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Abstract

Let E be a compact set of positive logarithmic capacity in the complex plane and let {Pn(z)}∞1 be a
sequence of asymptotically extremal monic polynomials for E in the sense that

lim sup
n→∞

∥Pn∥
1/n
E ≤ cap(E).

The purpose of this note is to provide sufficient geometric conditions on E under which the (full) sequence
of normalized counting measures of the zeros of {Pn} converges in the weak-star topology to the equilibrium
measure on E , as n → ∞. Utilizing an argument of Gardiner and Pommerenke dealing with the balayage
of measures, we show that this is true, for example, if the interior of the polynomial convex hull of E has
a single component and the boundary of this component has an “inward corner” (more generally, a “non-
convex singularity”). This simple fact has thus far not been sufficiently emphasized in the literature. As
applications we mention improvements of some known results on the distribution of zeros of some special
polynomial sequences.
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1. Introduction

Let E be a compact set of positive logarithmic capacity (cap(E) > 0) contained in the
complex plane C. We denote by Ω the unbounded component of C\E and by µE the equilibrium
measure (energy minimizing Borel probability measure on E) for the logarithmic potential on
E ; see e.g. [12, Chapter 3] and [13, Section I.1]. As is well-known, the support supp(µE ) lies on
the boundary ∂Ω of Ω .

For any polynomial pn(z), of degree n, we denote by νpn the normalized counting measure
for the zeros of pn(z); that is,

νpn :=
1
n


pn(z)=0

δz, (1.1)

where δz is the unit point mass (Dirac delta) at the point z.
Let N denote an increasing sequence of positive integers. Then, following [13, p. 169] we

say that a sequence of monic polynomials {Pn(z)}n∈N , of respective degrees n, is asymptotically
extremal on E if

lim sup
n→∞, n∈N

∥Pn∥
1/n
E ≤ cap(E), (1.2)

where ∥ · ∥E denotes the uniform norm on E . (We remark that this inequality implies equality
for the limit, since ∥Pn∥E ≥ cap(E)n .) Such sequences arise, for example, in the study of poly-
nomials orthogonal with respect to a measure µ belonging to the class Reg, see Definition 3.1.2
in [14].

Concerning the asymptotic behavior of the zeros of an asymptotically extremal sequence of
polynomials, we recall the following result, see e.g. [10, Theorem 2.3] and [13, Theorem III.4.7].

Theorem 1.1. Let {Pn}n∈N , denote an asymptotically extremal sequence of monic polynomials
on E. If µ is any weak-star limit measure of the sequence {νPn }n∈N , then µ is a Borel probability
measure supported on C \ Ω and µb

= µE , where µb is the balayage of µ out of C \ Ω onto
∂Ω . Similarly, the sequence of balayaged counting measures converges to µE :

νb
Pn

∗
−→ µE , n → ∞, n ∈ N . (1.3)

By the weak-star convergence of a sequence of measures λn to a measure λ we mean that, for
any continuous f with compact support in C, there holds

f dλn →


f dλ, as n → ∞.

For properties of balayage, see [13, Section II.4].



120 E.B. Saff, N. Stylianopoulos / Journal of Approximation Theory 191 (2015) 118–127

The goal of the present paper is to describe simple geometric conditions under which the nor-
malized counting measures νPn of an asymptotically extremal sequence {Pn} on E themselves
converge weak-star to the equilibrium measure. For example, this is the case whenever E is a
closed non-convex polygonal region, a simple fact that has thus far not been sufficiently empha-
sized in the literature. Here we introduce more general sufficient conditions based on arguments
of Gardiner and Pommerenke [3] dealing with the balayage of measures.

The outline of the paper is as follows: In Section 2 we describe a geometric condition, which
we call the non-convex singularity (NCS) condition and state the main result regarding the count-
ing measures νPn of the zeros of polynomials that form an asymptotically extremal sequence. Its
proof is given in Section 4.

In Section 3, we apply the main result to obtain improvements in several known results on the
behavior of the zeros of orthogonal polynomials, whereby the NCS condition yields convergence
conclusions for the full sequence N rather than for some subsequence.

