered pair D1 and D2 is the angle in the interval [0, �/2] whose cosine,
ci(D1, D2; ε), is defined by

sup

{ ‖P
D2∩(D

◦,ε
1 +D

◦,ε
2 )

P
D1∩(D

◦,ε
1 +D

◦,ε
2 )

(x)‖
‖x‖

∣∣∣∣∣ x ∈ Di ∩ (D
◦,ε
1 + D

◦,ε
2 ) ∩ S(ε)

}
,

where S(ε) is the ε-sphere in H:

S(ε) := {x ∈ H | ‖x‖ = ε}.
In case ε = 0 or Di ∩ (D

◦,ε
1 + D

◦,ε
2 ) ∩ S(ε) is the empty set, we define ci(D1, D2; ε) = 0.

The condition in Definition 4.1 that 0 is in the intersection of the sets is not a restriction for us.
This is because, in the application we make to the CPA, the convex sets in question will always be
translates of other convex sets obtained by subtracting a point in their intersection. Such translates
obviously contain 0.

In the case of subspaces, we observe that there is a close connection between the ith ε-angle
and the usual angle. Indeed, we have the following lemma.

Lemma 4.2. Let M1 and M2 be closed subspaces in H, M = M1 ∩ M2, and ε > 0. Then

c1(M1, M2; ε) = ‖PM2∩M⊥PM1∩M⊥‖ = c(M1, M2) (4.6)
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and

c2(M1, M2; ε) = ‖PM2∩M⊥PM1∩M⊥PM2∩M⊥‖ = c2(M1, M2). (4.7)

In particular, the ith ε-angles are independent of ε and are symmetric in M1 and M2.

Proof. Since M
◦,ε
i = M⊥

i by Corollary 3.5, and since M⊥ = M
◦,ε
1 + M

◦,ε
2 by (4.5), we obtain

c1(M1, M2; ε) = sup

{ ‖PM2∩M⊥PM1∩M⊥(x)‖
‖x‖

∣∣∣∣ x ∈ M1 ∩ M⊥ ∩ S(ε)

}

= sup
{‖PM2∩M⊥PM1∩M⊥(x)‖ | x ∈ S(1)

}
= ‖PM2∩M⊥PM1∩M⊥‖
= c(M1, M2) by (4.2).

This proves (4.6).
Similarly,

c2(M1, M2; ε) = sup

{‖PM2∩M⊥PM1∩M⊥(x)‖
‖x‖

∣∣ x ∈ M2 ∩ M⊥ ∩ S(ε)

}

= sup
{‖PM2∩M⊥PM1∩M⊥PM2∩M⊥(x)‖ | x ∈ S(1)

}
= ‖PM2∩M⊥PM1∩M⊥PM2∩M⊥‖.

However, using the idempotency and self-adjointness of metric projections onto subspaces and
the fact that ‖AA∗‖ = ‖A‖2 for any bounded linear operator A (see, e.g., [14, Theorem 8.25(3),
p. 172]), we see that

‖PM2∩M⊥PM1∩M⊥PM2∩M⊥‖ = ‖PM2∩M⊥PM1∩M⊥PM1∩M⊥PM2∩M⊥‖
= ‖(PM2∩M⊥PM1∩M⊥)(PM2∩M⊥PM1∩M⊥)∗‖
= ‖PM2∩M⊥PM1∩M⊥‖2

= c2(M1, M2) by (4.2).

This proves (4.7). �

Actually, Lemma 4.2 has a generalization that is valid for any pair of closed convex cones, not
just subspaces. However, our proof of this fact depends on the notion of the norm of a nonlinear
operator, and this will be taken up in the sequel [16].

It is sometimes desirable to allow more than two convex sets in the definition of ε-angle. This
suggests the following definition.

Definition 4.3. Let D1, D2, . . . , Dr be r closed convex sets with 0 ∈ ⋂r
1 Di , let ε�0, and let

i = 1 or i = r . The ith ε-angle of the ordered collection {D1, D2, . . . , Dr} is the angle in [0, �/2]
whose cosine is defined by

ci(D1, D2, . . . , Dr ; ε)

:= sup

{ ‖PDr∩DεPDr−1∩Dε · · · PD1∩Dε(x)‖
‖x‖

∣∣∣∣ x ∈ Di ∩ Dε ∩ S(ε)

}
(i = 1, r),

(4.8)

where Dε := ∑r
j=1 D

◦,ε
j . In case the set Di ∩ Dε ∩ S(ε) is empty or ε = 0, we define

ci(D1, D2, . . . , Dr ; ε) = 0.
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It is important to note that although we defined two angles for a given ordered collection of
convex sets, it is actually possible to describe both of them in terms of just a single angle! More
precisely, it is easy to check that

cr(D1, D2, . . . , Dr ; ε) = c1(Dr, D1, D2, . . . , Dr ; ε).

