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Abstract

We study the L1-approximation of d-variate monotone functions based on information from n function
evaluations. It is known that this problem suffers from the curse of dimensionality in the deterministic
setting, that is, the number n(ε, d) of function evaluations needed in order to approximate an unknown
monotone function within a given error threshold ε grows at least exponentially in d . In the randomized
setting (Monte Carlo setting) the complexity n(ε, d) grows exponentially in

√
d (modulo logarithmic terms)

only. An algorithm exhibiting this complexity is presented. The problem remains difficult as best methods
known are deterministic if ε is comparably small, namely ε ⪯ 1/

√
d. This inherent difficulty is confirmed

by lower complexity bounds which reveal a joint (ε, d)-dependence and from which we deduce that the
problem is not weakly tractable. The lower bound proof also has implications on the complexity of learning
Boolean monotone functions.
c⃝ 2019 Elsevier Inc. All rights reserved.

Keywords: Monte Carlo approximation; Monotone functions; Information-based complexity; Standard information;
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1. Introduction

In this paper we consider the L1-approximation of d-variate monotone functions using
function values as information,

APP : Fd
mon ↪→ L1([0, 1]d ) , f ↦→ f ,
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where the input set

Fd
mon := { f : [0, 1]d

→ [−1, 1] | x ≤ x̃ ⇒ f (x) ≤ f (̃x)}

consists of monotonically increasing functions with respect to the partial order on the domain.
For x, x̃ ∈ Rd , the partial order is defined by

x ≤ x̃ :⇔ x j ≤ x̃ j for all j = 1, . . . , d .

The approximation of monotone functions is not a linear problem according to the book
Information-based Complexity (IBC) by Traub et al. [20] because the set Fd

mon is not symmetric:
For non-constant functions f ∈ Fd

mon, the negative − f is not contained in Fd
mon since it

will be monotonically decreasing. The monotonicity assumption is different from common
smoothness assumptions, yet it implies many other nice properties, see for example Alberti and
Ambrosio [1]. Integration and approximation of monotone functions have been studied in several
papers [10,14,17] to which we will refer in the course of this paper. Monotonicity can also be an
assumption for statistical problems [7,18]. A similar structural assumption could be convexity
(more general: k-monotonicity), numerical problems with such properties have been studied for
example in [6,10–12,15].

In approximating monotone functions with respect to the L1-norm, a deterministic algorithm
with cardinality n is a mapping

An : Fd
mon

N
−→ Rn φ

−→ L1([0, 1]d ) ,

where N is the information mapping

N ( f ) = (y1, . . . , yn) := ( f (x1), . . . , f (xn)) .

The nodes x1, . . . , xn may be selected in an adaptive manner, that is, the choice of the node xi

may depend on previously obtained information y1, . . . , yi−1. (One could even adaptively vary
the number n of computed function values, thereby building an algorithm with so-called varying
cardinality.) The worst case error of such a method is defined by

e(An, Fd
mon) := sup

f ∈Fd
mon

∥An( f ) − f ∥L1 .

A Monte Carlo method An = (Aωn )ω∈Ω is a family of such mappings indexed by a random
element ω from a probability space (Ω ,Σ ,P). Hence, fixing an input f , the output An( f ) is a
random variable with values in L1([0, 1]d ). We assume that the Monte Carlo error,

e((Aωn ), Fd
mon) := sup

f ∈Fd
mon

E∥An( f ) − f ∥L1 ,

is well defined, in particular, the error functional ω ↦→ ∥Aωn ( f ) − f ∥L1 shall be measurable
for any input f . Our goal is to compare the deterministic setting (worst case) with the
randomized setting (Monte Carlo) in terms of the respective minimal errors using information of
cardinality n ∈ N0,

edet(n, Fd
mon) := inf

An
e(An, Fd

mon) vs. eran(n, Fd
mon) := inf

(Aωn )
e((Aωn ), Fd

mon) ,

and also in terms of the respective complexities for accuracy ε > 0 and dimension d ,

ndet(ε, Fd
mon) := inf{n ∈ N0 | ∃An : e(An, Fd

mon) ≤ ε}

vs. nran(ε, Fd
mon) := inf{n ∈ N0 | ∃(Aωn ) : e((Aωn ), Fd

mon) ≤ ε} .
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In Section 2 we present a collection of results that are known from previous papers or can
be shown with well known techniques. In Section 2.1 we show that for fixed dimension d the
order of convergence for the L1-approximation of monotone functions cannot be improved by
randomization. In Section 2.2 we cite Hinrichs, Novak and Woźniakowski [10], who showed that
the deterministic complexity grows exponentially in d for some fixed ε, this is called the curse of
dimensionality, a notion coined by Bellman 1957 [3]. Monte Carlo methods may “mitigate” the
curse by significantly reducing the d-dependence of the complexity, as long as the accuracy ε is
fixed. Namely, in Section 3 we show the combined upper bound

nran(ε, Fd
mon) ≤ min

{
exp

[
C

√
d
ε

(
1 + log

d
ε

)3/2
]
, exp

[
d log

d
2ε

]}
, (1)

with some numerical constant C > 0, see Theorem 3.3. Here, the first bound is achieved by a
proper Monte Carlo method and applies in the pre-asymptotic regime. In particular, for fixed ε the
complexity grows exponentially in

√
d (modulo logarithmic terms) only. Despite this speed-up

by an exponent
√

d , and although formally the curse does not hold anymore – according to the
definition commonly used in IBC [9,10,16,21] – the Monte Carlo complexity still grows very fast
with the dimension. Even worse, the second bound in (1) is achieved by deterministic algorithms
and applies for small error thresholds ε ⪯ 1/

√
d (modulo logarithmic terms). Lower bounds for

the Monte Carlo setting are found in Section 4, where we prove

nran(ε, Fd
mon) > ν exp

[
c

√
d
ε

]
, for ε0

√
d0/d ≤ ε ≤ ε0 and d ≥ d0, (2)

with numerical constants ν, c, ε0 > 0 and d0 ∈ N, see Theorem 4.1. There is a constraint on ε,
which is not surprising as it fits to the observation that for smaller ε best algorithms known
are deterministic and we have a different joint (ε, d)-dependence in that regime. However, by
monotonicity of the ε-complexity, we can still conclude

nran(ε, Fd
mon) > ν exp

[
c′ d

]
, for 0 < ε ≤ ε0

√
d0/d and d ≥ d0, (3)

where c′
= c/(ε0

√
d0). Hence, the lower bounds match the upper bounds except for logarithmic

terms in the exponent. For moderately decaying error thresholds ε = ε0
√

d0/d , the Monte Carlo
complexity depends already exponentially on d, we conclude that the problem is not weakly
tractable, we thus call it intractable, see Remark 4.2.

This paper is concerned with real-valued monotone functions f : [0, 1]d
→ [−1, 1]. A

closely related problem is the approximation of Boolean monotone functions f : {0, 1}
d

→

{0, 1}. The algorithm we present in Section 3 is inspired by method for learning Boolean
monotone functions due to Bshouty and Tamon [5]. The Monte Carlo lower bounds given
in Section 4 are actually obtained by a reduction to the approximation of Boolean monotone
functions. It is then a modification of a lower bound proof which can be found in Blum, Burch
and Langford [4]. Similarly to the real-valued setting in Section 2.2, one can show the curse of
dimensionality for deterministic approximation of Boolean monotone functions as well, see the
author’s PhD thesis [13, Theorem 4.5]. The main difference to real-valued monotone functions is
that the concept of order of convergence, see Section 2.1, is meaningless for a discrete problem
such as the approximation of Boolean functions.
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2. Survey on deterministic approximation

2.1. The classical approach—order of convergence

The classical approach for the numerical analysis of multivariate problems is to fix the
dimension d and to study the order at which the error e(n) converges to zero as the information
budget n grows. We will use the common asymptotic notation

an ⪯ e(n) ⪯ bn :⇔ ∃ c,C > 0 : c an ≤ e(n) ≤ C bn .

If an ⪯ e(n) ⪯ an , we simply write e(n) ≍ an . The hidden prefactors c and C may depend on
problem parameters such as the dimension. Sometimes, while knowing the exact order e(n) ≍ an ,
we still have a gap between the prefactors that grows unpleasantly with the dimension.