2. A geometric property

Definition 2.1. Let G be a bounded simply connected domain in the complex plane. A point z0
on the boundary of G is said to be a non-convex type singularity (NCS) if it satisfies the following
two conditions:

(i) There exists a closed disk D with z0 on its circumference, such that D is contained in G
except for the point z0.

(ii) There exists a line segment L connecting a point ζ0 in the interior of D to z0 such that

lim
z→z0
z∈L

gG(z, ζ0)

|z − z0|
= +∞, (2.1)

where gG(z, ζ0) denotes the Green function of G with pole at ζ0 ∈ G.

Recall that gG(·, ζ ) is a positive harmonic function in G \ {ζ }. Also note that the assumption that
G is bounded and simply connected implies that G is regular with respect to the Dirichlet prob-
lem in G. This means that lim z→t

z∈G
gG(z, ζ ) = 0, for any t ∈ ∂G; see, e.g., [12, pp. 92 and 111].

Remark. With respect to condition (ii), we note that the existence of a straight line L and a
point ζ0 for which (2.1) holds, implies that the same is true for any other straight line connecting
a point in the open disk D with z0. This can be easily deduced from Harnack’s Lemma (see e.g.
[13, Lemma 4.9, p.17], [1, p. 14]) in conjunction with the symmetry property of Green functions,
which imply that for a compact set K ⊂ G containing ζ0 and dist(z, K ) > δ > 0, z ∈ G, there
is a constant C = C(K , δ, ζ0) > 0 such that the inequality

gG(z, ζ ) ≥ CgG(z, ζ0) (2.2)

holds for all ζ ∈ K .

As we shall easily show, a point z0 satisfying the following sector condition is an NCS point.

Definition 2.2. Let G be a bounded simply connected domain. A point z0 on the boundary
of G is said to be an inward-corner (IC) point if there exists a circular sector of the form
S := {z : 0 < |z − z0| < r, απ < arg(z − z0) < βπ} with β − α > 1 whose closure is
contained in G except for z0.
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To see that an IC point satisfies Definition 2.1, let gS(z, ζ ) denote the Green function of the
sector S. Then gS(z, ζ ) = − log |ϕζ (z)|, where ϕζ is a conformal mapping of S onto the unit
disk D := {z : |z| < 1}, satisfying ϕζ (ζ ) = 0. From the theory of conformal mapping it is
known [7] that the following expansion is valid for any z ∈ S near z0:

ϕζ (z) = ϕζ (z0) + a1(z − z0)
1/(β−α)

+ O(|z − z0|
2/(β−α)),

with a1 ≠ 0. Since |ϕζ (z0)| = 1, the above implies that the limit in (2.1) holds with gS(z, ζ0) in
the place of gG(z, ζ0). The desired limit then follows from the comparison principle for Green
functions:

gS(z, ζ ) ≤ gG(z, ζ ), z, ζ ∈ S;

see, e.g., [12, p. 108].

Remark. It is interesting to note that if the boundary ∂G is a piecewise analytic Jordan curve,
then at any IC point z0 of ∂G the density of the equilibrium measure is zero. This can be easily
deduced from the relation dµ∂G(z) = |Φ′(z)|ds connecting the equilibrium measure to the ar-
clength measure ds on ∂G, where Φ is a conformal mapping of Ω onto {w : |w| > 1}, taking ∞

to ∞. Then, if λπ (1 < λ < 2) is the interior opening angle at z0,Φ(z) has near z0 an expansion
of the form

Φ(z) = Φ(z0) + b1(z − z0)
1/(2−λ)

+ o(|z − z0|
1/(2−λ)), (2.3)

with b1 ≠ 0, which leads to Φ′(z0) = 0.

We can now state our main result.

Theorem 2.1. Let E ⊂ C be a compact set of positive capacity, Ω the unbounded component
of C \ E, and E := C \ Ω denote the polynomial convex hull of E. Assume there is closed set
E0 ⊂ E with the following three properties:

(i) cap(E0) > 0;
(ii) either E0 = E or dist(E0, E \ E0) > 0;

(iii) either the interior int(E0) of E0 is empty or the boundary of each open component of
int(E0) contains an NCS point.

Let V be an open set containing E0 such that dist(V, E \ E0) > 0 if E0 ≠ E . Then for any
asymptotically extremal sequence of monic polynomials {Pn}n∈N for E,

νPn |V
∗

−→ µE |E0 , n → ∞, n ∈ N , (2.4)

where µ|K denotes the restriction of a measure µ to the set K .

