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Abstract

For k ∈ {1, 2, 3, . . .}, we construct an even compactly supported piecewise polynomial ψk whose
Fourier transform satisfies Ak(1 + ω2)−k

≤ ψk(ω) ≤ Bk(1 + ω2)−k , ω ∈ R, for some constants
Bk ≥ Ak > 0. The degree of ψk is shown to be minimal, and is strictly less than that of Wendland’s
function φ1,k−1 when k > 2. This shows that, for k > 2, Wendland’s piecewise polynomial φ1,k−1 is not
of minimal degree if one places no restrictions on the number of pieces.
c⃝ 2011 Elsevier Inc. All rights reserved.
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1. Introduction

A function Φ ∈ L1(Rd) is said to have Sobolev regularity k > 0 if its Fourier transformΦ(ω) := (2π)−d/2

Rd Φ(x)e−ı x ·ω dx satisfies

A(1 + ‖ω‖
2)−k

≤ Φ(ω) ≤ B(1 + ‖ω‖
2)−k, ω ∈ Rd ,

for some constants B ≥ A > 0. Such functions are useful in radial basis function methods
since the generated native space will equal the Sobolev space W k

2 (R
d). The reader is referred

to Schaback [3] for a description of the current state of the art in the construction of
compactly supported functions Φ having prescribed Sobolev regularity. Wendland (see [4,5]) has
constructed radial functions Φd,ℓ(x) = φd,ℓ(‖x‖), where φd,ℓ is a piecewise polynomial of the

form φd,ℓ(t) =


p(|t |), |t | ≤ 1
0, |t | > 1 , p being a polynomial. For d ∈ {1, 2, 3, . . .} and ℓ ∈ {0, 1, 2, . . .},
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with the case d = 1, ℓ = 0 excluded, Φd,ℓ has Sobolev regularity k = ℓ + (d + 1)/2 and the
degree of the piecewise polynomial φd,ℓ, namely ⌊d/2⌋ + 3ℓ+ 1, is minimal with respect to this
property. A natural question to ask is that of whether the degree of φd,ℓ would still be minimal if
we considered functions of the form Φ(x) = φ(‖x‖) where φ is a piecewise polynomial having
bounded support. In this note, we answer this question for the univariate case d = 1. Specifically,
we construct a compactly supported even piecewise polynomial ψk , with Sobolev regularity k
(see Theorem 2.8), and we show that the degree ofψk , namely 2k, is minimal (see Theorem 2.10).
From a comparison with Wendland’s function Φ1,k−1 (which has Sobolev regularity k when
k > 1), we see that degψk = degφ1,k−1 if k = 2, while degψk = 2k < 3k − 2 = degφ1,k−1
when k > 2.

2. Results

Wendland’s piecewise polynomial φd,ℓ can be identified as a constant multiple of the
B-spline having ℓ + 1 knots at the nodes −1 and 1 and ⌊d/2⌋ + ℓ + 1 knots at 0. This can be
verified simply by observing that φd,ℓ and the above-mentioned B-spline have the same degree,
⌊d/2⌋ + 3ℓ + 1, and satisfy the same number of continuity conditions across each of the nodes
−1,0,1, namely ⌊d/2⌋ + 2ℓ + 1 at −1,1 and 2ℓ + 1 at 0. It is well understood in the theory of
B-splines that multiple knots are to be avoided if one wishes to keep the degree low, and with
this in mind, we define ψk as follows. For k = 1, 2, 3, . . . , let ψk be the B-spline having knots
−k, . . . ,−2,−1, 0; 0, 1, 2, . . . , k (note that 0 is the only double knot). For easy reference, we
display ψk(t) (normalized) for t ∈ [0, k] and k = 1, 2, 3:

ψ1(t) = (1 − t)2, ψ2(t) =


8 − 24t2

+ 24t3
− 7t4, t ∈ [0, 1]

(2 − t)4, t ∈ (1, 2]

ψ3(t) =


198 − 270t2

+ 270t4
− 180t5

+ 37t6, t ∈ [0, 1]

153 + 270t − 945t2
+ 900t3

− 405t4
+ 90t5

− 8t6, t ∈ (1, 2]

(3 − t)6, t ∈ (2, 3].