As an example, the order of convergence has been studied for approximating the integral of
monotone functions,

INT : Fd
mon → R, f ↦→

∫
[0,1]d

f dx ,

based on finitely many function evaluations. Interestingly, for this problem adaption makes a
difference in the randomized setting (at least for d = 1), but non-adaptive randomization helps
only for d ≥ 2 to speed up the convergence compared to deterministic methods. In the univariate
case Novak [14] showed

eran,ada(n, INT, F1
mon) ≍ n−3/2

≺ eran,nonada(n, INT, F1
mon) ≍ edet(n, INT, F1

mon) ≍ n−1 .

Papageorgiou [17] examined the integration of d-variate monotone functions, for dimen-
sions d ≥ 2 we have

eran,ada(n, INT, Fd
mon) ≍ n−1/d−1/2

⪯ eran,nonada(n, INT, Fd
mon) ⪯ n−1/(2d)−1/2

≺ edet(n, INT, Fd
mon) ≍ n−1/d ,

where the hidden prefactors depend on d . It is an open problem to find lower bounds for the
non-adaptive Monte Carlo error that actually show that adaption is better for d ≥ 2 as well, but
from the one-dimensional case we conjecture it to be like that.

For the L1-approximation of monotone functions, however, the order of convergence does not
reveal any differences between the various algorithmic settings. Applying Papageorgiou’s proof
technique to this problem, we obtain the following theorem.

Theorem 2.1. For the L1-approximation of monotone functions, for fixed dimension d and
n → ∞, we have the following asymptotic behaviour,

eran(n,APP, Fd
mon) ≍ edet(n,APP, Fd

mon) ≍ n−1/d ,

where the implicit prefactors depend on d.

Proof. We split [0, 1]d into md subcubes indexed by i ∈ {0, 1, . . . ,m − 1}
d :

Ci :=

d

×
j=1

Ii j

where Ii := [ i
m ,

i+1
m ) for i = 0, 1, . . . ,m − 2, and Im−1 := [ m−1

m , 1].
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For the lower bounds, we consider fooling functions f = fδ that are constant on each of the
subcubes, in detail,

f |Ci =
2(|i|1 + δi)

d(m − 1) + 1
− 1

with δi ∈ {0, 1} and |i|1 := i1 + . . .+ id . Obviously, such functions are monotonically increas-
ing. In order to obtain lower bounds that hold for Monte Carlo algorithms, we employ a minimax
argument, also known as Bakhvalov’s trick [2]. Namely, we average over all possible settings
of δ = (δi). For any information y, let I y

⊂ {0, . . . ,m − 1}
d be the set of indices i where we do

not know anything about the function on the corresponding subcube Ci. For an algorithm which
uses n < md function values, we have #I y

≥ md
− n. Considering an arbitrary Monte Carlo

algorithm Aωn = φω ◦ Nω, we can write

e((Aωn ), Fd
mon) = sup

f ∈Fd
mon

E∥Aωn ( f ) − f ∥L1 ≥ 2−md ∑
δ∈{0,1}md

E∥Aωn ( fδ) − fδ∥L1

≥ E2−md ∑
δ∈{0,1}md

∑
i∈I y

where y:=Nω ( fδ )
and g:=φω (y)

∫
Ci

1
2

(⏐⏐⏐ 2|i|1
d(m − 1) + 1

− g(x)
⏐⏐⏐+ ⏐⏐⏐ 2(|i|1 + 1)

d(m − 1) + 1
− g(x)

⏐⏐⏐)  
≥

1
d (m−1)+1

dx

≥

(
1 −

n
md

)
1

d(m − 1) + 1
.

Choosing m := ⌈(2n)1/d
⌉, we obtain the general lower bound

edet(n,APP, Fd
mon) ≥ eran(n,APP, Fd

mon) ≥
1

2 (d · (2n)1/d + 1)
≥

1
6 d

n−1/d .

For the upper bounds, we give a deterministic, non-adaptive algorithm with cardinal-
ity (m − 1)d , i.e. when allowed to use n function values, we choose m := ⌊n1/d

⌋ + 1. Splitting
the domain into md subcubes as above, we compute (m − 1)d function values at the corner
points in the interior (0, 1)d of the domain. For each subcube we take the arithmetic mean of
the functions values of f in the lower and the upper corner of that particular subcube, where at
the boundary without computing function values we assume

f |[0,1)d\(0,1)d = −1 and f |[0,1]d\[0,1)d = 1 .

The subcubes can be grouped along diagonals, where the upper corner of one subcube touches
the lower corner of the next subcube. Each diagonal can be uniquely represented by an index i
with at least one 0-entry, which thus belongs to the lowest subcube Ci of that diagonal, in total
we have md

− (m − 1)d
≤ d md−1 diagonals. Due to monotonicity, the contribution of a single

diagonal to the L1-error is at most m−d , so altogether we have

e(Ad
m, f ) ≤

d md−1

md
=

d
m

=
d

⌊n1/d⌋ + 1
≤ d n−1/d .

For more details see the proofs for integration in Papageorgiou [17]. □

The Monte Carlo lower bound contained in the above result also holds for algorithms with
varying cardinality, see [13, Theorem 4.2].

Remark 2.2. The above proof yields the explicit estimate

1
6 d

n−1/d
≤ eran(n,APP, Fd

mon) ≤ edet(n,APP, Fd
mon) ≤ d n−1/d .
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The ratio between the upper and the lower bound is only polynomial in d, but the picture is
totally different when switching to the notion of ε-complexity for 0 < ε < 1:(

1
6 d

)d

ε−d
≤ nran(ε,APP, Fd

mon) ≤ ndet(ε,APP, Fd
mon) ≤ dd ε−d .

Here, the gap is super-exponential in d . In particular, the upper bound is based on algorithms
that use super-exponentially (in d) many function values, which makes it essentially impossible
to apply them in high dimensions.

It turns out that the cardinality of deterministic methods that achieve a fixed accuracy ε is
always at least exponential in d , see Section 2.2. For the randomized setting, however, we can
significantly reduce the d-dependence (which is still high), at least as long as ε is fixed, see
Section 3. To summarize, if we only consider the order of convergence, we might think that
randomization does not help, but for high dimensions randomization actually does help, at least
in the pre-asymptotic regime.

2.2. Curse of dimensionality in the deterministic setting

Hinrichs, Novak, and Woźniakowski [10] have shown that the integration (and hence also the
L p-approximation, 1 ≤ p ≤ ∞) of monotone functions suffers from the curse of dimensionality
in the deterministic setting.

Theorem 2.3 (Hinrichs, Novak, Woźniakowski 2011). The L1-approximation of monotone
functions suffers from the curse of dimensionality in the deterministic setting. In particular,

edet(n, Fd
mon) ≥

(
1 − n 2−d) ,

so for 0 < ε ≤ 1/2 we have

ndet(ε, Fd
mon) ≥ 2d−1 .

Proof (Idea of the proof). Any deterministic algorithm will fail to distinguish the diagonal
split function f�(x) := sgn

(∑d
j=1 x j −

d
2

)
from other monotone functions Fd

mon which yield
the same information. No matter what information mapping N we take, there will exist such
indistinguishable functions with a big L1-distance to f�, since in this situation each function
value only provides knowledge about a subdomain of volume at most 2−d , see [10] for
details. □

Note that the initial error e(0, Fd
mon) is 1, this means, if we do not know any function value,

the best guess is the zero function. Thus the theorem above states that in order to merely
halve the initial error we already need exponentially (in d) many function values. The curse of
dimensionality can be “mitigated” via Monte Carlo, see Section 3, but we still have intractability
in the randomized setting, see Section 4. In contrast, for integration the standard Monte Carlo
method

Mn( f ) :=
1
n

n∑
i=1

f (Xi ) ≈ INT( f ) , where Xi
iid
∼ unif([0, 1]d ),

easily achieves strong polynomial tractability, namely n(ε, INT, Fd
mon) ≤ ⌈ε−2

⌉, where the
dimension d does not play any role, the curse is broken.
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3. Pre-asymptotic speed-up by Monte Carlo

We present and analyse a new algorithm for the approximation of monotone functions on the
unit cube. It is the first algorithm to show that Monte Carlo significantly reduces the dimension
dependence of the complexity compared to deterministic methods. The idea of the algorithm
has been inspired by a method for learning Boolean monotone functions due to Bshouty and
Tamon [5].

