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Abstract

We study approximation properties of general multivariate periodic quasi-interpolation operators,
hich are generated by distributions/functions ϕ̃ j and trigonometric polynomials ϕ j . The class of such
perators includes classical interpolation polynomials (ϕ̃ j is the Dirac delta function), Kantorovich-type
perators (ϕ̃ j is a characteristic function), scaling expansions associated with wavelet constructions,
nd others. Under different compatibility conditions on ϕ̃ j and ϕ j , we obtain upper and lower bound
stimates for the L p-error of approximation by quasi-interpolation operators in terms of the best and
est one-sided approximation, classical and fractional moduli of smoothness, K -functionals, and other

terms.
c⃝ 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Quasi-interpolation operators are among the most important mathematical tools in many
ranches of science and engineering. They play a crucial role as a connecting link between
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continuous-time and discrete-time signals. For proper application of quasi-interpolation ope-
rators, it is very important to know the quality of approximation of functions by such operators
in various settings. Recall that in the non-periodic case, quasi-interpolation operators, which
are also often called quasi-projection operators, can be defined by∑

k∈Zd

m j
⟨ f, ϕ̃(M j

· −k)⟩ϕ(M j
· −k), (1.1)

here ϕ is a function and ϕ̃ is a distribution or a function, ⟨ f, ϕ̃(M j
· −k)⟩ is an appropriate

unctional, M is a dilation matrix, and m = | det M |. The class of these operators is
ery large. For example, if ϕ̃ is the Dirac delta-function, operators (1.1) represent classical
ampling expansions (see, e.g., [2,6,12,17,20,41]); if ϕ̃ is a characteristic function of a certain
ounded set, we obtain the so-called Kantorovich-type operators and their generalization (see,
.g., [3,7,19,21,26,42]); under particular conditions on ϕ and ϕ̃, the class of operators (1.1)
ncludes scaling expansions associated with wavelet constructions (see, e.g., [4,13,14,22,34])
nd other types of operators.

In this paper, we study a periodic counterpart of (1.1), which can be defined in the following
ay

Q j ( f, ϕ j , ϕ̃ j ) =
1

m j

∑
k

ϕ̃ j ∗ f (M− j k)ϕ j (· − M− j k), (1.2)

here the sum over k is finite, ϕ j is a trigonometric polynomial, and ϕ̃ j ∗ f is a certain bounded
function associated with the distribution/function ϕ̃ j (see Section 2 for details).

Similar to the non-periodic case, approximation properties of operators (1.2) have also
been intensively studied by many mathematicians (see, e.g., [10,11,18,28,33,35,36] and the
references therein). It turns out that in the periodic case, such operators have been considered
mainly in the form of sampling or interpolating-type operators (i.e., ϕ̃ j is the periodic Delta
function) given by

I j ( f, ϕ j ) =
1

m j

∑
k

f (M− j k)ϕ j (· − M− j k), (1.3)

where, usually, ϕ j is a so-called fundamental interpolant, e.g., the Dirichlet or de la Vallée-
oussin kernels, or periodic B-splines. At the same time, general periodic quasi-interpolation
perators of type (1.2) have been studied only in a few works. In particular, the general case of
perators (1.2) with some particular class of linear functionals instead of f (M− j k) was studied
n [11] and in the recent paper [18].

The estimation of the L p-error of approximation by interpolation operators (1.3), in which
j is the Dirichlet kernel was studied in [10]. A more general case of Hermite-type interpolation
as considered in [28]. In the above mentioned two papers, the estimates of the error were given

n terms of the best one-sided approximation by trigonometric polynomials and in terms of the
-modulus of smoothness of arbitrary integer order. Approximation properties of operators (1.3)
or various trigonometric polynomials ϕ j (the so-called methods of summation of the discrete
ourier series) were considered in [36] and [37], in which the error estimates were investigated

n the uniform norm. In the papers [33] and [35], the introduction of the periodic Strang–
ix conditions as well as their different modifications enabled the development of a unified
pproach to error estimates of periodic interpolation for functions from the Sobolev spaces and
ther function spaces. Some estimates of the L p-error of approximation by operators (1.3) for

