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Tunis, Tunisie

Received 28 March 2014; received in revised form 13 July 2014; accepted 16 October 2014
Available online 30 October 2014

Communicated by Karlheinz Groechenig

Abstract

The aim of this paper is to prove a quantitative extension of Shapiro’s result on the time–frequency
concentration of orthonormal sequences in L2

α(R+). More precisely, we prove that, if {ϕn}
+∞

n=0 is an or-

thonormal sequence in L2
α(R+), then for all N ≥ 0

N
n=0

xϕn
2

L2
α

+
ξHα(ϕn)

2
L2
α


≥ 2(N + 1)(N + 1 + α),

and the equality is attained for the sequence of Laguerre functions. Particularly if the elements of an or-
thonormal sequence and their Fourier–Bessel transforms (or Hankel transforms) have uniformly bounded
dispersions then the sequence is finite.

Moreover we prove the following strong uncertainty principle for bases for L2
α(R+), that is if {ϕn}

+∞

n=0
is an orthonormal basis for L2

α(R+) and s > 0, then

sup
n

x sϕn
2

L2
α

ξ s Hα(ϕn)
2

L2
α


= +∞.
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1. Introduction

A Fourier uncertainty principle is an inequality or uniqueness theorem concerning the
joint localization of a function and its Fourier transform. The most familiar form is the
Heisenberg–Pauli–Weil inequality. To be more precise, let d ≥ 1 be the dimension, and
let us denote by ⟨·, ·⟩ the scalar product and by | · | the Euclidean norm on Rd . Then the
Heisenberg–Pauli–Weil inequality (see e.g. [9,20]) leads to the following classical formulation
of the uncertainty principle in form of the lower bound of the product of the dispersions of a
unit-norm function in L2(Rd) and its Fourier transform:

∥ |x | f ∥L2(Rd ) ∥ |ξ |F( f )∥L2(Rd ) ≥
d

2
, (1.1)

with equality if and only if f is a multiple of a suitable Gaussian. Heisenberg’s inequality (1.1)
may be also written in the form

∥ |x | f ∥
2
L2(Rd )

+ ∥ |ξ |F( f )∥2
L2(Rd )

≥ d, (1.2)

where the Fourier transform is defined for f ∈ L1(Rd) ∩ L2(Rd) by:

F( f )(ξ) = (2π)−d/2


Rd
f (x)e−i⟨x,ξ⟩ dx,

and it is extended from L1(Rd) ∩ L2(Rd) to L2(Rd) in the usual way. With this normaliza-
tion, if f (x) = f̃ (|x |) is a radial function on Rd , then F( f )(ξ) = Hd/2−1( f̃ )(|ξ |), where for
α > −1/2, Hα is the Fourier–Bessel transform (also known as the Hankel transform) defined
by (see e.g. [23]):

Hα(ξ) =


R+

f (x) jα(xξ) dµα(x), ξ ∈ R+ = [0,+∞).

Here dµα(x) =
x2α+1

2α0(α+1) dx and jα (see e.g. [23,25]) is the spherical Bessel function given by:

jα(x) = 2α0(α + 1)
Jα(x)

xα
:= 0(α + 1)

∞
n=0

(−1)n

n!0(n + α + 1)

 x

2

2n
.

Note that Jα is the Bessel function of the first kind and 0 is the gamma function.
For α > −1/2, let us recall the Poisson representation formula (see e.g. [24, (1.71.6), p. 15]):

jα(x) =
0(α + 1)

0

α +

1
2


0


1
2

  1

−1
(1 − s2)α−1/2 cos(sx) ds.

Therefore, jα is bounded with | jα(x)| ≤ jα(0) = 1. As a consequence,

∥Hα( f )∥∞ ≤ ∥ f ∥L1
α
, (1.3)

where ∥·∥∞ is the usual essential supremum norm and for 1 ≤ p < +∞, we denote by L p
α(R+)

the Banach space consisting of measurable functions f on R+ equipped with the norms:

∥ f ∥L p
α

=


R+

| f (x)|p dµα(x)
1/p

.
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It is also well-known (see [23,26]) that the Fourier–Bessel transform extends to an isometry on
L2
α(R+):

∥Hα( f )∥L2
α

= ∥ f ∥L2
α
. (1.4)

Bowie [6] and then Rösler and Voit [21] proved the analogue of Heisenberg’s uncertainty
inequality for the Fourier–Bessel transform which can be written for unit-norm functions in
L2
α(R+) of the form:

∥x f ∥L2
α
∥ξ Hα( f )∥L2

α
≥ (α + 1) or ∥x f ∥

2
L2
α

+ ∥ξ Hα( f )∥2
L2
α

≥ 2(α + 1), (1.5)

with equality, if and only if f is a multiple of a suitable Gaussian function.
Considerable attention has been devoted recently to discovering new mathematical formula-

tions and new contexts for the uncertainty principle (see the surveys [4,9,20] and the book [13]
for other forms of the uncertainty principle). This paper will adopt the broader view that the un-
certainty principle can be seen not only as a statement about the phase space (or time–frequency)
localization of a single function but also as a statement on the degradation of localization when
one considers successive elements of an orthonormal basis. In particular, Heisenberg’s inequal-
ity (1.5) states that a unit-norm function in L2

α(R+) cannot occupy an arbitrarily small region in
the phase space plane and the results that we consider show that the elements of an orthonor-
mal basis as well as their Fourier–Bessel transforms cannot be uniformly concentrated in the
time–frequency plane.

For some of the well-known results related to uncertainty principles for orthonormal se-
quences, Shapiro proved a number of uncertainty inequalities that are stronger than correspond-
ing inequalities for a single function. For example, using compactness argument, see [22], one
can conclude that for any orthonormal sequence { fn}

+∞

n=0 in L2(R):

sup
n


∥x fn∥

2
L2(R) + ∥ξF( fn)∥

2
L2(R)


= +∞. (1.6)

Some other results on time–frequency localization of orthonormal sequences and bases have been
obtained by Benedetto [2] and Powell [18] and the quantitative version of Shapiro’s result has
been proved by Jaming and Powell [14] which states that, if { fn}

+∞

n=0 is an orthonormal sequence
in L2(R) then for all N ≥ 0:

N
n=0


∥x fn∥

2
L2(R) + ∥ξF( fn)∥

2
L2(R)


≥ (N + 1)2. (1.7)

The equality in (1.7) is attained for the sequence of Hermite functions and the higher di-
mensional version of this result that involving generalized dispersions ∥ |x |

s fn∥
2
L2(Rd )

and

∥ |ξ |s F( fn)∥
2
L2(Rd )

, s > 0, for orthonormal sequences in L2(Rd) was obtained by Malin-
nikova [16].

The goal of this paper is to provide new uncertainty principles for the Fourier–Bessel
transform which are all known for the usual Fourier transform (see e.g. [14,16]). The first of these
results is an extension of Shapiro’s result for orthonormal sequences in L2

α(R+). Especially by
using the Laguerre expansions instead of Hermite expansions in [14] and the Rayleigh–Ritz
technique [19, Theorem XIII.3, p. 82] for eigenvalues of operators we prove the following
quantitative uncertainty inequality for orthonormal sequences:
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Theorem A. If {ϕn}
+∞

n=0 is an orthonormal sequence in L2
α(R+), then for all N ≥ 0

N
n=0

xϕn
2

L2
α

+
ξHα(ϕn)

2
L2
α


≥ 2(N + 1)(N + 1 + α). (1.8)

This theorem implies in particular that, if the elements of an orthonormal sequence and their
Fourier–Bessel transforms have uniformly bounded dispersions then the sequence is finite.

The last result is sharp and the equality in (1.8) is attained for the sequence of Laguerre
functions, but the method of proof using Laguerre expansions is not applicable to generalized
dispersions. Nevertheless based on an idea of Malinnikova [16] we adapt the proof of [16,
Theorem 2] to establish the localization inequality (3.43) which implies the following strong
uncertainty principle for orthonormal bases:

Theorem B. If {ϕn}
+∞

n=0 is an orthonormal basis for L2
α(R+) and s > 0, then

sup
n

x sϕn
2

L2
α

ξ s Hα(ϕn)
2

L2
α


= +∞.

A related result for Riesz bases in L2(Rd) appeared in a recent article by Gröchenig and
Malinnikova [12] which asserts in particular that the Bourgain basis [5] possesses the best
possible phase space localization.

The remainder of the paper is organized as follows. Section 2 is devoted to proving Theorem A
and as a side result we give another proof of a Heisenberg-type uncertainty inequality for the
Fourier–Bessel transform. In Section 3, we prove Theorem B.

2. Quantitative version of Shapiro’s result in the Fourier–Bessel setting

2.1. Heisenberg-type uncertainty inequality for the Fourier–Bessel transform revisited

In this section we will revisit the Heisenberg uncertainty inequality for the Fourier–Bessel
transform which was first proved by Bowie [6] and then by Rösler and Voit [21]. We give here a
simple proof based on Laguerre expansions and prove a not so well-known extension that shows
that Laguerre functions are successive optimizers of Heisenberg-type uncertainty principle for
the Fourier–Bessel transform.