In words, the rth ε-angle of the ordered collection of r sets {D1, D2, . . . , Dr} is just 1st ε-angle
of the ordered collection of r + 1 sets {Dr, D1, D2, . . . , Dr}. While in principle it is satisfying to
know that all of our results could have been described in terms of a single angle, in practice we
felt that it was somewhat simpler notationally to describe these results in terms of both c1 and cr ,
and this is what we have done.

By a repeated application of Fact 2.4, one deduces that a product of nonexpansive maps is
nonexpansive and, since 0 ∈ Dε ∩ (

⋂r
1 Di), that

0�ci(D1, D2, . . . , Dr ; ε)�1 (i = 1, r)

always holds, and hence the ith ε-angles are well-defined. Moreover, if all the sets Di = Mi are
subspaces and M := ⋂r

1 Mi , by mimicking the proof of Lemma 4.2, we obtain

c1(M1, M2, . . . , Mr ; ε) = ‖PMr∩M⊥PMr−1∩M⊥ · · · PM1∩M⊥‖ (4.9)

and

cr(M1, M2, . . . , Mr ; ε) = ‖PMr∩M⊥PMr−1∩M⊥ · · · PM1∩M⊥PMr∩M⊥‖. (4.10)

In particular, the ith ε-angle (i = 1, r) for a collection of subspaces is independent of ε.
By a repeated application of Fact 2.5, we deduce that these may be rewritten in the form

c1(M1, . . . , Mr ; ε) = ‖PMr PMr−1 · · · PM1PM⊥‖
and

cr(M1, . . . , Mr ; ε) = ‖PMr PMr−1 · · · PM1PMr PM⊥‖.
In this latter form, we immediately recognize c1(M1, . . . , Mr ; ε) as the cosine of the angle of the
r-tuple (M1, M2, . . . , Mr) that was first defined and used by Bauschke et al. [6].

The relevance of the definition of ith ε-angle for general convex sets is that it is essential to
the rate of convergence results obtained in Theorem 4.6 below. Before establishing this, it is
convenient to first isolate a few simple but useful facts.

Lemma 4.4. Let A and B be closed convex sets with A ⊂ B and x ∈ H . If PBx ∈ A, then
PAx = PBx.

Proof. Let y = PBx. Then y ∈ A and

‖x − y‖ = d(x, B)�d(x, A)�‖x − y‖.
Thus the equality d(x, A) = ‖x − y‖ holds, and hence y = PAx. �

Lemma 4.5. Let C1, C2, . . . , Cr be closed convex sets in H having nonempty intersection, let
x = x0 ∈ H , let (xn) be the sequence defined in (2.1), and let x∞ be its weak limit. For each n�0
and each i ∈ {1, 2, . . . , r},

xnr+i − x∞ = PCi−x∞(xnr+i−1 − x∞). (4.11)
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Moreover, for each fixed n�0 and each ε > 0 that satisfies ε�‖xnr − x∞‖, we have

x(n+1)r − x∞ = PCε∩(Cr−x∞) · · · PCε∩(C1−x∞)(xnr − x∞) (4.12)

= PCε∩(Cr−x∞) · · · PCε∩(C1−x∞)(xnr+1 − x∞), (4.13)

where

Cε :=
r∑

j=1

(Cj − x∞)◦,ε.

In particular, for any ε > 0 with ε�‖x − x∞‖, the relations (4.12) and (4.13) hold for all n�0.