We remark that, for the case of a Jordan region, the hypothesis of Theorem 3 of [3] implies
the existence of an NCS point. We also note that the assumption dist(E0, E \ E0) > 0 implies
that any (open) component of int(E0) is simply connected.

As a consequence of Theorem 2.1 and [13, Theorem III.4.1] we have the following.

Corollary 2.1. With the hypotheses of Theorem 2.1, if G denotes a component of int(E0), then
for any asymptotically extremal sequence {Pn}n∈N of monic polynomials for E, there exists a
point ζ in G such that

lim sup
n→∞, n∈N

|Pn(ζ )|1/n
= cap(E). (2.5)
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Fig. 1. Form (iii).

Fig. 2. Form (iv).

Corollary 2.2. Let E consist of the union of a finite number of closed Jordan regions
E := ∪

N
j=1 G j , where Gi ∩ G j = ∅, i ≠ j , and assume that for each k = 1, . . . , m the

boundary of Gk contains an NCS point. Then for any asymptotically extremal sequence of monic
polynomials {Pn}n∈N for E,

νPn |V
∗

−→ µE |V , n → ∞, n ∈ N , (2.6)

where V is an open set containing
m

k=1 Gk , such that if m < N the distance of V fromN
j=m+1 G j is positive.

We now give some examples that follow from Theorem 2.1 and Corollary 2.2. If E has one
of the following forms, then for any asymptotically extremal sequence {Pn}n∈N of monic poly-
nomials on E , we have

νPn

∗
−→ µE , n → ∞, n ∈ N. (2.7)

(i) E is a closed non-convex polygon or a finite union of mutually exterior closed non-convex
polygons.

(ii) E is the union of two mutually exterior closed non-convex polygons, except for a single
common boundary point.

(iii) E is the union of two mutually exterior closed non-convex polygons joined by a Jordan arc
in their exterior, such that the complement of E is connected and does not separate the plane;
see Fig. 1.

(iv) E is a closed non-convex polygon Π together with a finite number of closed Jordan arcs
lying exterior to Π except for the initial point on the boundary of Π , and such that the
complement of E does not separate the plane; see Fig. 2.

(v) E is any of the preceding forms with the polygons replaced by closed bounded Jordan
regions, each one having an NCS point.

(vi) E is any of the preceding forms union with a compact set K in the complement of E such
that K has empty interior and E ∪ K does not separate the plane.
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We remark that if E is a convex region, so that the hypotheses of Theorem 2.1 are not fulfilled,
then the zero behavior of an asymptotically extremal sequence of monic polynomials Pn can be
quite different. For example, if E is the closed unit disk centered at the origin for which µE is the
uniform measure on the circumference |z| = 1, the polynomials Pn(z) = zn form an extremal
sequence for which νPn = δ0, the unit point mass at zero. A less trivial example is illustrated in
Fig. 3, where the zeros of orthonormal polynomials with respect to area measure on a circular
sector E with opening angle π/2 are plotted for degrees n = 50, 100, and 150. These so-called
Bergman polynomials Bn(z) form an asymptotically extremal sequence of polynomials for the
sector, yet their normalized zero counting measures converge weak-star to a measure ν that is
supported on the union of three curves lying in the interior of E except for their three endpoints,
the vertices of the sector; see [11]. On the other hand, for any compact set E of positive capacity,
whether convex or not, if {qn(z)}n∈N denotes a sequence of Fekete polynomials for E , then this
sequence is asymptotically extremal on E , all their zeros stay on the outer boundary ∂Ω , and
νqn

∗
−→ µE , as n → ∞, n ∈ N; see e.g., [13, p. 176].

In every case, according to Theorem 1.1, a limit measure of a sequence of asymptotically
extremal monic polynomials must have a balayage to the outer boundary of E that equals the
equilibrium measure µE . The question then of what types of point sets can support a measure
with such a balayage is a relevant inverse problem. In this connection, there is a conjecture of the
first author on the existence of electrostatic skeletons for every closed convex polygon (more gen-
erally, for any closed convex region with boundary consisting of line segments or circular arcs).
By an electrostatic skeleton on E we mean a positive measure with closed support in E , such that
its logarithmic potential matches the equilibrium potential in Ω and its support has empty interior
and does not separate the plane. For example, a square region has a skeleton whose support is
the union of its diagonals; the circular sector in Fig. 3 has a skeleton supported on the illustrated
curve joining the three vertices. See the discussion in [9, p. 55] and in [2].