It is well-known (see [15, (4.17.1), p. 76]) that the Laguerre polynomials Lαn are defined by
the following Rodriguez formula

Lαn (x) = x−α ex

n!

dn

dxn


e−x xn+α


, n ∈ N, x > 0 (2.9)

and they are a particular solution of the following second order linear differential equation
(see [15, (4.18.8), p. 80]),

xu′′
+ (α + 1 − x)u′

+ nu = 0. (2.10)

Moreover the Laguerre polynomials satisfy the following recurrence formula (see [24, (5.1.14),
p. 102] or [15, (4.18.4), p. 76])

x Lα+1
n (x) = −(n + 1)Lαn+1(x)+ (α + n + 1)Lαn (x), n ∈ N. (2.11)
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Therefore if we define φαn by

φαn (x) =


2α+10(α + 1)n!

0(n + α + 1)

1/2

e−x2/2Lαn (x
2), n ∈ N, x > 0, (2.12)

then a straightforward manipulation using (2.11) leads to the following new recurrence formula

x2φα+1
n (x) =


2(α + 1)


−(n + 1)1/2φαn+1(x)+ (α + n + 1)1/2φαn (x)


, x > 0.

(2.13)

It is also well-known (see [15, p. 84]) that the sequence

φαn


n∈N forms an orthonormal basis

for L2
α(R+) and each φαn is an eigenfunction for the Fourier–Bessel transform associated to the

eigenvalue (−1)n (see e.g. [8, 8.9 (3), p. 42]), that is,

Hα(φ
α
n ) = (−1)nφαn , n ∈ N. (2.14)

Now if we denote by ℓα =
d2

dx2 +
2α+1

x
d

dx the differential Bessel operator, then by (2.10)
it is easy to show that the φαn ’s form the family of eigenfunctions of the differential operator
Lα = −ℓα + x2 with corresponding eigenvalues (4n + 2α + 2), that is,

Lαφ
α
n = (4n + 2α + 2)φαn , n ∈ N. (2.15)

So that Lα may also be seen as the densely defined, positive, self-adjoint, unbounded operator
on L2

α(R+) defined by

Lα f =

+∞
n=0

(4n + 2α + 2)

f, φαn


α
φαn , (2.16)

where ⟨·, ·⟩α is the usual inner product in the Hilbert space L2
α(R+) defined by

⟨ f, g⟩α =


R+

f (x)g(x) dµα(x). (2.17)

The first part of the following theorem is the well-known Heisenberg-type uncertainty
inequality for the Fourier–Bessel transform [6,21] and the second part is a stronger version that
shows that Laguerre functions are successive optimal on Heisenberg’s uncertainty principle.

Theorem 2.1. For every f ∈ L2
α(R+),

∥x f ∥
2
L2
α

+ ∥ξHα( f )∥2
L2
α

≥ (2α + 2)∥ f ∥
2
L2
α
, (2.18)

with equality if and only if f (x) = ce−x2/2 for some c ∈ C.
Moreover if f is orthogonal to the sequence {φαk }

n−1
k=0 , then

∥x f ∥
2
L2
α

+ ∥ξHα( f )∥2
L2
α

≥ (4n + 2α + 2)∥ f ∥
2
L2
α
, (2.19)

with equality if and only if f = cnφ
α
n for some cn ∈ C.

Proof. By Parseval’s equality for Laguerre expansions we can write

∥x f ∥
2
L2
α

= 2(α + 1)∥ f ∥
2
L2
α+1

= 2(α + 1)
+∞
n=0

 f, φα+1
n


α+1

2
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=
1

2(α + 1)

+∞
n=0

 f, x2φα+1
n


α

2
, (2.20)

therefore by the recurrence formula (2.13) we obtain

∥x f ∥
2
L2
α

=

+∞
n=0

(n + 1)
 f, φαn+1


α

2
+

+∞
n=0

(α + n + 1)
 f, φαn


α

2
. (2.21)

In the same way and by taking into account Plancherel theorem (1.4) and (2.14) we obtain also

∥ξHα( f )∥2
L2
α

=

+∞
n=0

(n + 1)
 f, φαn+1


α

2
+

+∞
n=0

(α + n + 1)
 f, φαn


α

2
. (2.22)