The method is based on a decomposition of the function f into tensorized Haar wavelets. We
define dyadic cuboids on [0, 1]d indexed by α ∈ Nd , or equivalently by an index vector pair (λ, κ)
with λ ∈ Nd

0 and κ ∈ Nd
0 , κ j < 2λ j , such that α j = 2λ j + κ j for j = 1, . . . , d:

Cα = Cλ,κ :=

d

×
j=1

Iα j ,

where

Iα j = Iλ j ,κ j :=

{
[κ j 2−λ j , (κ j + 1) 2−λ j ) for κ j = 0, . . . , 2λ j − 2,
[1 − 2−λ j , 1] for κ j = 2λ j − 1.

Note that for fixed λ j we have a decomposition of the unit interval [0, 1] into 2λ j disjoint
intervals of length 2−λ j . (This index system for subdomains differs from the index system
for subcubes in Section 2.1, which shall be no source of confusion.) One-dimensional Haar
wavelets ψα j : [0, 1] → R are defined for α j ∈ N0 (if α j = 0, we put λ j = −∞ and κ j = 0),

ψα j :=

{
1[0,1] if α j = 0(i.e. λ j = −∞ and κ j = 0),
2λ j /2 (1Iλ j +1,2κ j +1 − 1Iλ j +1,2κ j

) if α j ≥ 1(i.e. λ j ≥ 0).

In L2([0, 1]d ) we have the orthonormal tensor product basis {ψα}α∈Nd
0

with

ψα(x) :=

d∏
j=1

ψα j (x j ) .

The volume of the support of ψα is 2−|λ|+ with |λ|+ :=
∑d

j=1 max{0, λ j }. The basis func-
tion ψα only takes discrete values {0,±2|λ|+/2}, hence it is normalized indeed. (This basis
is well suited for monotone functions but differs from the usual Haar basis, mainly as the
multidimensional Haar basis is not simply the tensor product basis of the one-dimensional basis.
Further, for convenience, we switched signs for the one-dimensional Haar wavelets ψα with
α > 0.)

We can write any monotone function f as the decomposition

f =

∑
α∈Nd

0

f̃ (α)ψα

with the coefficients

f̃ (α) := ⟨ψα, f ⟩ = Eψα(X) f (X) ,
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where X is uniformly distributed on [0, 1]d . The algorithm shall use information from random
samples f (X1), . . . , f (Xn), with Xi

iid
∼ unif[0, 1]d , in order to approximate the most important

coefficients via the standard Monte Carlo method,

f̃ (α) ≈ h̃(α) :=
1
n

n∑
i=1

ψα(Xi ) f (Xi ) . (4)

In particular, we choose a resolution r ∈ N, and a parameter k ∈ {1, . . . , d}, and only consider
indices α ↔ (λ, κ) with λ j < r and |α|0 := #{ j | α j > 0} ≤ k. (The quantity |α|0 counts the
number of active variables of a basis function ψα .) A naive linear algorithm would simply return
a linear reconstruction,

h = Aωn,k,r ( f ) :=

∑
α∈Nd

0
|α|0≤k
λ<r

h̃(α)ψα , for f ∈ Fd
mon . (5)

This linear algorithm already provides the correct d-dependence (exponential in
√

d modulo
logarithmic terms) but the ε-dependence of the required sample size is unfavourable, see
[13, Theorem 4.22] for a detailed analysis. Instead, for the subclass of sign-valued monotone
functions,

Fd
mon±

:= { f : [0, 1]d
→ {−1,+1} | f ∈ Fd

mon} ,

in the L1-approximation setting it is natural to return a sign-valued approximation,

g = Âωn,k,r ( f ) := sgn h = sgn ◦ [Aωn,k,r ( f )] , for f ∈ Fd
mon±

. (6)

(Here and throughout the paper we put sgn(0) := 1 in order to avoid zero values.) For general
monotone functions f ∈ Fd

mon with function values in [−1,+1], the algorithm can be generalized
to

Āωn,k,r ( f ) :=
1
2

∫ 1

−1
Âωn,k,r ( ft ) dt , where ft (x) := sgn( f (x) − t) for t ∈ R. (7)

Note that the function values ft (Xi ) which are needed in the course of evaluating Ān,k,r can be
directly derived from function values f (Xi ), so we still use the same information as within the
simple linear algorithm (5). (This trick would not be possible for algorithms with an adaptive
procedure for collecting information on a sign-valued function.) The idea for the generalized
algorithm Ān,k,r is based on the observation

f (x) =
1
2

∫ 1

−1
sgn( f (x) − t) dt , for f (x) ∈ [−1, 1]. (8)

The validity of this approach is summarized in the following Lemma.

Lemma 3.1. For the approximation of monotone functions with the methods Ân,k,r =

( Âωn,k,r )ω∈Ω defined in (6) and Ān,k,r = ( Āωn,k,r )ω∈Ω from (7) we have

e( Ân,k,r , Fd
mon±

) = e( Ān,k,r , Fd
mon) .

Proof. Since for sign-valued functions f ∈ Fd
mon±

we have ft = f for t ∈ (−1, 1], triv-
ially Ân,k,r ( f ) = Ān,k,r ( f ), and from Fd

mon±
⊂ Fd

mon we conclude the inequality e( Ân,k,r , Fd
mon±

)
≤ e( Ān,k,r , Fd

mon).
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Conversely, for f ∈ Fd
mon, using the definition of Ān,k,r in (7) and the observation (8), via the

triangle-inequality and Fubini’s theorem we have

e( Ān,k,r , f ) = E
 f − Āωn,k,r ( f )


L1

[(7),(8)] = E
1

2

∫ 1

−1
( ft − Âωn,k,r ( ft )) dt


L1

[∆-ineq., Fubini] ≤
1
2

∫ 1

−1
E
 ft − Âωn,k,r ( ft )

 dt ≤ e( Ân,k,r , Fd
mon±

) .

This implies e( Ān,k,r , Fd
mon) ≤ e( Ân,k,r , Fd

mon±
), thus finishing the proof. □

We continue with the error analysis of the given algorithm, where by virtue of the above
lemma we may restrict to the approximation of sign-valued monotone functions via Ân,k,r . For
details on the implementation of Ān,k,r , see Remark 3.5.

A key result for the error analysis is the following fact about those coefficients which are
dropped by the algorithm, compare to Bshouty and Tamon [5, Section 4] for the Boolean setting.

Lemma 3.2. For any monotone function f ∈ Fd
mon we have∑

α∈Nd
0

|α|0>k
λ<r

f̃ (α)2
≤

√
d r

k + 1
.

Proof. Within the first step, we consider special coefficients f̃ (α e j ) with one active variable.
These measure the average growth of f along the j th coordinate within the interval Iα , where e j
is the j th vector of the standard basis in Rd . We will frequently use the alternative indexing Iλ,κ
with α = 2λ + κ ∈ N, where λ ∈ N0 and κ = 0, . . . , 2λ − 1. We define the function

fα, j (x) :=

⎧⎨⎩0 for x j /∈ Iα,

2λ/2
∫ 1

0 ψα(z j ) · f (z)
⏐⏐⏐ z j ′ =x j ′

for j ′ ̸= j

dz j for x j ∈ Iα.

Due to the monotonicity of f we have fα, j ≥ 0, and from the boundedness of f we have
fα, j ≤ 1. Using this and Parseval’s equation, we obtain

f̃ (α e j ) = ⟨ψα e j , f ⟩ = 2λ/2
 fα, j


L1

≥ 2λ/2
 fα, j

2
L2

= 2λ/2
∑

α′∈Nd
0

⟨
ψα′ , fα, j

⟩2
.