3. Applications to special polynomial sequences

We begin with some results for Bergman polynomials {Bn}n∈N that are orthogonal with
respect to the area measure d A over a bounded Jordan domain G; i.e.,

G
Bm(z)Bn(z) d A(z) = 0, m ≠ n. (3.1)

The following theorem was established in [8].

Theorem 3.1. Let G be a bounded Jordan domain and ϕ a conformal map of G onto the unit
disk D. Then, there is a subsequence N of N such that

νBn

∗
−→ µ∂G , n → ∞, n ∈ N (3.2)

if and only if ϕ cannot be analytically continued to some open set containing G.

It is not difficult to see that this property of G is independent of the choice of the conformal
map ϕ.

As a consequence of Corollary 2.2, we obtain a sufficient condition for (3.2) to hold for the
full sequence.

Corollary 3.1. If the Jordan domain G has a point on its boundary that satisfies the NCS
condition, then (3.2) holds for N = N.
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Fig. 3. Zeros of the Bergman polynomials Bn , n = 50, 100, 150, for the circular sector with opening angle π/2.

Fig. 4. Zeros of the Bergman polynomials Bn , n = 50, 100, 150, for the circular sector with opening angle 3π/2.

In Fig. 4, we depict zeros of the Bergman polynomials for the circular sector G := {z : z =

eiθ , −3π/4 < θ < 3π/4}. The computations of the Bergman polynomials for this sector as well
as for the sector in Fig. 3 were carried out in Maple 16 with 300 significant figures, using the
Arnoldi Gram–Schmidt algorithm; see [15, Section 7.4] for a discussion regarding the stability
of the algorithm.

For Fig. 4 the origin is an NCS point and, therefore, Corollary 3.1 implies that the only limit
distribution of the zeros is the equilibrium measure, a fact reflected in Fig. 4. It is interesting to
note that this figure also depicts the facts that the density of the equilibrium measure is zero at
corner points with opening angle greater than π , and it is infinite at corners with opening angle
less that π .

In [4, p. 1427] the following question has been raised: If G is the union of two mutually
exterior Jordan domains G1 and G2 whose boundaries are singular, does there exist a common
sequence of integers n for which νBn |V j converges to µ∂G |∂G j , where V j is an open set contain-
ing G j , j = 1, 2. Thanks to Theorem 2.1, the answer is affirmative for the full sequence N if
both G1 and G2 have the NCS property.
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We conclude by applying the results of the main theorem to the case of Faber polynomials.
For this purpose, we assume that Ω = C \ E is simply connected and let Φ denote the conformal
map Ω → ∆ := {w : |w| > 1}, normalized so that near infinity

Φ(z) = γ z + γ0 +
γ1

z
+

γ2

z2 + · · · , γ > 0. (3.3)

The Faber polynomials {Fn(z)}∞n=0 of E are defined as the polynomial part of the expansion of
Φn(z) near infinity.

The following theorem was established in [5].

Theorem 3.2. Suppose that int(E) is connected and ∂ E is a piecewise analytic curve that has a
singularity other than an outward cusp. Then, there is a subsequence N of N such that

νFn

∗
−→ µE , n → ∞, n ∈ N . (3.4)

Using Theorem 2.1 we can refine the above as follows; see also the question raised in Remark
6.1(c) in [5].

Corollary 3.2. If int(E) has a point on its boundary that satisfies the NCS condition, then
(3.4) holds for N = N.