Hence

∥x f ∥
2
L2
α

+ ∥ξHα( f )∥2
L2
α

= 2
+∞
n=0

(α + 2n + 1)
 f, φαn


α

2 (2.23)

≥ 2(α + 1)
+∞
n=0

 f, φαn

α

2
= 2(α + 1)∥ f ∥

2
L2
α
. (2.24)

Moreover, equality in (2.24) can only occur if

f, φαn


α

= 0 for all n ≠ 0, that is, f = cφα0 .
Now, if f is orthogonal to the sequence {φαk }

n−1
k=0 , then (2.23) implies

∥x f ∥
2
L2
α

+ ∥ξHα( f )∥2
L2
α

≥ 2(α + 2n + 1)
+∞
k=n

 f, φαk

α

2

= 2(α + 2n + 1)∥ f ∥
2
L2
α
. (2.25)

Moreover, equality in (2.25) can only occur if

f, φαk


α

= 0 for all k > n (i.e. k ≠ n), that is,
f = cnφ

α
n . �

Our proof of Theorem 2.1 is inspired by de Bruijn [7] who proved a sharpened form of the
one-dimensional Heisenberg-type inequality for the usual Fourier transform using the Hermite
functions (see also [9, Section 3]). Since the sequence of Laguerre functions


φαn


n∈N forms

an orthonormal basis for L2
α(R+) that satisfies (2.14), we could prove the Heisenberg-type

inequality (2.18) by using the recurrence relation (2.11) for Laguerre polynomials instead of
that of Hermite polynomials in [7].

Now since the measure µα is absolutely continuous with respect to the Lebesgue measure
and the kernel jα is homogeneous, we can use a well-known dilation argument largely exploited
in [11] (see also [7] and [9, Section 3]) to derive the following corollary.

Corollary 2.2. For every f ∈ L2
α(R+),

∥x f ∥L2
α

∥ξHα( f )∥L2
α

≥ (α + 1)∥ f ∥
2
L2
α
, (2.26)

with equality if and only if f (x) = ce−µx2/2 for some c ∈ C and µ > 0.

Proof. For λ > 0 we define the dilation operator on L2
α(R+) by

δλ f (x) =
1

λα+1 f
 x

λ


. (2.27)
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Then

∥δλ f ∥
2
L2
α

= ∥ f ∥
2
L2
α

and Hα (δλ f ) = δλ−1 Hα( f ). (2.28)

Replacing f by δλ f in (2.18) we get

λ2
∥x f ∥

2
L2
α

+ λ−2
∥ξHα( f )∥2

L2
α

≥ 2(α + 1)∥ f ∥
2
L2
α
. (2.29)

Thus (2.26) follows by minimizing the left hand side of that inequality over λ > 0. Further,
equality in (2.26) holds exactly if

2∥x f ∥L2
α
∥ξHα( f )∥L2

α
= min

λ>0


λ2

∥x f ∥
2
L2
α

+ λ−2
∥ξHα( f )∥2

L2
α


= 2(α + 1)∥ f ∥

2
L2
α
.

By the equality cases in (2.18), this condition is satisfied if and only if f (x) = ce−(λx)2/2 for
some c ∈ C. �

Remark 2.3. Notice that in case α = −1/2, µ−1/2 is the Lebesgue measure and H−1/2 is the
Fourier-cosine transform defined for any even function f ∈ L2(R+) by

H−1/2( f )(ξ) =


2
π


R+

f (x) cos(xξ) dx .

In other words, H−1/2 is the Fourier transform F restricted to even functions in the sense that,
if ψ ∈ L2(R) is even and f = ψ |R+

the restriction of ψ to R+, then F(ψ)(ξ) = H−1/2( f )(ξ)
for ξ ≥ 0. It follows that Heisenberg’s inequalities (1.1) and (2.26) coincide for α = −1/2 and
d = 1.

2.2. Main dispersion result

In this section, we use the classical Rayleigh–Ritz technique for estimating eigenvalues of
operators to give a quantitative version of Shapiro’s theorem. For sake of completeness let us
recall the proofs of the following theorem and its corollary which can be found respectively in
[19, Theorem XIII.3, p. 82] and [14, Corollary 2.2].