Since the function fα, j is constant in x j on Iα and vanishes outside, we only need to consider
summands with coarser resolution λ′

j < λ in that coordinate, and where the support of ψα

contains the support of fα, j . That is the case for κ ′

j = ⌊2λ
′
j −λκ⌋ with λ′

j = −∞, 0, . . . , λ− 1.
For such indices α′

↔ (κ ′,λ′) we have⟨
ψα′ , fα, j

⟩2
= 2max{0,λ′

j }−λ ⟨ψα′′ , f ⟩
2

= 2max{0,λ′
j }−λ f̃ 2(α′′) ,

where α′′

j ′ = α′

j ′ for j ′
̸= j , and α′′

j = α. Hence we obtain

f̃ (α e j ) ≥ 2λ/2
(

2−λ
+

λ−1∑
l=0

2l−λ

)
  

=1

∑
α′′∈Nd

0
α′′

j =α

f̃ 2(α′′) . (9)
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Based on this relation between the coefficients, we can estimate

1 = ∥ f ∥
2
L2

=

∑
α∈Nd

0

f̃ 2(α) ≥

d∑
j=1

r−1∑
λ=0

2λ−1∑
κ=0

f̃ 2((2λ + κ) e j )

≥

d∑
j=1

r−1∑
λ=0

2−λ

(2λ−1∑
κ=0

f̃ ((2λ + κ) e j )
)2

[(9)] ≥

d∑
j=1

r−1∑
λ=0

(∑
α∈Nd

0
λ j =λ

f̃ 2(α)
)2

.

Taking the square root, and using the norm estimate ∥v∥1 ≤
√

m ∥v∥2 for v ∈ Rm , here
with m = dr , we end up with

1 ≥
1

√
dr

d∑
j=1

r−1∑
λ=0

∑
α∈Nd

0
λ j =λ

f̃ 2(α) =
1

√
dr

∑
α∈Nd

0
λ<r

|α|0 f̃ 2(α) ≥
k + 1
√

dr

∑
α∈Nd

0
|α|0>k
λ<r

f̃ 2(α) .

This proves the lemma. □

By virtue of the above lemma we obtain the following error and complexity bound, compare
to Bshouty and Tamon [5, Theorem 5.1] for the Boolean setting. (Their error criterion is slightly
different, namely, it is the L1-error at a prescribed confidence level rather than the expected
L1-distance.)

Theorem 3.3. For the algorithm Ān,k,r = ( Āωn,k,r )ω∈Ω as defined in (7) we have the error bound

e( Ān,k,r , Fd
mon) ≤ 5

d
2r

+ 4

√
dr

k + 1
+ 4

exp[k(1 + log d
k + (log 2) r )]

n
.

Given 0 < ε < 1, the ε-complexity for the Monte Carlo approximation of monotone functions is
bounded by

nran(ε, Fd
mon) ≤ min

{
exp

[
C

√
d
ε

(
1 + log

d
ε

)3/2
]
, exp

[
d log

d
2ε

]}
,

with some numerical constant C > 0.

Proof. Thanks to Lemma 3.1, we may restrict to the analysis of the algorithm Ân,k,r for sign-
valued functions f ∈ Fd

mon±
.

Since we only take certain coefficients until a resolution r into account, the reconstruction (6)
will be a function which is constant on each of 2rd subcubes Cr1,κ where 1 = (1, . . . , 1) and
κ ∈ {0, . . . , 2r

− 1}
d . The algorithm can be seen as actually approximating

sgn fr , where fr :=

∑
α∈Nd

0
λ<r

f̃ (α)ψα .

Since on the one hand, the basis functions are constant on each of these 2rd subcubes, and on the
other hand, we have 2rd basis functions up to this resolution, the function fr takes on each of the
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subcubes the average function value of f on that subcube, which is between −1 and +1. The
function sgn fr takes the subcubewise predominant value of f , which is either −1 or +1. That
is, for X,X′

∼ unif Cr1,κ we have

E| f (X) − sgn fr (X)| = E| f (X) − med′ f (X′)| ≤ 1[ f not const. on Cr1,κ ] , (10)

and for x ∈ Cr1,κ we can estimate

|sgn( fr (x)) − fr (x)| ≤ 1[ f not const. on Cr1,κ ] . (11)

Similarly to the upper bound part within the proof of Theorem 2.1, we group the subcubes along
diagonals. By monotonicity, there is at most one subcube within each diagonal where the sign-
valued function f jumps from −1 to +1, hence (10) and (11) are non-zero but bounded by 1.
Now that there are 2rd

− (2r
− 1)d

≤ d · 2r (d−1) diagonals, and the volume of each subcube
is 2−rd , we obtain

∥ f − sgn fr∥L1 ≤
d · 2r (d−1)

2rd
=

d
2r
, as well as ∥ sgn fr − fr∥

2
L2

≤
d
2r
. (12)

We consider the error for estimating the corresponding coefficients. Exploiting independence
of the sample points and unbiasedness of the standard Monte Carlo coefficient estimator (4),
for (λ, κ) ↔ α ∈ Nd

0 we have

E[̃h(α) − f̃ (α)]2
= E

[
1
n

n∑
i=1

ψα(Xi ) f (Xi ) − f̃ (α)

]2

[Xi i.i.d.; unbiasedness] =
1
n

Var [ψα(X1) f (X1)] ≤
1
n
∥ψα · f ∥

2
L2

[| f | ≤ 1] ≤
1
n
∥ψα∥

2
L2

=
1
n
. (13)

This estimate on the quality of the coefficient approximation can be used for estimating
L2-errors. Regarding the approximation g = Âωn,k,r ( f ) = sgn h as defined in (6), from the
observation

sgn( fr (x)) ̸= g(x) = sgn(h(x)) ⇒ (sgn( fr (x)) − h(x))2
≥ 1

we conclude

∥ sgn fr − g∥L1 ≤ 2∥ sgn fr − h∥
2
L2

≤ 4 ∥ sgn fr − fr∥
2
L2

+ 4 ∥ fr − h∥
2
L2
. (14)

Then, combining previous estimates, the expected distance between the input f and the
approximate reconstruction g = Âωn,k,r ( f ) = sgn h from (6) can be bounded as follows,

E∥ f − g∥L1 ≤ ∥ f − sgn fr∥L1 + E∥ sgn fr − g∥L1

[(14)] ≤ ∥ f − sgn fr∥L1 + 4 ∥ sgn fr − fr∥
2
L2

+ 4E∥ fr − h∥
2
L2

[(12), Parseval] ≤ 5
d
2r

+ 4
( ∑

α∈Nd
0

|α|0>k
λ<r

f̃ (α)2
+

∑
α∈Nd

0
|α|0≤k
λ<r

E[ f̃ (α) − h̃(α)]2
)

[Lemma 3.2; (13)] ≤ 5
d
2r

+ 4

√
d r

k + 1
+ 4

#A
n
, (15)

where A is the index set corresponding to the coefficients that are computed,

A := {α ∈ Nd
0 | |α|0 ≤ k and λ < r} .
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We can quantify the size of the index set A for k ∈ {1, . . . , d} by standard estimates,

#A =

k∑
l=0

(
d
l

)
(2r

− 1)l
≤ 2rk

k∑
l=0

(
d
l

)
≤ 2rk

(
e d
k

)k

.

This finally yields the error bound for the Monte Carlo method Ân,k,r applied to sign-valued
functions f ∈ Fd

mon±
as stated in the theorem.

Choosing the resolution r := ⌈log2
15 d
ε

⌉ will bound the first term 5 d · 2−r
≤ ε/3. Select-

ing k := min
{⌊

12
√

d r/ε
⌋
, d
}

then guarantees 4
√

d r/(k + 1) ≤ ε/3, except for the case k =

d where we can even ignore the second term from the estimate (15). Finally, the third term
4 · (#A)/n can be bounded from above by ε/3 if we put

n :=

⌈
12
ε

exp
(

k
(

1 + log
d
k

+ (log 2) r
))⌉

≤ exp

[
C

√
d
ε

(
1 + log

d
ε

)3/2
]
,

with some suitable numerical constant C > 0. By this choice we obtain the error bound ε we
aimed for.

Note that if ε is too small, we can only choose k = d for the algorithm An,k,r . In this case,
for the approximation of fr , we would take 2rd coefficients into account, n would become much
bigger in order to achieve the accuracy we aim for. Instead, one can approximate f directly via
the deterministic algorithm Ad

m from Theorem 2.1, which is based on (m − 1)d function values
on a regular grid. The worst case error is bounded by e(Ad

m, Fd
mon) ≤ d/m. Taking m := 2r , this

gives the same bound that we already have for the accuracy at which sgn fr approximates f ,
see (12). So for small ε, which roughly means ε ⪯ 1/

√
d (modulo logarithmic terms), we take

the deterministic upper bound

ndet(ε, Fd
mon) ≤ exp

(
d log

d
ε

)
,

compare this to Remark 2.2. □

Remark 3.4 (Violation of Monotonicity). For the algorithms we analysed, there is no feature
which would guarantee that the output function g is a monotonously increasing function. In fact,
the analysis of Lemma 3.2 only requires that the function is monotone in each variable, but it is
not necessary to know whether it is monotonously increasing or decreasing.