Proof. Eq. (4.11) follows from Fact 2.2. Using (4.11), we next note that since

PCi−x∞(xnr+i−1 − x∞) = xnr+i − x∞ ∈ Cε ∩ (Ci − x∞)

by Theorem 3.8, it follows from Lemma 4.4 (with A = Cε ∩ (Ci − x∞) and B = Ci − x∞) that

PCε∩(Ci−x∞)(xnr+i−1 − x∞) = PCi−x∞(xnr+i−1 − x∞) = xnr+i − x∞. (4.14)

By a repeated application of (4.14), we deduce that

x(n+1)r − x∞ = xnr+r − x∞ = PCε∩(Cr−x∞)(xnr+r−1 − x∞)

= PCε∩(Cr−x∞)

[
PCε∩(Cr−1−x∞)(xnr+r−2 − x∞)

]
= · · ·
= PCε∩(Cr−x∞) · · · PCε∩(C1−x∞)(xnr − x∞),

which verifies (4.12).
But by (4.14) (with i = 1) and Theorem 3.8, we get

PCε∩(C1−x∞)(xnr − x∞) = xnr+1 − x∞ ∈ Cε ∩ (C1 − x∞)

and hence

PCε∩(C1−x∞)(xnr − x∞) = PCε∩(C1−x∞)(xnr+1 − x∞). (4.15)

Finally, substitute (4.15) into (4.12) to obtain (4.13), and this completes the proof. �

The use of Lemma 4.5 now easily yields upper bounds for the method of cyclic projections.

Theorem 4.6 (Rate of convergence bounds). Let C1, C2, . . . , Cr be closed convex sets in H with
a nonempty intersection, let x ∈ H , let the sequence (xn) be defined as in Eq. (2.1), and let x∞
denote the weak limit of (xn) (see Theorem 2.7). Then for each n�1,

‖(PCr PCr−1 · · · PC1)
n(x) − x∞‖ � cr,n−1‖(PCr PCr−1 · · · PC1)

n−1(x) − x∞‖

� c1,1

[
n−1∏
k=1

cr,k

]
‖x − x∞‖, (4.16)

where

ci,k := ci(C1 − x∞, C2 − x∞, . . . , Cr − x∞; ‖xik − x∞‖)
for i = 1 or r, each k = 1, 2, . . . , n − 1, and cr,0 := 1.
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Proof. Since xrn = (PCr PCr−1 · · · PC1)
n(x), it suffices to prove the first inequality of relation

(4.16) with xrn instead of (PCr PCr−1 · · · PC1)
n(x). Since ‖x1 − x∞‖�‖x0 − x∞‖ = ‖x − x∞‖

by Proposition 2.6, it suffices to prove the second inequality of (4.16) when ‖x − x∞‖ is replaced
by ‖x1 − x∞‖. Thus it suffices to verify the two inequalities:

‖xnr − x∞‖�cr,n−1‖x(n−1)r − x∞‖, (4.17)

cr,n−1‖x(n−1)r − x∞‖�c1,1

[
n−1∏
k=1

cr,k

]
‖x1 − x∞‖. (4.18)

If x(n−1)r − x∞ = 0, then xnr − x∞ = 0 by Proposition 2.6 and the inequality (4.17) holds
trivially, so we may assume that x(n−1)r − x∞ �= 0. Setting ε := ‖x(n−1)r − x∞‖, we see by
Theorem 3.8 that

x(n−1)r − x∞ ∈ (Cr − x∞) ∩
r∑

i=1

(Ci − x∞)◦,ε.

Using Eq. (4.12), we obtain that

xnr − x∞ = PCε∩(Cr−x∞) · · · PCε∩(C1−x∞)(x(n−1)r − x∞),

where Cε is defined as in Lemma 4.5. Thus

‖xnr − x∞‖ = ‖PCε∩(Cr−x∞) · · · PCε∩(C1−x∞)(x(n−1)r − x∞)‖
= ‖PCε∩(Cr−x∞) · · · PCε∩(C1−x∞)PCε∩(Cr−x∞)(x(n−1)r − x∞)‖
� cr(C1 − x∞, . . . , Cr − x∞; ‖x(n−1)r − x∞‖)‖x(n−1)r − x∞‖
= cr,n−1‖x(n−1)r − x∞‖

and this proves (4.17).
By a repeated application of (4.17), we obtain

‖xnr − x∞‖ � cr,n−1‖x(n−1)r − x∞‖�cr,n−1cr,n−2‖x(n−2)r − x∞‖

� · · · �
(

n−1∏
k=1

cr,k

)
‖xr − x∞‖. (4.19)

Using (4.19), we see that to verify (4.18), and thus complete the proof of the theorem, it suffices
to show that

‖xr − x∞‖�c1,1‖x1 − x∞‖. (4.20)

If x1 − x∞ = 0, then xr − x∞ = 0 by Proposition 2.6 and the inequality (4.20) holds trivially.
If x1 − x∞ �= 0, then with ε := ‖x1 − x∞‖, we have that

x1 − x∞ ∈ (C1 − x∞) ∩
r∑

i=1

(Ci − x∞)◦,ε
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by Theorem 3.8. It follows by relation (4.13) (with n = 0) that

‖xr − x∞‖ = ‖PCε∩(Cr−x∞) · · · PCε∩(C1−x∞)(x1 − x∞)‖
‖x1 − x∞‖ ‖x1 − x∞‖

� c1(C1 − x∞, . . . , Cr − x∞; ‖x1 − x∞‖)‖x1 − x∞‖
= c1,1‖x1 − x∞‖

and this proves (4.20). �

Our first corollary of Theorem 4.6 is the case when all the convex sets are subspaces.