Theorem 2.4 (The Rayleigh–Ritz Technique). Let H be a positive self-adjoint operator and
define

λn(H) = sup
e0,...,en−1

inf
ψ∈[e0,...,en−1]

⊥,∥ψ∥2=1,ψ∈D(H)
⟨Hψ,ψ⟩ ,

where D(H) is the domain of H. Let V be a N + 1 dimensional subspace, V ⊂ D(H), and let
P be the orthogonal projection onto V . Let HV = P H P and let HV denote the restriction of
HV to V . Let µ0 ≤ µ1 ≤ · · · ≤ µN be the eigenvalues of HV . Then

λn(H) ≤ µn, n = 0, . . . , N .

Proof. By the min–max principle (see [19, Theorem XIII.2, p. 78]), HV has eigenvalues given by

µn = sup
e0,...,en−1∈V

inf
ψ∈[e0,...,en−1]

⊥,∥ψ∥2=1,ψ∈V
⟨Hψ,ψ⟩

= sup
e0,...,en−1

inf
ψ∈[Pe0,...,Pen−1]

⊥,∥ψ∥2=1,ψ∈V
⟨Hψ,ψ⟩ .
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Since ψ ∈ V ∩ [Pe0, . . . , Pen−1]
⊥, then ⟨ψ, ei ⟩ = ⟨ψ, Pei ⟩ = 0, i = 0, . . . , n − 1. Therefore

µn = sup
e0,...,en−1

inf
ψ∈[e0,...,en−1]

⊥,∥ψ∥2=1,ψ∈V
⟨Hψ,ψ⟩

≥ sup
e0,...,en−1

inf
ψ∈[e0,...,en−1]

⊥,∥ψ∥2=1,ψ∈D(H)
⟨Hψ,ψ⟩ ,

which completes the proof of the theorem. �

Corollary 2.5. Let H be a positive self-adjoint operator, and let ϕ0, . . . , ϕN be an orthonormal
set of functions. Then

N
n=0

λn(H) ≤

N
n=0

⟨Hϕn, ϕn⟩. (2.30)

Proof. We may assume that ϕ0, . . . , ϕN ∈ D(H), since if some ϕn ∉ D(H) then (2.30) is trivial.
Define the N + 1 dimensional subspace V = span {ϕn}

N
n=0 and note that the operator HV is

given by the matrix M =

⟨Hϕ j , ϕk⟩


0≤ j,k≤N . Let µ0, . . . , µN be the eigenvalues of HV , i.e. of

the matrix M . By Theorem 2.4,

N
n=0

λn(H) ≤

N
n=0

µn = tr(M) =

N
n=0

⟨Hϕn, ϕn⟩

which completes the proof of the corollary. �

Now we will state the main result of this section. The proof of the next theorem is an adapta-
tion of the proof for the usual Fourier transform in [14] by using Laguerre expansions instead of
Hermite expansions.

Theorem 2.6. Let {ϕn}
+∞

n=0 be an orthonormal sequence in L2
α(R+). Then for all N ≥ 0

N
n=0

xϕn
2

L2
α

+
ξHα(ϕn)

2
L2
α


≥ 2(N + 1)(N + 1 + α). (2.31)

Moreover, if equality holds for all 0 ≤ N ≤ N0, then there exists {cn}
N0
n=0 ⊂ C such that |cn| = 1

and ϕn = cnφ
α
n for each 0 ≤ n ≤ N0.

Proof. From (2.16) and (2.23) we have

⟨Lα f, f ⟩α =

+∞
n=0

(4n + 2α + 2)
 f, φαn


α

2
= ∥x f ∥

2
L2
α

+ ∥ξHα( f )∥2
L2
α
. (2.32)

In particular

⟨Lαϕn, ϕn⟩α =
xϕn

2
L2
α

+
ξHα(ϕn)

2
L2
α
.

It follows then from Corollary 2.5 that for each N ≥ 0 one has

N
n=0

(4n + 2α + 2) ≤

N
n=0

⟨Lαϕn, ϕn⟩α =

N
n=0

xϕn
2

L2
α

+
ξHα(ϕn)

2
L2
α


. (2.33)

This completes the proof of (2.31).
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Now assume equality holds in (2.33) for all N = 0, . . . , N0, then for each N = 0, . . . , N0,

⟨LαϕN , ϕN ⟩α =
xϕN

2
L2
α

+
ξHα(ϕN )

2
L2
α

= (4N + 2α + 2). (2.34)

Let us first apply (2.32) for f = ϕ0. Then from (2.34) and the fact that ∥ϕ0∥
2
L2
α

=
+∞

n=0

ϕ0, φ
α
n


α

2
= 1,

+∞
n=0

(4n + 2α + 2)
ϕ0, φ

α
n


α

2
= ⟨Lαϕ0, ϕ0⟩α = (2α + 2) =

+∞
n=0

(2α + 2)
ϕ0, φ

α
n


α

2
.