We begin by mentioning several salient facts about the B-spline ψk which can be found
in [1, pp. 108–131]. The piecewise polynomial ψk is supported on [−k, k], positive on (−k, k),
even and of degree 2k. Furthermore, it is 2k − 1 times continuously differentiable on R \ {0}

and 2k − 2 times continuously differentiable on all of R. It follows from this that the 2k − 1-
order derivative, D2k−1ψk , is a piecewise linear function which is supported on [−k, k] and is
continuous except at the origin where it has a jump discontinuity. Consequently, the 2k-order
derivative has the form

D2kψk =
√

2πa0δ0 +

k−
j=1

√
2πa j (χ[ j−1, j) + χ[− j,1− j)),

for some constants a0, a1, a2, . . . , ak and where δ0 is the Dirac δ-distribution defined by δ0( f ) =

f (0). We can thus express the Fourier transform of D2kψk as
D2kψk

(ω) = a0 + 2
k−

j=1

a j
sin( jω)− sin(( j − 1)ω)

ω

= a0 +

k−
j=1

2(a j − a j+1)
sin( jω)

ω
,
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with ak+1 := 0, whence it follows that

ψk(ω) = (ıω)−2k


D2kψk

(ω) =
(−1)k

ω2k+1


a0ω +

k−
j=1

2(a j − a j+1) sin( jω)


. (2.1)

Lemma 2.2. Let β ∈ R. Then there exist unique scalars c1, c2, . . . , ck ∈ R such thatβ +

k−
j=1

c j cos( jω)

 = O(|ω|
2k) as ω → 0. (2.3)

Proof. Define g(w) = β +
∑k

i=1 ci cos(iω). Since g ∈ C∞(R) is even, (2.3) holds if and
only if D2ℓg(0) = 0 for ℓ = 0, 1, 2, . . . , k − 1. These conditions form the system of linear
equations [c1, c2, . . . , ck]A = [−β, 0, 0, . . . , 0], where A is the k × k matrix given by A(i, j) =

(−1) j−1i2 j−2. Writing A(i, j) = (−i2) j−1, we recognize A as a nonsingular Vandermonde
matrix, and therefore, (2.3) holds if and only if [c1, c2, . . . , ck] = [−β, 0, 0, . . . , 0]A−1. �

Theorem 2.4. Let β, c1, c2, . . . , ck ∈ R be such that (2.3) holds. Then

β +

k−
j=1

c j cos( jω) = βαk(1 − cosω)k, ω ∈ R, (2.5)

where αk > 0 is defined by 1
αk

=
1
π

 π
0 (1 − cosω)k dω.

Proof. Since cos j ω ∈ span{1, cosω, cos 2ω, . . . , cos kω} for j = 0, 1, . . . , k, it follows that
there exist b j ∈ R such that (1 − cosω)k = b0 +

∑k
j=1 b j cos( jω). Note that

0 <
1
α k

=
1
π

∫ π

0
(1 − cosω)k dω =

1
π

∫ π

0
b0 dω +

k−
j=1

b j
1
π

∫ π

0
cos( jω) dω = b0,

and hence βαk(1 − cosω)k = β +
∑k

j=1 βαkb j cos( jω). Since
βαk(1 − cosω)k

 = O(|ω|
2k)

as ω → 0, it follows from the lemma that c j = βαkb j for j = 1, 2, . . . , k, and therefore (2.5)
holds. �

Corollary 2.6. Let a0 be as in (2.1). Then (−1)ka0 > 0 and

ψk(ω) =
(−1)ka0αk

ω2k+1

∫ ω

0
(1 − cos t)k dt, ω ≠ 0. (2.7)

Proof. It follows from (2.1) that ψk(ω) =
(−1)k

ω2k+1 f (ω), where f (ω) := a0ω +
∑k

j=1 2(a j −

a j+1) sin( jω). Since ψk is supported on [−k, k] and positive on (−k, k), it follows that ψk is
continuous (in fact entire) and ψk(0) > 0. Consequently, | f (ω)| = O(|ω|

2k+1) as ω → 0. Since

f is infinitely differentiable, it follows that
 f ′(ω)