Corollary 4.7. Let M1, M2, . . . , Mr be r closed subspaces and M = ⋂r
1 Mi . Then, for every

x ∈ H ,

‖(PMr PMr−1 · · · PM1)
n(x) − PM(x)‖

�‖PMr∩M⊥ · · · PM1∩M⊥‖ ‖PMr∩M⊥ · · · PM1∩M⊥PMr∩M⊥‖n−1‖x‖. (4.21)

Proof. Now x∞ = PM(x) by Theorem 2.8, and ‖x − PM(x)‖�‖x‖ since 0 ∈ M . Letting
Pi = PMi

, Theorem 4.6 implies the bound

‖(Pr · · · P1)
n(x) − PM(x)‖�c1,1

(
n−1∏
k=1

cr,k

)
‖x − PM(x)‖, (4.22)

where ci,k = ci(M1, . . ., Mr ; ‖xik−x∞‖). Also, using (4.9) and (4.10) we see that c1(M1, . . ., Mr ;
‖x1 − x∞‖) = ‖PMr∩M⊥ · · · PM1∩M⊥‖ and

cr(M1, . . . , Mr ; ‖xrk − x∞‖) = ‖PMr∩M⊥ · · · PM1∩M⊥PMr∩M⊥‖.
Substituting these quantities into (4.22), we obtain (4.21). �

In the case of two subspaces, the bound given in the inequality (4.21) is best possible! We state
this next.

Corollary 4.8 (Aronszajn [1], Kayalar and Weinert [24]). Let M1 and M2 be closed subspaces
with M := M1 ∩ M2. Then for every x ∈ H ,

‖(PM2PM1)
n(x) − PM(x)‖�c(M1, M2)

2n−1‖x‖. (4.23)

Moreover, the constant c(M1, M2)
2n−1 in (4.23) is smallest possible independent of x.

Proof. Taking r = 2 in Corollary 4.7, we obtain

‖(PM2PM1)
n(x) − PM(x)‖

�‖PM2∩M⊥PM1∩M⊥‖ ‖PM2∩M⊥PM1∩M⊥PM2∩M⊥‖n−1‖x‖. (4.24)

Using Lemma 4.2 completes the proof of (4.23).
Finally, the proof that the constant is smallest possible is due to Kayalar and Weinert [24]

since they showed that ‖(PM2PM1)
n − PM‖ = c(M1, M2)

2n−1 (see also [14, Theorem 9.31,
p. 219]). �

In contrast to the case when r = 2, the following example (adapted from [15, Example 3.8])
shows that for r > 2, the bound given in (4.21) is not best possible in general.
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Example 4.9. Fix any integer r �3 and choose any 0 < � < �/2. In H = R3, define the r
subspaces M1 = span {e2, e3}, M2 = span {(sin �)e1 + (cos �)e2, e3}, and M3 = M4 = · · · =
Mr = span {e1, e2} = (M1 ∩ M2)

⊥, where ei is the vector that is 1 in the ith coordinate and 0
elsewhere. Then M := ⋂r

1 Mi = {0}, ‖PMr PMr−1 · · · PM1‖ = ‖PMr PMr−1 · · · PM1PMr ‖ = cos �,
and ‖(PMr PMr−1 · · · PM1)

n −PM‖ = (cos �)2n−1. Thus the bound given in Corollary 4.7 is given
by (cos �)n which is strictly larger than the sharp upper bound (cos �)2n−1 for every n > 1.

Proof. It is easy to verify that M := ⋂r
1 Mi = {0}. For simplicity, let Pi = PMi

for i = 1, 2, 3.
We then observe that PrPr−1 · · · P1 = P3P2P1 and PrPr−1 · · · P1Pr = P3P2P1P3. Using Fact
2.1, it is simple to verify the following facts:

P1(e1) = P3(e3) = 0, P1(e2) = P3(e2) = e2,

P2(e3) = e3, P3(e1) = e1, P2(e1) = sin �[sin �e1 + cos �e2],
P2(e2) = cos �[sin �e1 + cos �e2].