Thus, for all n ≠ 0, one has

ϕ0, φ

α
n


α

= 0 and hence ϕ0 = c0φ
α
0 , with |c0| = 1, since

∥ϕ0∥L2
α

= 1.
Next, assume that we have proved ϕn = cnφ

α
n for n = 0, . . . , N −1. Since ϕN is orthogonal to

ϕn for n < N , one has

ϕN , φ

α
n


= 0. Applying now (2.32) for f = ϕN we obtain with the same

way that

ϕN , φ

α
n


α

= 0 for all n ≠ N . Then ϕN = cNφ
α
N and |cN | = 1, since ∥ϕN ∥L2

α
= 1. �

Remark 2.7. We will exploit the well-known relation between Hermite and Laguerre polynomi-
als to show that Inequalities (2.31) and (1.7) coincide for the critical case α = −1/2. To make
this precise, recall, see [15, Chap. 4, p. 66], that the normalized Hermite functions {hn}

+∞

n=0 are
defined on the real line by

hn(x) =


2n−1/2n!

−1/2
e−x2/2 Hn(x), (2.35)

form an orthonormal basis for the Hilbert space L2

R, dx

√
2π


. Here Hn is the Hermite polyno-

mial of degree n defined by the Rodriguez formula

Hn(x) = (−1)nex2 dn

dxn (e
−x2

), n ∈ N. (2.36)

Consequently any even function f ∈ L2

R, dx

√
2π


admits the expansion

f =

+∞
n=0

⟨ f, h2n⟩ h2n, (2.37)

since h2n are even and h2n+1 are odd.
It is well-known that the normalized Hermite functions are eigenfunctions of the Fourier trans-

form and of the Hermite operator (or harmonic oscillator) H = −
d2

dx2 + x2, satisfy in particular,
see [9, Section 3],

Hh2n = (4n + 1)h2n and F(h2n) = (−1)nh2n . (2.38)

Now since, see [15, (4.19.5), p. 81],

H2n(x) = (−1)n22nn!L−1/2
n (x2), (2.39)

then it immediately follows that

h2n = φ
−1/2
n , n ∈ N. (2.40)

From this we deduce that for α = −1/2, Inequalities (2.31) and (1.7) coincide for even functions
with the optimal constant

N
n=0(4n + 1) = (N + 1)(2N + 1).
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The last theorem implies in particular that, there does not exist an infinite sequence {ϕn}
+∞

n=0

in L2
α(R+) such that the sequences of dispersions


∥xϕn∥L2

α

+∞

n=0 and

∥ξHα(ϕn)∥L2

α

+∞

n=0 are all
bounded.

Corollary 2.8. Fix A > 0 and let {ϕn}
+∞

n=0 be an orthonormal sequence in L2
α(R+). Ifxϕn


L2
α
,

ξHα(ϕn)


L2
α

≤ A,

then the sequence has at most A2 elements. In particular for every N ≥ 0

sup
0≤n≤N

xϕn
2

L2
α
,

ξHα(ϕn)
2

L2
α


≥ N + α + 1. (2.41)

Proof. From Theorem 2.6, we have for every N ≥ 0,

2(N + 1)A2
≥

N
n=0

xϕn
2

L2
α

+
ξHα(ϕn)

2
L2
α


≥ 2(N + 1)(N + α + 1),

then A2
≥ N + α + 1 > N . �

3. Strong uncertainty principle in terms of generalized dispersions

In this section we will prove a strong uncertainty principle (Theorem B) for orthonormal
bases for L2

α(R+) involving generalized dispersions with respect to t s power weight dispersions,
s > 0. Our proof here is inspired from similar results established in [16]. To do so we will use
the time-limiting and the frequency-limiting operators on L2

α(R+) defined by

ES f = χS f, FΣ f = Hα


χΣ Hα( f )


,

where S and Σ are measurable subsets of R+ of finite measure µα(S), µα(Σ ) < +∞ and χA
denotes the characteristic function of the set A ⊂ R+.

A straightforward computation shows FΣ ES is an integral operator with kernel (see [10,
Lemma 4.2])

N (x, ξ) = χS(x)Hα


χΣ jα(x ·)


.

Then FΣ ES is a Hilbert–Schmidt operator with

∥FΣ ES∥
2
H S ≤ µα(S)µα(Σ ). (3.42)

The phase space restriction operator is defined by

L S,Σ = (FΣ ES)
∗FΣ ES = ES FΣ ES,

where (FΣ ES)
∗

= ES FΣ .