 =

a0 +
∑k

j=1 2 j (a j − a j+1) cos( jω)
 =

O(|ω|
2k) as ω → 0, and so by Theorem 2.4, f ′(ω) = a0αk(1− cosω)k . Since f (0) = 0, we can

write f (ω) =
 ω

0 f ′(t) dt = a0αk
 ω

0 (1 − cos t)k dt , and hence obtain (2.7). That (−1)ka0 > 0
is now evident since 0 < ψk(0) = limω→0+ ψk(w). �
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Remark. At this point, it is also easy to show that

ψk(ω) =
(−1)ka0

ω2k+1


ω +

k−
j=1

b j sin( jω)


, ω ≠ 0,

where the scalars {b j } are determined by the fact that ψk is continuous at 0.

Theorem 2.8. For k ∈ {1, 2, 3, . . .}, ψk has Sobolev regularity k; that is, there exist constants
Bk ≥ Ak > 0 such that

Ak(1 + |ω|
2)−k

≤ ψk(ω) ≤ Bk(1 + |ω|
2)−k, ω ∈ R. (2.9)

Proof. As in the proof of Corollary 2.6, let us write ψk(ω) =
(−1)k

ω2k+1 f (ω), where f (ω) := a0ω+∑k
j=1 2(a j − a j+1) sin( jω). Since limω→∞

f (ω)
ω

= a0, it follows that limw→∞w2kψk(w) =

(−1)ka0. Since (−1)ka0 > 0 (by Corollary 2.6), it follows that there exists N > 0 such that (2.9)
holds for ω ≥ N . That ψk(ω) > 0 for all ω > 0 follows easily from Corollary 2.6, and since ψk
is continuous and ψk(0) > 0, we see that (2.9) holds for 0 ≤ ω ≤ N . We finally conclude that
(2.9) holds for all ω ∈ R since ψk is an even function. �

We now show that the degree of ψk is minimal.

Theorem 2.10. If ψ is an even, compactly supported, piecewise polynomial satisfying (2.9),
then the degree of ψ is at least 2k.

Proof. Let ψ be an even, compactly supported piecewise polynomial satisfying (2.9) and let the
ℓth derivative of ψ be the first discontinuous derivative of ψ (if ψ is itself discontinuous then
ℓ = 0). Then Dℓ+1ψ can be written as

Dℓ+1ψ = g +

n−
j=1

√
2πc jδx j , (2.11)

where g ∈ L1(R) and c j is the height (possibly 0) of the jump discontinuity at x j . We can then
express the Fourier transform of ψ as

ψ(ω) = (ıω)−ℓ−1


Dℓ+1ψ
(ω) = (ıω)−ℓ−1(g(ω)+ Θ(ω)),

where Θ(ω) =
∑n

j=1 c j e−ı x jω. Since Θ is bounded and |g(ω)| has limit 0 as |ω| → ∞ (by the

Riemann–Lebesgue lemma), it follows that
ψ(ω) = O(|ω|

−ℓ−1) as |ω| → ∞. In view of the
left side of (2.9), we conclude that ℓ+ 1 ≤ 2k. Since Θ is a non-trivial almost periodic function
(see [2, pp. 9–14]), it follows that |Θ(ω)| ≠ o(1) as |ω| → ∞, and in view of the right side
of (2.9), we see that ℓ + 1 ≥ 2k. Therefore, ℓ + 1 = 2k and we conclude that ψk is 2k − 2
times continuously differentiable. Since ψk is compactly supported (i.e. ψk is not a polynomial),
it follows that ψk has degree at least 2k −1 (see [1, pp. 96–120]). In order to show that the degree
of ψk is at least 2k, let us assume to the contrary that the degree equals 2k − 1. In this case the
ℓ = 2k−1 derivative ofψk is piecewise constant and hence g = 0 and ψ(ω) = (−1)kω−2kΘ(ω).
Since ψ is continuous at 0, it follows that Θ(0) = 0. Since Θ is an almost periodic function,
there exist values ω1 < ω2 < · · · such that limn→∞ ωn = ∞ and limn→∞ Θ(ωn) = 0; but this
contradicts the left side of (2.9). Therefore, ψ has degree at least 2k. �
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