4. Proof of Theorem 2.1

Let µ be any weak-star limit measure of the sequence {νPn }n∈N and recall from Theorem 1.1
that supp(µ) ⊂ E and

Uµ(z) = UµE (z), z ∈ Ω , (4.1)

where

U ν(z) :=


log

1
|z − t |

dν(t)

denotes the logarithmic potential on a measure ν.
We consider first the case when E0 = E . It suffices to show that

supp(µ) ⊂ ∂Ω , (4.2)

because, this in view of (4.1) and Carleson’s unicity theorem [13, Theorem II.4.13] will imply
the relation µ = µE , which yields (2.4) with V = C. Clearly, (4.2) is satisfied automatically in
the case int(E0) = ∅, so we turn our attention now to the case int(E0) ≠ ∅ and assume to the
contrary that supp(µ) is not contained in ∂Ω . Then there exists a small closed disk K belonging
to some open component of int(E0), such that µ(K ) > 0. We call this particular component G,
and note that it is simply connected. Since ∂G is regular with respect to the interior and exterior
Dirichlet problem,

lim
z→t∈∂G

z∈G

gG(z, ζ ) = 0 and lim
z→t∈∂G
z∈C\G

gC\G(z, ∞) = 0,

where gC\G(z, ∞) denotes the Green function of C \ G with pole at infinity.
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Following Gardiner and Pommerenke (see [3, Section 5]), we set µ0 := µ|K and consider the
function

S(z) :=




gG(z, ζ )dµ0(ζ ), z ∈ G,

UµE (z) − log
1

cap(E)
, z ∈ C \ G.

(4.3)

From the properties of Green functions and equilibrium potentials it follows that S(z) is harmonic
in G \ K and in Ω \ {∞}, positive in G, negative or zero in C \ G and vanishes quasi-everywhere
(that is, apart from a set of capacity zero) on ∂G.

Let now µ0 denote the balayage of µ0 out of K onto ∂G. Then, the relation µ0 ≤ µb follows
from the discussion regarding balayage onto arbitrary compact sets in [6, pp. 222–228]. Since,
by Theorem 1.1, µb

= µE , the difference µE − µ0 is a positive measure, a fact leading to the
following useful representation:

S(z) = Uµ0(z) + UµE −µ0(z) − log
1

cap(E)
, z ∈ C, (4.4)

which shows that S(z) is superharmonic in C.
By assumption, the boundary of G contains an NCS point z0. Without loss of generality, we

make the following simplifications regarding the two conditions in Definition 2.1: By performing
a translation and scaling we take z0 to be the origin and by rotation we take ζ0 = iγ , for some
γ ∈ (0, 1). Finally, in view of the Remark following Definition 2.1, we take D := {z : |z − iγ | ≤

γ } and choose γ so that D is a subset of the open unit disk D and D ∩ K = ∅.
The contradiction we seek will be a consequence of the following two claims:

Claim (a)

 2π

π

S(reiθ )

r
dθ ≥ τ, as r → 0+,

where τ is a negative constant and

Claim (b)

 π

0

S(reiθ )

r
dθ → +∞, as r → 0 + .

These claims follow as in [3], utilizing in the justification of Claim (b) the essential condition
that the origin is an NCS point so that

lim
y→0+

gG(iy, iγ )

y
= +∞. (4.5)

Note that for small positive y the definition of S(z) gives

S(iy)

y
=

1
y


gG(iy, ζ )dµ0(ζ ). (4.6)

Using (2.2) we have gG(iy, ζ ) ≥ CgG(iy, iγ ) for any ζ ∈ K and small y, which in view of (4.5)
leads to the limit

lim
y→0+

S(iy)

y
= +∞. (4.7)

Using Claims (a) and (b) and the fact that S(0) = 0 (since the origin is a regular point of Ω ),
it is easy to arrive at a relation that contradicts the mean value inequality for superharmonic



E.B. Saff, N. Stylianopoulos / Journal of Approximation Theory 191 (2015) 118–127 127

functions (see also [3, p. 425]):

1
r


1

2π

 2π

0
S(reiθ )dθ − S(0)


=

1
2πr

 2π

0
S(reiθ )dθ

≥
1

2πr

 π

0
S(reiθ )dθ + τ

→ ∞, r → +0.

This establishes the theorem for the case E0 = E .
To conclude the proof, we observe that when dist(E0, E \ E0) > 0 our arguments above show

that µ cannot have any point of its support in the interior of any open component of E0 ∩ V ;
hence it is supported on the outer boundary of E0 inside V . Therefore, by following the proof of
Theorem II.4.13 in [13], we see that the logarithmic potentials of µ and µE coincide in V and the
required relation µ|V = µE |E0 follows from the unicity theorem for logarithmic potentials. �
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