Theorem 3.1. Let {ϕn}
N
n=1 be an orthonormal system in L2

α(R+). If

∥EScϕn∥
2
L2
α

≤ a2
n and ∥FΣ cϕn∥

2
L2
α

≤ b2
n,

then

N
n=1


1 −

3
2

an −
3
2

bn


< µα(S)µα(Σ ). (3.43)
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Proof. We will apply a standard estimate of the trace of the time–frequency restriction operator
L S,Σ to conclude that

tr

L S,Σ


= ∥FΣ ES∥

2
H S ≤ µα(S)µα(Σ ).

Then
N

n=1


L S,Σϕn, ϕn


α

≤ tr

L S,Σ


≤ µα(S)µα(Σ ).

On the other hand, as the identity operator I = ES + ESc = FΣ + FΣ c , then
L S,Σϕn, ϕn


α

= ⟨FΣ ESϕn, ESϕn⟩α

= ⟨ϕn, ϕn⟩α − ⟨EScϕn, ϕn⟩α − ⟨ESϕn, FΣ cϕn⟩α − ⟨FΣ ESϕn, EScϕn⟩α .

Therefore

L S,Σϕn, ϕn


α
> 1 − 2an − bn and

N
n=1

(1 − 2an − bn) < µα(S)µα(Σ ). (3.44)

Now if we consider the operator L̃ S,Σ = (ES FΣ )
∗ES FΣ = FΣ ES FΣ , we obtain similarly

N
n=1

(1 − an − 2bn) < µα(S)µα(Σ ). (3.45)

Combining (3.44) and (3.45), we deduce the desired result. �

Definition 3.2. Let 0 < ε < 1 and f ∈ L2
α(R+). Then

(1) we say that f is ε-concentrated on S if ∥ESc f ∥L2
α

≤ ε∥ f ∥L2
α
,

(2) we say that f is ε-bandlimited on Σ if ∥FΣ c f ∥L2
α

≤ ε∥ f ∥L2
α
.

It is clear that, if f is ε-bandlimited on Σ then by Plancherel theorem (1.4), Hα( f ) is ε-
concentrated on Σ .

From Theorem 3.1, we can obtain immediately the following corollary.

Corollary 3.3. Let a, b > 0 and 0 < ε1, ε2 < 1 such that ε1 + ε2 <
2
3 . Let {ϕn}

N
n=1 be an

orthonormal system in L2
α(R+). If ϕn is ε1-concentrated on [0, a] and ε2-bandlimited on [0, b],

then

N ≤
1

1 − 3/2(ε1 + ε2)


(ab)α+1

2α+10(α + 2)

2

.

Therefore if the generalized dispersions of the elements of an orthonormal sequence are
uniformly bounded then this sequence is finite and we can give a bound on the number of
elements in that sequence. More precisely:

Corollary 3.4. Fix A, B > 0. Let s > 0 and {ϕn}
N
n=1 be an orthonormal sequence in L2

α(R+)

that satisfies
x sϕn

1/s
L2
α

≤ A and
ξ s Hα(ϕn)

1/s
L2
α

≤ B. Then there exists a positive constant

c(s, α) such that

N ≤ c(s, α)(AB)2(α+1).
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Proof. As
x sϕn

2
L2
α

≤ A2s , then
x>4

1
s A

|ϕn(x)|
2 dµα(x) =


x>4

1
s A

x−2s x2s
|ϕn(x)|

2 dµα(x) ≤
1

16A2s

x sϕn
2

L2
α

≤
1

16
.

In the same way we get
ξ>4

1
s B

|Hα(ϕn)(ξ)|
2 dµα(ξ) ≤

1
16
.

Thus ϕn is 1
4 -concentrated on


0, 4

1
s A


and 1

4 -bandlimited on

0, 4

1
s B


. Therefore from

Corollary 3.3 we obtain the desired result. �

Lemma 3.5. Let S and Σ be measurable subsets of finite measure µα(S), µα(Σ ) < +∞. Then
there exists a nonzero function f ∈ L2

α(R+) such that supp f ⊂ Sc and supp Hα( f ) ⊂ Σ c.

