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Abstract

For k € {1,2,3,...}, we construct an even compactly supported piecewise polynomial ¥, whose
Fourier transform satisfies Ay (1 + wz)fk < xzk (w) < Br(1+ wz)fk, w € R, for some constants
By > Ay > 0. The degree of vy is shown to be minimal, and is strictly less than that of Wendland’s
function ¢ ;1 when k > 2. This shows that, for k > 2, Wendland’s piecewise polynomial ¢ ;_; is not
of minimal degree if one places no restrictions on the number of pieces.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

__ A function ¢ € L1(RY) is said to have Sobolev regularity k > 0 if its Fourier transform
() = 27)"9/? [pa P(x)e " dx satisfies

Al + o> < P(w) < BU+lo|H7*, weR?,

for some constants B > A > 0. Such functions are useful in radial basis function methods
since the generated native space will equal the Sobolev space Wé‘ (R9). The reader is referred
to Schaback [3] for a description of the current state of the art in the construction of
compactly supported functions @ having prescribed Sobolev regularity. Wendland (see [4,5]) has
constructed radial functions @4 ¢(x) = ¢a.¢(||x]]), where ¢4 ¢ is a piecewise polynomial of the

form ¢g ¢(t) = {g!(lt‘)’ <1 p being a polynomial. Ford € {1,2,3,...}and ¢ € {0, 1,2, ...},

It >1°
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with the case d = 1, ¢ = 0 excluded, @, ¢ has Sobolev regularity k = ¢ + (d + 1)/2 and the
degree of the piecewise polynomial ¢4 ¢, namely |d/2] 4 3£ 4 1, is minimal with respect to this
property. A natural question to ask is that of whether the degree of ¢4  would still be minimal if
we considered functions of the form @(x) = ¢ (||x||) where ¢ is a piecewise polynomial having
bounded support. In this note, we answer this question for the univariate case d = 1. Specifically,
we construct a compactly supported even piecewise polynomial Y, with Sobolev regularity k
(see Theorem 2.8), and we show that the degree of 1/, namely 2k, is minimal (see Theorem 2.10).
From a comparison with Wendland’s function @; ;—; (which has Sobolev regularity k& when
k > 1), we see that deg Y = deg ¢y x—1 if kK = 2, while deg Yy = 2k < 3k — 2 = deg ¢y k-1
when k > 2.

2. Results

Wendland’s piecewise polynomial ¢4, can be identified as a constant multiple of the
B-spline having £ + 1 knots at the nodes —1 and 1 and |d/2] + ¢ + 1 knots at 0. This can be
verified simply by observing that ¢4 ¢ and the above-mentioned B-spline have the same degree,
ld/2] + 3¢ 4 1, and satisfy the same number of continuity conditions across each of the nodes
—1,0,1, namely |d/2] + 2¢ + 1 at —1,1 and 2¢ + 1 at 0. It is well understood in the theory of
B-splines that multiple knots are to be avoided if one wishes to keep the degree low, and with
this in mind, we define ¥ as follows. For k = 1,2, 3, ..., let y; be the B-spline having knots
—k,...,—2,—-1,0;0,1,2, ..., k (note that O is the only double knot). For easy reference, we
display v (¢) (normalized) for ¢ € [0, k] and k = 1, 2, 3:

_ 2 3 4.4
i) = (1 — 1), %(I):{S 242 42487 —71*, 1 €0, 1]

2 -1, te(l,2]
198 — 27072 4 270¢* — 180¢° + 3745, t e[0,1]
Y3(t) = {153 + 270t — 945¢% + 90013 — 405:* +908° — 8%, 1 € (1,2]
3 —-1°, te (23]

We begin by mentioning several salient facts about the B-spline ¥ which can be found
in [1, pp. 108—131]. The piecewise polynomial v is supported on [—k, k], positive on (—k, k),
even and of degree 2k. Furthermore, it is 2k — 1 times continuously differentiable on R \ {0}
and 2k — 2 times continuously differentiable on all of R. It follows from this that the 2k — 1-
order derivative, D?*~14;, is a piecewise linear function which is supported on [—k, k] and is
continuous except at the origin where it has a jump discontinuity. Consequently, the 2k-order
derivative has the form

k
Dy = V2mapdy + Z N2maj(Xj—1,j) + X[—j,1—)

j=1

for some constants ag, ai, az, . . ., ax and where § is the Dirac §-distribution defined by §o(f) =
£(0). We can thus express the Fourier transform of Dy as

k .. . .
%o\ sin(jo) = sin((j — Dw)
(P* ) (@) —ao+2j§:1:a, )

k .

sin(jw)

=ao+ Y _2(a; —aj41) pa
=1
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with ag1 := 0, whence it follows that

~ —1)k k
wk(w) — (w))—zk <D2k1// > ( ) _ (2k_al (aoa)-i— ZZ(aJ —aj+1)Sin(j(1))) . (21)

j=1

Lemma 2.2. Let § € R. Then there exist unique scalars cy, c2, ..., ck € R such that
k
B+ cjcos(jo)| = O(lw*) asw— 0. (2.3)
j=1

Proof. Define g(w) = B + Zf-;l ¢i cos(iw). Since g € C*(R) is even, (2.3) holds if and
only if Dzzg(O) =0for¢ =0,1,2,...,k — 1. These conditions form the system of linear
equations [c, ¢2, ..., ck]A =[—8,0,0, ..., 0], where A is the k x k matrix given by A(i, j) =
(—=1)J/ 122, Writing A(i, j) = (=271, we recognize A as a nonsingular Vandermonde
matrix, and therefore, (2.3) holds if and only if [c1, c2, ..., cx] = [—8,0,0, ..., O]A’]. O

Theorem 2.4. Let B, c1, c2, ..., ck € R be such that (2.3) holds. Then

k
B+ cjcos(jw) = par(l —cosw), w€eR, 2.5)
j=1

where oy > 0 is defined by al—k = % fon(l — cos a))k dw.