We may think about a scenario where all computed function values are 1, but accidentally they
are computed in the lowermost subcube Cr1,0 of the domain [0, 1]d at resolution r , and then some
function values of the reconstruction g are still negative and violate the assumption of monotonic
growth. Namely, for the linear reconstruction h, the value in the uppermost subcube Cr1,(2r −1)1
at resolution r can be written as∑

α∈{0,1}d
|α|0≤k

(−1)|α|0 =

k∑
ℓ=0

(
d
ℓ

)
(−1)ℓ .

If k ≤ d/2 is odd, this value is negative. Meanwhile, h is positive in Cr1,0, hence the monotonicity
is violated, g = sgn h /∈ Fd

mon.

Remark 3.5 (Implementation of the Non-Linear Method Ān,k,r ). The algorithm Ān,k,r as
defined in (7) appears rather abstract with the integral within its definition. There is an explicit
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way of representing the algorithm, though. Let φωn,k,r denote the mapping which returns the
output h = φωn,k,r (y) for the linear algorithm An,k,r from (5) when given the information
Nω( f ) = y = (y1, . . . , yn) = ( f (X1), . . . , f (Xn)). For the reconstruction mapping φ̄ωn,k,r used
in Ān,k,r one may proceed as follows:

• Rearrange the information (X1, y1), . . . , (Xn, yn) such that y1 ≤ y2 ≤ · · · ≤ yn .
• Define y0 := −1 and yn+1 := +1, and use the representation

g := φ̄ωn,k,r (y) =
1
2

n∑
i=0

(yi+1 − yi ) sgnφωn,k,r (

i times  
−1, . . . ,−1,

(n−i) times  
1, . . . , 1)  

=:gi

.

Implementing the nonlinear algorithm Ān,k,r is more difficult than for the linear algorithm,
the cost for processing the collected information may exceed n. There are different models
of computation, see for example the book on IBC of Traub et al. [20, p. 30], or Novak and
Woźniakowski [16, Sec 4.1.2]. Heinrich and Milla [8, Sec 6.2] point out that for problems
with functions as output, the interesting question is not always about a complete picture of the
output g, but about effective computation of approximate function values g(x) on demand. It
makes sense to distinguish between pre-processing operations and operations on demand.

In our situation, pre-processing is concerned with rearranging the information, for which the
expected computational cost is of order O(n log n).

The main difficulty when asked to compute a function value g(x) on demand is to com-
pute gi (x) for i = 1, . . . , n. Once we know g0(x), it will be easier to compute g1(x), g2(x), . . .
in consecutive order because only few coefficients are affected when switching from yi = −1 to
yi = +1. Namely, by linearity of φωn,k,r we have

gi := gi−1 − 2φωn,k,r (ei ) ,

where ei = (δi j )n
j=1 is the i th unit vector in Rn . Going back to the details of one-dimensional

Haar wavelets ψα j , observe that

[φωn,k,r (ei )](x) =
1
n

∑
α∈Nd

0
|α|0≤k
λ<r

ψα(Xi )ψα(x) =
1
n

∑
α∈Nd

0
|α|0≤k
λ<r

d∏
j=1

ψα j (Xi ( j))ψα j (x j )

=
1
n

∑
β∈{0,1}d
|β|1≤k

Zβ ,

where Z j :=
∑2r

−1
α j =1 ψα j (Xi ( j))ψα j (x j ) and Xi ( j) denotes the j th entry of Xi ∈ [0, 1]d . It is

readily checked that

Z j =

{
2r

− 1 if ⌊2r Xi ( j)⌋ = ⌊2r x j⌋,

−1 otherwise,

so a comparison of the first r digits of the binary representation of Xi ( j) and x j is actually enough
for determining Z j . In the end, we only need the number b of coordinates j ∈ {1, . . . , d} where
⌊2r Xi ( j)⌋ = ⌊2r x j⌋, and obtain

n [φωn,k,r (ei )](x) =

b∧k∑
ℓ=0

(
b
ℓ

)
(2r

− 1)ℓ
(d−b)∧(k−ℓ)∑

m=0

(
d − b

m

)
(−1)m

=: χ (b) ∈ Z .
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These values χ (b) are needed for b ∈ {0, . . . , d}. Since they only depend on parameters of the
algorithm, they can be prepared before the algorithm is applied to an instance and do not count for
the cost of processing the data. From these values one can also compute g0(x). If we do not want
to store the values [φωn,k,r (ei )](x) for i = 1, . . . , n, we will need to compute them twice—once
in order to evaluate g0(x), once for calculating the difference between gi (x) and gi−1(x). Or we
only compute them once but need storage for n numbers. In any case, the number of binary and
arithmetic operations needed for computing the output g(x) := [φ̄ωn,k,r (y)](x) on demand is of
order O(drn).

4. Intractability of randomized approximation

4.1. The result—Monte Carlo lower bound

As we have seen in Section 3, for the L1-approximation of monotone functions the dimension
dependence can be significantly reduced in the randomized setting, at least if the error
threshold ε > 0 is fixed. Within this section, however, we show a lower bound which implies that
the problem is still not weakly tractable in the randomized setting, we thus call it intractable.

For the proof we switch to an average case setting for Boolean functions, an idea that
has already been used by Blum, Burch, and Langford [4, Sec 4]. From their result one can
already extract that for any fixed ε ∈ (0, 1) the Monte Carlo complexity for the approximation
of monotone functions depends at least exponentially on

√
d. The focus of Blum et al. was to

show that if we admit the information budget n to grow only polynomially in d, the achievable
error will approach the initial error at a rate of almost 1/

√
d. In contrast, the aim of this paper

is to obtain lower complexity bounds for a range of error thresholds ε which is moderately
approaching zero as d is growing. This enables us to prove intractability. The different focus
leads to the necessity of different tools within the corresponding lower bound proof, see
[13, Remark 4.8] for a detailed discussion.

Theorem 4.1. Consider the randomized approximation of monotone functions. There exist
constants σ0, ν, ε0 > 0 and d0 ∈ N such that for d ≥ d0 we have

nran(ε0, Fd
mon) > ν exp(σ0

√
d) ,

and moreover, for ε0
√

d0/d ≤ ε ≤ ε0 we have

nran(ε, Fd
mon) > ν exp

(
c

√
d
ε

)
,

with c = σ0 ε0 .
Specifically, for d ≥ d0 = 100 and ε0 =

1
15 we have

nran( 1
15 , Fd

mon) > 108 · exp(
√

d −
√

100) ,

for d = 100 this means nran > 108. For 1
15

√
100/d ≤ ε ≤

1
15 we have

nran(ε, Fd
mon) > 108 · exp

(√
d

15 ε
−

√
100

)
.

All these lower bounds hold for varying cardinality as well, see [13, Section 4.3]. Before we
give the proof in Section 4.2, we discuss a theoretical consequence of the theorem.
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Remark 4.2 (Intractability). The above theorem shows that the approximation of monotone
functions is not weakly tractable. Indeed, consider the sequence (εd )∞d=d0

of error thresh-
olds εd := ε0

√
d0/d. Then, regarding nran(ε, Fd

mon) as a function n(ε, d), we observe

lim sup
ε−1+d→∞

log n(ε, d)
ε−1 + d

≥ lim sup
d→∞

log n(εd , d)

ε−1
d + d

≥ lim
d→∞

σ0 d/
√

d0 + log ν

ε−1
0

√
d/d0 + d

=
σ0

√
d0
> 0 .

This contradicts the definition of weak tractability, as defined in the book of Novak and
Woźniakowski [16]. Namely, the problem would be called weakly tractable iff the first limit
superior was zero. We can also put it like this: in our situation n(εd , d) grows exponentially in d
despite the fact that εd is only moderately decreasing.