Proof. Let PWα(Σ ) =


f ∈ L2
α(R+) : supp Hα( f ) ⊂ Σ


be the Paley–Wiener space. As

(S,Σ ) form a strong annihilating pair, then from [10, Theorem A] there exists a positive constant
c = c(α, S,Σ ) such that for all f ∈ PWα(Σ )

∥ f ∥L2
α

≤ c∥ f ∥L2
α(Sc). (3.46)

The last inequality implies in particular that the restriction map f → f |Sc is invertible on
PWα(Σ ) and the trace space PWα(Σ )|Sc = { f |Sc : f ∈ PWα(Σ )} form a closed subspace in
L2
α(S

c)which is obviously not the whole space. Thus there exists a nonzero function f ∈ L2
α(S

c)

such that f ∉ PWα(Σ )|Sc , i.e. f is supported in Sc and its Fourier–Bessel transform is supported
in Σ c. We extend f by zero on S in order to get the required function. �

Lemma 3.5 is a special form of uncertainty principle and it is well-known for the usual Fourier
transform, which follows for example from [1, Proposition 3] (see also [17]). Moreover there are
several examples of the uncertainty inequality of the form (3.46) for the Fourier transform, one
of them is the Amrein–Berthier theorem [1] which is a quantitative version of a result due to
Benedicks [3] showing that a pair of sets of finite Lebesgue measure is an annihilating pair.

Remark 3.6. Let S be a measurable subset of R+. Then the Lebesgue measure of S, |S| satisfies

|S| =

 1

0
χS(x) dx +


+∞

1
χS(x) dx ≤ 1 + cαµα(S), (3.47)

which means that the condition |S| < +∞ is weaker than µα(S) < +∞. Therefore we
can obtain slightly stronger results, namely by replacing in all this section the hypothesis
µα(S), µα(Σ ) < +∞ by |S| , |Σ | < +∞ since in this case the Hilbert–Schmidt norm of
FΣ ES satisfies, see [10, Lemma 4.2],

∥FΣ ES∥
2
H S ≤ κα |S| |Σ | , (3.48)

and then the localization inequality (3.43) becomes

N
n=1


1 −

3
2

an −
3
2

bn


< κα |S| |Σ | . (3.49)
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Theorem 3.7. Let s > 0 and let {ϕn}
+∞

n=1 be an orthonormal basis for L2
α(R+). Then

sup
n

x sϕn


L2
α

ξ s Hα(ϕn)


L2
α


= +∞.

Proof. Assume that there exists an orthonormal basis {ϕn}
+∞

n=1 such thatx sϕn
1/s

L2
α

ξ s Hα(ϕn)
1/s

L2
α

≤ C2.

Let k ∈ Z and let

Ak =


ϕn :

x sϕn
1/s

L2
α

∈


2−kC, 2−k+1C


.

Clearly, {ϕn}
+∞

n=1 =


k Ak , and for ϕn ∈ Ak , we havex sϕn
1/s

L2
α

≤ 2−k+1C and
ξ s Hα(ϕn)

1/s
L2
α

≤ C2k .

Then by Corollary 3.4, Ak is finite, and if Nk is the number of elements in Ak then Nk is bounded
by a constant cα,s that does not depend on k.

Let R > 0, then by using Lemma 3.5, we take a nonzero function f ∈ L2
α(R+) with

∥ f ∥L2
α

= 1, that vanishes on [0, R] with its Fourier–Bessel transform. Then for k ≥ 0 and
ϕn ∈ Ak we get by the Cauchy–Schwarz inequality that⟨ f, ϕn⟩α

2
≤ R−2s

∥ f ∥
2
L2
α

x sϕn
2

L2
α

≤ (2C R−1)2s4−sk . (3.50)

Similarly, for k < 0 and ϕn ∈ Ak we get by Plancherel theorem (1.4),⟨ f, ϕn⟩α

2
=

⟨Hα( f ),Hα(ϕn)⟩α
2

≤ R−2s
∥ f ∥

2
L2
α

ξ s Hα(ϕn)
2

L2
α

≤ (C R−1)2s4sk . (3.51)

Now as {ϕn}
+∞

n=1 is a basis for L2
α(R+),

1 = ∥ f ∥
2
L2
α

=


k


ϕn∈Ak

⟨ f, ϕn⟩α

2
,

then by combining Inequalities (3.50) and (3.51) we obtain

1 ≤ (2C R−1)2s
+∞
k=0

4−sk Nk + cα,s(C R−1)2s
+∞
k=1

4−sk N−k

≤ cα,s(2C R−1)2s
+∞
k=0

4−sk
+ cα,s(C R−1)2s

+∞
k=1

4−sk

≤
4cα,s(2C)2s

3R2s
.

Choosing R large enough, we get a contradiction. The theorem is proved. �
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