Proof. Since cos’/ w € span{l, cos w, cos 2w, ..., coskw} for j = 0, 1,...,k, it follows that
there exist b; € R such that (1 — cos )k = by + Zl;zl bj cos(jw). Note that

i k T
1
0< - = / (1 — cosw)dw = — / boda)+ij—[ cos(jw) dw = by,
T Jo = T Jo
and hence Bay (1 — cosw)* = B + Z] 1 Babj cos(jw). Since |ﬂak(l — cos a))k| = 0 (lw|*)
as w — 0, it follows from the lemma that c; = Bayb; for j = 1,2, ..., k, and therefore (2.5)
holds. 0O

Corollary 2.6. Let ag be as in (2.1). Then (—1)*ay > 0 and

(—DFagay

Vi(w) = W/o (1 —cost)fdt, w#0. (2.7)

Proof. It follows from (2.1) that wk(a)) Zk +1 (w), where f(w) = apw + Z -1 2(a; —
ajy1)sin(jw). Since ¥y is supported on [—k, k] and positive on (—k, k), it follows that 1’/71C is
continuous (in fact entire) and @k(O) > 0. Consequently, | f (w)| = O (Jw|**t1y as w — 0. Since
f is infinitely differentiable, it follows that | f"(w)| = ‘ao + 2’;=1 2j(aj —ajt1)cos(jw)

O (|w|*) as w — 0, and so by Theorem 2.4, f'(w) = apay (1 — cos o). Since f(0) =0, wecan
write f (@) = [ f (1) dt = agay Jo’ (1 = cos )k dt, and hence obtain (2.7). That (—1)*ag > 0
is now evident since 0 < 1//k (0) = lim,,_, o+ 1//k(w) O
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Remark. At this point, it is also easy to show that

~  (=Dfag £
Wk(w)—w w+ijSIH(JCU) , w#0,

j=1

where the scalars {b;} are determined by the fact that 1’/7;c is continuous at 0.

Theorem 2.8. For k € {1, 2,3, ...}, Y has Sobolev regularity k; that is, there exist constants
Bx > Ax > 0 such that

A0+ 10 < i) < Bl + o) 7F, weR (2.9)

Proof. As in the proof of Corollary 2.6, let us write g’ﬁ\k (w) = (;,}lkl f(w), where f(w) = apw +

@
Y51 2(a; — ajq1) sin(jw). Since limg—o0o 22 = ag, it follows that limy o w* Y (w) =

(—=D*ayp. Since (—=1kag > 0 (by Corollary 2.6), it follows that there exists N > 0 such that (2.9)
holds for w > N. That I/ﬂ\k(a)) > 0 for all w > 0 follows easily from Corollary 2.6, and since {Zr\k
is continuous and 1’/7/((0) > 0, we see that (2.9) holds for 0 < w < N. We finally conclude that
(2.9) holds for all w € R since % is an even function. [

We now show that the degree of ¥ is minimal.

Theorem 2.10. If v is an even, compactly supported, piecewise polynomial satisfying (2.9),
then the degree of V is at least 2k.

Proof. Let ¢/ be an even, compactly supported piecewise polynomial satisfying (2.9) and let the
£th derivative of i be the first discontinuous derivative of i (if i is itself discontinuous then
¢ = 0). Then D!y can be written as

n
Dy =g+ Vome;sy, 2.11)
j=1

where ¢ € L1(R) and c; is the height (possibly 0) of the jump discontinuity at x ;. We can then
express the Fourier transform of i as
(@ =00 (DY) (@) = (0) 77 @) + 6)),

where O (w) = le‘:l cje” i Since O is bounded and |g(w)| has limit 0 as |w| — oo (by the
Riemann-Lebesgue lemma), it follows that |1///\ (a))| = O(lw|~" 1) as |w| — oo. In view of the
left side of (2.9), we conclude that £ + 1 < 2k. Since © is a non-trivial almost periodic function
(see [2, pp. 9-14]), it follows that |©(w)| # o(1) as |w| — oo, and in view of the right side
of (2.9), we see that £ + 1 > 2k. Therefore, £ + 1 = 2k and we conclude that ¥ is 2k — 2
times continuously differentiable. Since 1 is compactly supported (i.e. ¥ is not a polynomial),
it follows that ¥, has degree at least 2k — 1 (see [1, pp. 96—120]). In order to show that the degree
of v is at least 2k, let us assume to the contrary that the degree equals 2k — 1. In this case the
£ = 2k—1 derivative of v is piecewise constant and hence g = 0 and fp\ (@) = (—DFo~* 0 (w).
Since 1///\ is continuous at 0, it follows that ©@(0) = 0. Since O is an almost periodic function,
there exist values w; < wy < --- such that lim,,_, oo w, = 00 and lim,_, 5, @(w,) = 0; but this
contradicts the left side of (2.9). Therefore, ¥ has degree at least 2k.  [J
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