Actually, this behaviour has already been known since the paper of Bshouty and Tamon
1996 [5, Thm 5.3.1] on Boolean monotone functions, however, weak tractability is a relatively
new notion. Their lower bound can be summarized as follows: For moderately decaying error
thresholds εd ⪯ (

√
d (1 + log d))−1 and sufficiently large d, we have

nran(εd , Fd
mon) ≥ c 2d/

√
d ,

with some numerical constant c > 0. Interestingly, the proof is based on purely combinatorial
arguments, without applying minimax arguments. From their approach, however, we can only
derive a statement for smaller and smaller ε as d → ∞. So the new lower bounds indeed give a
more complete picture on the joint (ε, d)-dependence of the complexity. Since the proof of our
theorem is based on Boolean functions, actually we have lower bounds for the easier problem of
approximating Boolean monotone functions.

4.2. The proof of the Monte Carlo lower bound

This section contains the proof of Theorem 4.1. Key ideas have already been used by Blum
et al. [4], albeit only in the context of Boolean functions. Some modifications within the present
proof are mere simplifications with the side effect of improved constants, but several changes are
substantial and marked as such.

We consider the subclass Fd
2 ⊂ Fd

mon±
of sign-valued monotone functions which are constant

on each of the 2d subcubes Ci, i ∈ {0, 1}
d , if we split the domain [0, 1]d just as in the proof

of Theorem 2.1 with m = 2. Any such function f ∈ Fd
2 is uniquely determined by its

function values f (x) in the corners x ∈ {0, 1}
d , we have f |Cx = f (x), so effectively we deal

with Boolean functions. The lower bound proof for general Monte Carlo methods relies on
Bakhvalov’s trick [2], compare the lower bound part within the proof of Theorem 2.1 for a more
basic example of this proof technique. Here now, we construct a probability measure µ on Fd

2
and use that for any Monte Carlo algorithm (Aωn ) we have

e((Aωn ), Fd
mon) = sup

f ∈Fd
mon

E∥Aωn − f ∥L1 ≥

∫
Fd

2

E∥Aωn ( f ) − f ∥L1 dµ( f )

[Fubini] = E
∫

Fd
2

∥Aωn ( f ) − f ∥L1 dµ( f ) ≥ inf
An

∫
Fd

2

∥An( f ) − f ∥L1 dµ( f )  
=:e(An ,µ)

, (16)

where the infimum runs over all deterministic algorithms An = φ ◦ N that use at most n function
values. In order to construct optimal algorithms An with regard to minimizing the so-called
µ-average error e(An, µ), one will need to optimize the output function g = φ(y) with respect
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to the conditional measure µy after knowing information y := N ( f ). In our specific situation,
which is the L1-approximation of sign-valued functions, the optimal output is sign-valued as
well, taking the pointwise conditional median. The conditional error for this optimal output is
given by

inf
g∈L1

∫
N−1(y)

∥ f − g∥L1 dµy( f ) = 2
∫

[0,1]d
min

{
µy{ f (x) = −1}, µy{ f (x) = +1}

}
dx

= 21−d
∑

x∈{0,1}d

min
{
µy{ f (x) = −1}, µy{ f (x) = +1}

}
. (17)

We will further use the concept of augmented information ỹ = Ñ ( f ) which contains additional
knowledge on the input compared to the original information y = N ( f ). This will lead to more
powerful algorithms with smaller errors, but it is done for the sake of an easier description of
the corresponding conditional measure µỹ . The lower bounds we obtain for algorithms with the
augmented oracle, a fortiori, are lower bounds for algorithms with the standard oracle.

The proof is organized in seven steps.

Step 1: The general structure of the measure µ on Fd
2 .

Step 2: Introduce the augmented information.

Step 3: Estimate the number of points x ∈ {0, 1}
d for which f (x) is still – to some extend –

undetermined, even after knowing the augmented information.

Step 4: Further specify the measure µ, and give estimates on the conditional probability for the
event f (x) = −1 for the set of still fairly uncertain x from the step before.

Step 5: A general formula for the lower bound.

Step 6: Relate estimates for ε0 and d0 to estimates for smaller ε and larger d .

Step 7: Explicit numerical values.

Step 1: General structure of the measure µ.
We define a measure µ on Fd

2 that can be represented by a randomly drawn set U ⊆ W :=

{x ∈ {0, 1}
d

| |x|1 = t}, with t ∈ N being a suitable parameter, and a boundary value b ∈ N,
t ≤ b ≤ d, namely

fU (x) :=

{
−1, if |x|1 ≤ b and ∄u ∈ U with u ≤ x ,
+1, if |x|1 > b or ∃ u ∈ U with u ≤ x .

(18)

The boundary value b ∈ N will facilitate considerations in connection with the augmented
information in Step 2. We draw U such that the f (w) with w ∈ W are independent Bernoulli
random variables with p = µ{ f (w) = +1} = 1 − µ{ f (w) = −1}. The parameter p ∈ (0, 1)
will be specified in Step 4.

Step 2: Augmented information.
Now, for any (possibly adaptively obtained) info y = N ( f ) = ( f (x1), . . . , f (xn)) with xi ∈

{0, 1}
d , we define the augmented information

ỹ := (V⊖, V⊕),
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where V⊖ ⊆ W \ U and V⊕ ⊆ U represent knowledge about the instance f that µ-almost surely
implies the information y. We know f (u) = −1 for u ∈ V⊖, and f (u) = +1 for u ∈ V⊕. In
detail, let ≤L be the lexicographic order of the elements of W , then minL V denotes the first
element of a set V ⊆ W with respect to this order. For a single function evaluation f (x) the
augmented oracle reveals the sets

V x
⊖

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∅ if |x|1 > b ,
{v ∈ W | v ≤ x} if f (x) = −1 ,
{v ∈ W | v ≤ x and v <L minL{u ∈ U | u ≤ x}} if f (x) = +1

and |x|1 ≤ b ,

V x
⊕

:=

{
∅ if |x|1 > b or f (x) = −1 ,
{minL{u ∈ U | u ≤ x}} if f (x) = +1 and |x|1 ≤ b ,

and altogether the augmented information is

ỹ = (V⊖, V⊕) :=

(
n⋃

i=1

V xi
⊖ ,

n⋃
i=1

V xi
⊕

)
.

Note that computing f (x) for |x|1 > b is a waste of information, so no algorithm designer would
decide to compute such samples. Since #V x

⊖
≤
(
|x|1

t

)
≤
(b

t

)
for |x|1 ≤ b, and #V x

⊕
≤ 1, we have

the estimates

#V⊖ ≤ n
(

b
t

)
, and #V⊕ ≤ n . (19)

(Blum et al. [4] did not have a boundary value b but used a Chernoff bound for giving a
probabilistic bound on #V⊖ instead.)

Step 3: Number of points x ∈ {0, 1}
d where f (x) is still fairly uncertain.

For any point x ∈ {0, 1}
d we define the set

Wx := {w ∈ W | w ≤ x}

of points that are “relevant” to f (x). Given the augmented information ỹ = (V⊖, V⊕), we are
interested in points where it is not yet clear whether f (x) = +1 or f (x) = −1. In detail,
these are points x where Wx ∩ V⊕ = ∅, for which f (x) = −1 is still possible. Furthermore,
Wx \ V⊖ shall be big enough, say #(Wx \ V⊖) ≥ M with M ∈ N, so that the conditional
probability px := µỹ{ f (x) = +1} is not too small. For our estimates in (26) it will be necessary
to restrict to points |x|1 ≥ a ∈ N, we suppose t ≤ a ≤ b. The set of all these points shall be
denoted by

B := {x ∈ Dab | Wx ∩ V⊕ = ∅, #(Wx \ V⊖) ≥ M} ,

where Dab := {x ∈ {0, 1}
d

| a ≤ |x|1 ≤ b} .

We aim to find a lower bound for the cardinality of B. Within the proof of Blum et al. [4]
Hoeffding bounds were used. We will employ the Berry–Esseen inequality on the speed of
convergence of the Central Limit Theorem, instead, and it is only with Berry–Esseen that we
can draw conclusions for small ε, as it is done in Step 6.

Proposition 4.3 (Berry–Esseen Inequality). Let Z1, Z2, . . . be i.i.d. random variables with
zero mean, unit variance and finite third absolute moment β3. Then there exists a universal
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constant C0 such that⏐⏐⏐⏐⏐⏐P
{

1
√

d

d∑
j=1

Z j ≤ x
}

− Φ(x)

⏐⏐⏐⏐⏐⏐ ≤
C0 β3
√

d
,

where Φ(·) is the cumulative distribution function of the univariate standard normal distribution.
The best estimates known on C0 are

CE :=

√
10 + 3

6
√

2π
= 0.409732 . . . ≤ C0 < 0.4748

see Shevtsova [19].