Using these facts and the linearity of the Pi , it is now easy to deduce that

P3P2P1P3(e1) = P3P2P1(e1) = 0,

P3P2P1P3(e3) = P3P2P1(e3) = 0,

P3P2P1P3(e2) = P3P2P1(e2) = cos �[(sin �)e1 + (cos �)e2].
It follows that P3P2P1P3 = P3P2P1 and hence that ‖P3P2P1P3‖ = ‖P3P2P1‖ = cos �. Using
these latter facts and induction, we deduce that for each n ∈ N,

(P3P2P1)
n(e1) = 0,

(P3P2P1)
n(e3) = 0,

(P3P2P1)
n(e2) = (cos �)2n−1[(sin �)e1 + (cos �)e2].

Finally, it is straightforward to deduce from the latter equations that ‖(P3P2P1)
n‖ = (cos �)2n−1,

and this completes the proof. �

Clearly, for the applications of Corollary 4.7, it is important to know when ‖PMr∩M⊥PMr−1∩M⊥
· · · PM1∩M⊥PMr∩M⊥‖ < 1. The following result characterizes this situation.

Theorem 4.10. Let M1, M2, . . . , Mr be r closed subspaces in the Hilbert space H and let M =⋂r
1 Mi . Then the following statements are equivalent:

(1) M⊥
1 + M⊥

2 + · · · + M⊥
r is closed;

(2) ‖PMr∩M⊥PMr−1∩M⊥ · · · PM1∩M⊥‖ < 1;
(3) ‖PMr∩M⊥PMr−1∩M⊥ · · · PM1∩M⊥PMr∩M⊥‖ < 1;
(4) c1(M1, . . . , Mr) < 1;
(5) cr(M1, . . . , Mr) < 1.

Proof. The equivalence of statements (1) and (2) is due to Bauschke et al. [6]. The equivalence
of statements (2) and (4) (respectively, (3) and (5)) follows from Eq. (4.9) (respectively, (4.10)).
Finally, since

M⊥
1 + M⊥

2 + · · · + M⊥
r + M⊥

r = M⊥
1 + M⊥

2 + · · · + M⊥
r ,
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it follows from the equivalence of statements (1) and (2) that statements (1) and (3) are equivalent.
This completes the proof. �

Remarks. (a) Bauschke et al. [6] showed that the statements (1) and (2) are also each equivalent
to several “regularity” properties of the subspaces. Moreover, statement (1) is readily seen to be
equivalent to the collection of subspaces having the “strong conical hull intersection property”
(= strong CHIP) (see [14, Lemma 10.3, p. 239].)

(b) There is a generalization of Theorem 4.10 that is valid for convex cones, not necessarily
subspaces. Moreover, for the convex cones case, there is a connection to the strong CHIP as well
as other regularity properties. This can be found in the sequel to this paper [17].

(c) We should mention that Xu and Zikatanov [29, Theorem 5.2] have given an identity for the
expression ‖PMr∩M⊥ · · · PM1∩M⊥‖.

By considering several different examples, it can be shown that the bound given in Theorem
4.6 is often best possible in the sense that the inequality (4.16) is actually an equality for every
n�1. Indeed, with r = 2, this bound is best possible in each of the following cases:

1. {C1, C2} is any pair of closed subspaces in a Hilbert space. (This is just Corollary 4.8.)
2. C1 is a round ball lying on a flat table C2. (This is a well-known example which exhibits the

phenomenon of “tunneling”, i.e., a slowing down of the convergence as the limit is approached;
see Crombez [11].)

3. {C1, C2} is any pair of closed convex cones in the Euclidean plane.

In fact (when r = 2), we suspect that for any pair of closed convex sets {C1, C2}, the rate of
convergence given by Theorem 4.6 will always be best possible, at least for some starting point
x = x0 that is not in the intersection C1 ∩ C2.

In a sequel to this paper [16], we will show that there are often useful alternate expressions for
the cosines c1(C1, . . . , Cr ; ε) and cr(C1, . . . , Cr ; ε) in terms of the norms of certain nonlinear
operators (viz., products of metric projections onto convex sets). We will also give conditions on
the sets C1, . . . , Cr that guarantee that the relevant cosines are strictly less than 1, which is the
most important case for the applications of Theorem 4.6.
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