Step 3.1: Bounding #Da,b.
Let a := ⌈

d
2 + α

√
d

2 ⌉ and b := ⌊
d
2 + β

√
d

2 ⌋ with β − α ≥ 2/
√

d , hence a ≤ b. Consider

Rademacher random variables Z1, . . . , Zd
iid
∼ unif{−1,+1}. Note that the Z j have zero mean,

unit variance, and third absolute moment β3 = 1. Applying Proposition 4.3 twice to the Z j , we
obtain

#Dab

#{0, 1}d
=

1
2d

b∑
k=a

(
d
k

)
= P

{
α ≤

1
√

d

d∑
j=1

Z j ≤ β

}
≥ Φ(β) − Φ(α)  

=:Cαβ

−
2 C0
√

d
=: r0(α, β, d) . (20)

Step 3.2: The influence of w ∈ W (in particular w ∈ V⊕).
(This step becomes essential for small ε in Step 6. For the focus of Blum et al. [4] with ε close

to the initial error, the trivial estimate #(Qw ∩ Dab)/#Qw ≤ 1 suffices.) Now, let t := ⌈τ
√

d⌉

with τ > 0, and for w ∈ W define

Qw := {x ∈ {0, 1}
d

| w ≤ x} ,

this is the set of all points inside the area of influence of w. Similarly to Step 3.1, we obtain

#(Qw ∩ Dab)
#Qw

=
#{x ∈ {0, 1}

d−t
| a − t ≤ |x|1 ≤ b − t}

2d−t

=
1

2d−t

b−t∑
k=a−t

(
d − t

k

)
[Proposition 4.3] ≤ Φ

(
2b − t
√

d − t

)
− Φ

(
2a − t
√

d − t

)
+

2 C0
√

d − t

[(23), (24)] ≤

[
Φ (β − τ)− Φ (α − τ)  

=:Cαβτ

+

(
1

√
2π

+ 2 C0

)
  

=:C1

1
√

d

]
1

√
1 − t/d

,

(21)

where for τ <
√

d − 1/
√

d we have

1 ≤
1

√
1 − t/d

≤
1√

1 − τ/
√

d − 1/d
=: κτ (d) −−−→

d→∞

1 . (22)
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Within the above calculation (21), we exploited that the density of the Gaussian distribution is
decreasing with growing distance to 0, in detail, for t0 < t1 and κ ≥ 1 we have

Φ(κ t1) − Φ(κ t0) =
1

√
2π

∫ κ t1

κ t0

exp
(

−
t2

2

)
dt =

κ
√

2π

∫ t1

t0

exp
(

−
κ2 s2

2

)
ds

≤
κ

√
2π

∫ t1

t0

exp
(

−
s2

2

)
ds = κ [Φ(t1) − Φ(t0)] . (23)

Namely, we took κ = 1/
√

1 − t/d which comes from replacing 1/
√

d − t by 1/
√

d. Further-
more, we shifted the Φ-function, knowing that its derivative takes values between 0 and 1/

√
2π ,

so for t0 < t1 and δ ∈ R we have⏐⏐⏐[Φ(t1 + δ) − Φ(t0 + δ)
]
−
[
Φ(t1) − Φ(t0)

]⏐⏐⏐ ≤
|δ|

√
2π

, (24)

in our case δ = t/
√

d − τ ≤ 1/
√

d.

Step 3.3: The influence of V⊖.
Markov’s inequality gives∑

w∈V⊖

#(Qw ∩ Dab) =

∑
x∈Dab

#(Wx ∩ V⊖) ≥ N #{x ∈ Dab | #(Wx ∩ V⊖) ≥ N } , (25)

with N ∈ N. Using this, we can carry out the estimate

#{x ∈ Dab | #(Wx \ V⊖) ≥ M} = #{x ∈ Dab | #(Wx ∩ V⊖) ≤ #Wx − M}

≥ #{x ∈ Dab | #(Wx ∩ V⊖) ≤

(
a
t

)
− M}

= #Dab − #{x ∈ Dab | #(Wx ∩ V⊖) >
(

a
t

)
− M}

[(25)] ≥ #Dab −
1(a

t

)
− M + 1

∑
w∈V⊖

#(Qw ∩ Dab) . (26)

Step 3.4: Final estimates on #B.
Putting all this together, we estimate the cardinality of B:

#B
#{0, 1}d

=

#
(
{x ∈ Dab | #(Wx \ V⊖) ≥ M} \

⋃
w∈V⊕

Qw

)
#{0, 1}d

[(26), any w ∈ W ] ≥
#Dab

#{0, 1}d

−
#Qw

#{0, 1}d

(
#V⊖(a

t

)
− M + 1

+ #V⊕

)
#(Qw ∩ Dab)

#Qw

[(19), (20), (21)+(22)] ≥ Cαβ −
2 C0
√

d

− n 2−t

( (b
t

)(a
t

)
− M + 1

+ 1

) [
Cαβτ +

C1
√

d

]
κτ (d) .
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Assuming α − 2τ ≥ −
√

d + 2/
√

d will guarantee t < a. We estimate the ratio(
b
t

)/(
a
t

)
≤

(
a + 1

a − t + 1

)b−a

≤

(
d
2 + α

√
d

2 + 1
d
2 + (α − 2τ )

√
d

2

)(β−α)
√

d/2

≤ exp
(

(β − α) τ
(

1 +
α − 2τ

√
d

)−1

  
=:κατ (d)

+
β − α

√
d + α − 2τ  
=:Kαβτ (d)

)
=: σαβτ (d) , (27)

where we have 1 ≤ κατ (d) −−−→
d→∞

1 and 0 ≤ Kαβτ (d) −−−→
d→∞

0. (Note that the above estimate is

asymptotically optimal, 1 ≤
(b

t

)
/
(a

t

)
−−−→
d→∞

exp ((β − α) τ).) We finally choose the information

cardinality n = ⌊ν2t
⌋, and put M := ⌈λ

(a
t

)
⌉ with 0 < λ < 1, so that we obtain the estimate

#B
#{0, 1}d

≥

[
Cαβ −

2 C0
√

d

]
  

=r0(α,β,d)

−ν

(
σαβτ (d)
1 − λ

+ 1
) [

Cαβτ +
C1
√

d

]
κτ (d)  

=:r1(α,β,τ,λ,d)

=: rB(α, β, τ, λ, ν, d) . (28)

With all the other conditions on the parameters imposed before, for sufficiently large d we will
have r0(. . .) > 0. Furthermore, we always have r1(. . .) > 0, so choosing 0 < ν < r0(. . .)/r1(. . .)
will guarantee rB(. . .) to be positive.

Step 4: Specification of µ and bounding conditional probabilities.
We specify the measure µ on the set of functions { fU | U ⊆ W } ⊂ Fd

2 defined as in (18).
Recall that the f (w) (for w ∈ W ) shall be independent Bernoulli random variables with proba-
bility p = µ{ f (w) = +1}. Knowing the augmented information ỹ = (V⊖, V⊕), the values f (w)
are still independent random variables with conditional probabilities

µỹ{ f (w) = +1} =

⎧⎪⎨⎪⎩
0 if w ∈ V⊖,

1 if w ∈ V⊕,

p if w ∈ W \ (V⊖ ∪ V⊕).

Then for x ∈ B we have the estimate

µỹ{ f (x) = −1} ≤ (1 − p)M
≤ exp

(
−pλ

(
a
t

))
= exp(−λϱ) ,

where we write p := ϱ/
(a

t

)
with 0 < ϱ <

(a
t

)
. The other estimate is

µỹ{ f (x) = −1} ≥ (1 − p)(
b
t) = exp

(
log(1 − p)

(
b
t

))
≥ exp

(
−ϱ σαβτ (d)

(
1
2

+
1

2 (1 − ϱ/γατ (d))  
=:κϱγ (d)

))
=: q0(α, β, τ, ϱ, d)

−−−→
d→∞

exp
(
−ϱ exp ((β − α) τ)

)
. (29)

Here we used that, for 0 ≤ p < 1,

0 ≥ log(1 − p) = −

(
p +

∞∑
k=2

pk

k

)
≥ −

(
p +

∞∑
k=2

pk

2

)
= −p

(
1
2

+
1

2 (1 − p)

)
,
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together with the estimates

p
(

b
t

)
≤ ϱ σαβτ (d) ,

and (
a
t

)
≥

(a
t

)t
≥

⎛⎝ √
d + α

2
(
τ + 1/

√
d
)
⎞⎠τ

√
d

=: γατ (d) ≥ 1 . (30)

The last estimate (30) relies on the constraint α − 2τ ≥ −
√

d + 2/
√

d (and hence t < a). Note
that γατ (d) −−−→

d→∞

∞ implies κϱγ (d) −−−→
d→∞

1. It follows that for x ∈ B,

min
{
µỹ{ f (x) = +1}, µỹ{ f (x) = −1}

}
≥ min {1 − exp (−ϱ λ) , q0(α, β, τ, ϱ, d)} =: q(α, β, τ, λ, ϱ, d) . (31)

Step 5: The final error bound.
By Bakhvalov’s trick (16) we obtain the final estimate for n ≤ ν 2τ

√
d

= ν exp(σ
√

d),
where σ = τ log 2,

eran(n, Fd
mon) ≥ inf

An
e(An, µ)

[(17) for any valid ỹ] ≥ 2
#B

#{0, 1}d
min

{
µỹ{ f (x) = 0}, µỹ{ f (x) = 1} | x ∈ B

}
[(28) and (31)] ≥ 2 rB(α, β, τ, λ, ν, d) · q(α, β, τ, λ, ϱ, d)

=: ε̂(α, β, τ, λ, ν, ϱ, d) . (32)

Fixing d = d0, and with appropriate values for the other parameters as discussed in Step 3.4, we
can provide rB(. . .) > 0. The value of ϱ should be adapted for that q(. . .) is big (and positive
in the first place). The function ε̂(. . . , d) is monotonically increasing in d, so an error bound
for d = d0 implies error bounds for d ≥ d0 while keeping in particular ν and τ . Clearly, for
any 0 < ε0 < ε̂(. . .), this gives lower bounds for the information complexity,

nran(ε0, Fd
mon) > ν exp(σ

√
d) , for d ≥ d0.

Step 6: Smaller ε and bigger exponent τ for higher dimensions.
The following sophisticated considerations lead to refined results compared to those of

Blum et al. [4]. If we have a lower bound ε̂(α0, β0, τ0, λ, ν, ϱ, d0) > ε0, then for d ≥ d0 and
τ0 ≤ τ ≤ τ0

√
d/d0 we obtain the lower bound

ε̂(α(τ ), β(τ ), τ, λ, ν, ϱ, d) > ε0
τ0

τ
=: ε (33)

with α(τ ) = α0
τ0
τ

and β(τ ) = β0
τ0
τ

, supposing the additional conditions β0 ≤ τ0 and −τ0 ≤

α0 ≤ 0. This provides the estimate

nran(ε, Fd
mon) ≥ ν 2τ

√
d

= ν 2τ0 ε0
√

d/ε ,

valid under the constraint ε0
√

d0/d ≤ ε ≤ ε0. This is reflected in the statement of Theorem 4.1
with c = τ0ε0 log 2.
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In detail, showing (33) can be split into proving inequalities for the factors of ε̂(. . .) as defined
in (32), namely

q(α(τ ), β(τ ), τ, λ, ϱ, d) ≥ q(α0, β0, τ0, λ, ϱ, d0) , and (34)

rB(α(τ ), β(τ ), τ, λ, ν, d) ≥
τ0

τ
rB(α0, β0, τ0, λ, ν, d0) . (35)

Both factors contain the term σαβτ (d) defined in (27). With the given choice of α(τ ) and β(τ ),
the product (β − α)τ = (β0 − α0)τ0 is kept constant, which is the key element for the estimate

σαβτ (d) ≤ σα0,β0,τ0 (d0) . (36)

Here we also need

1 ≤ κατ (d) =

(
1 +

α0
τ0
τ

− 2τ
√

d

)−1

≤

(
1 +

α0 − 2τ0
√

d0

)−1

= κα0,τ0 (d0) ,

as well as

0 ≤ Kαβτ (d) =
(β0 − α0) τ0

τ
√

d + α0
τ0
τ

− 2τ
≤

β0 − α0
√

d + (α0 − 2τ0)
√

d/d0

≤
β0 − α0

√
d0 + α0 − 2τ0

= Kα0,β0,τ0 (d0) ,

where we used τ0/τ ≤ 1 ≤
√

d/d0 combined with α0 ≤ 0, and τ ≤ τ0
√

d/d0.
Showing (34), by definition of q(. . .) in (31), means examining q0(α(τ ), β(τ ), τ, ϱ, d),

see (29). Knowing (36), the remaining consideration is

γατ (d) =

⎛⎝ √
d + α0

τ0
τ

2
(
τ + 1/

√
d
)
⎞⎠τ

√
d

≥

( √
d + α0

√
d/d0

2
(
τ0 +

√
d0/d

)√
d/d0

)τ0√d0

≥

( √
d0 + α0

2
(
τ0 + 1/

√
d0
))τ0

√
d0

= γα0,τ0 (d0) ≥ 1 ,

once more using τ0/τ ≤ 1 ≤
√

d/d0 combined with α0 ≤ 0, and τ ≤ τ0
√

d/d0.
Showing (35) is more complicated, in view of the definition of rB(. . .) in (28), we need

estimates on Cαβ , Cαβτ and κτ (d). The easiest part is the correcting factor κτ (d), see (22), for
which by virtue of τ ≤ τ0

√
d/d0 and d ≥ d0 we have

1 ≤ κτ (d) =

(
1 − τ/

√
d − 1/d

)−1/2
≤

(
1 − τ0/

√
d0 − 1/d0

)−1/2
= κτ0 (d0) .

For the other terms we need to take a detailed look at Gaussian integrals. First we have

Cαβ =
1

√
2π

∫ β

α

exp
(

−
x2

2

)
dx

[x =
τ0

τ
u] =

τ0

τ
√

2π

∫ β0

α0

exp
(

−

(τ0

τ

)2 u2

2

)
du

[τ ≥ τ0] ≥
τ0

τ
√

2π

∫ β0

α0

exp
(

−
u2

2

)
du =

τ0

τ
Cα0,β0 .

The second Gaussian integral is a bit trickier,

Cαβτ =
1

√
2π

∫ β−τ

α−τ

exp
(

−
x2

2

)
dx
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[subst. x + τ =
τ0

τ
(u + τ0)] =

τ0

τ
√

2π

∫ β0−τ0

α0−τ0

exp
(

−
1
2

(τ0

τ
(u + τ0) − τ

)2
)

du

[ τ0
τ

(u + τ0) − τ ≤ u ≤ 0] ≤
τ0

τ
√

2π

∫ β0−τ0

α0−τ0

exp
(

−
u2

2

)
du =

τ0

τ
Cα0,β0,τ0 .

Here, u ≤ 0 followed from the upper integral boundary u ≤ β0 − τ0 and the assumption β0 ≤ τ0.
The other constraint, ψ(τ ) :=

τ0
τ

(u + τ0) − τ ≤ u, followed from ψ(τ0) = u and the
monotonous decay of ψ(τ ) for τ ≥ τ0:

ψ ′(τ ) = −
τ0

τ 2 (u + τ0) − 1

[α0 − τ0 ≤ u] ≤ −
τ0

τ 2 α0 − 1

[α0 ≥ −τ0] ≤
τ 2

0

τ 2 − 1

[τ ≥ τ0] ≤ 0 .

Indeed, these estimates on κτ (d), Cαβ , and Cαβτ , together with the condition d ≥ d0, prove (35).

Step 7: Example for numerical values.
The stated numerical values result from the setting α0 = −0.33794, β0 = 0.46332, τ0 =

1.47566 > 1
log 2 and λ = 0.77399. We adapt ϱ = 0.25960, and for starting dimension d0 = 100

and information budget n0 = 108 (choosing ν = n0 · 2−τ0
√

d0 accordingly) we obtain the lower
error bound ε̂(. . .) = 0.0666667... > 1

15 =: ε0. □
One might try to find different values for different d0 and n0, but since reasonable lower

bounds start with d0 = 100 while the implementation of algorithms seems hopeless in that
dimension, the result should be seen as rather theoretic.
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