unctions from Nikol’skij–Besov spaces were derived in [32].
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The goal of this paper is to estimate the L p-error of approximation of a given function
f , from above and below, by quasi-interpolation operators Q j ( f, ϕ j , ϕ̃ j ) for a wide range
f distributions/functions ϕ̃ j and trigonometric polynomials ϕ j . Under different compatibility
onditions on ϕ j and ϕ̃ j related in some sense to the Strang–Fix conditions, we obtain estimates
or the error of approximation in terms of the best and best one-sided approximation (see
he definition in Section 2), classical and fractional moduli of smoothness, K -functionals, and
ther terms. We pay a special attention to the case ϕ̃ j ∈ Lq , for example, ϕ̃ j is a normalized
haracteristic function, which provides Kantorovich-type operators. In particular, we show that
f ϕ j = D2 j is the Dirichlet kernel and f ∈ L p[− 1

2 ,
1
2 ], 1 < p < ∞, σ ∈ (0, 1/2], then (see

Example 4.4) f −

2 j−1
−1∑

k=−2 j−1

1
2σ

∫ 2− jσ

−2− jσ

f
(
t + 2− j k

)
dt D2 j

(
· − 2− j k

) 
p

≍ ω2( f, 2− j )p, (1.4)

here ω2( f, 2− j )p is the classical modulus of smoothness of second order. At the same time,
f ϕ j (x) = Dχ

2 j ,σ
(x) =

∑2 j−1
−1

ℓ=−2 j−1
πσ2− j+1ℓ

sinπσ2− j+1ℓ
e2π iℓx and 1 < p < ∞, then (see Example 4.2) f −

2 j−1
−1∑

k=−2 j−1

1
2σ

∫ 2− jσ

−2− jσ

f
(
t + 2− j k

)
dt Dχ

2 j ,σ

(
· − 2− j k

) 
p

≍ E2 j ( f )p, (1.5)

here E2 j ( f )p is the L p-error of the best approximation of f by trigonometric polynomials
ith frequencies in [−2 j−1, 2 j−1). In the above relations (1.4) and (1.5), the notation ≍ denotes

he two-sided inequality with positive constants that do not dependent on f and j .
The paper is organized as follows: in Section 2 we introduce basic notations, provide

ssential facts, and define the quasi-interpolation operator Q j ( f, ϕ j , ϕ̃ j ). Section 3 is devoted
o auxiliary results. In this section, we obtain general upper estimates of the L p-error for
Q j ( f, ϕ j , ϕ̃ j ) and give auxiliary lemmas. In Section 4 we prove the main results. In Section 4.1,
nder strong compatibility conditions on ϕ j and ϕ̃ j , we estimate the L p-error for operators (1.2)
n terms of best approximation by trigonometric polynomials. In Section 4.2 we give two-sided
stimates of the approximation error ∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p in terms of classical and fractional
oduli of smoothness and K -functionals. In Section 4.3 we specify some error estimates from

he previous section for functions f belonging to Besov-type spaces.

. Basic notation

We use the standard multi-index notations. Let N be the set of positive integers, Rd be
he d-dimensional Euclidean space, Zd be the integer lattice in Rd , Td

= Rd/Zd be the d-
imensional torus. Further, let x = (x1, . . . , xd )T and y = (y1, . . . , yd )T be column vectors in
d . Then (x, y) := x1 y1 + · · · + xd yd , |x | :=

√
(x, x); 0 = (0, . . . , 0)T

∈ Rd ; Zd
+

:= {x ∈

d
: xk ≥ 0, k = 1, . . . , d}. If α ∈ Zd

+
, we set [α] =

∑d
k=1 αk , Dα f =

∂[α] f
∂α1 x1...∂

αd xd
.

We denote by c and C some positive constants depending on the indicated parameters. By
these letters we also denote some positive constants that are independent of the function f and
the parameter j .

We use the notation L p for the space L p(Td ) with the usual norm

∥ f ∥p =

(∫
| f (x)|pdx

)1/p
for 1 ≤ p < ∞
Td

3
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and

∥ f ∥∞ = ess supx∈Td | f (x)| for p = ∞.

hen p = ∞, we replace L∞ with C(Td ). By B = B(Td ) we denote the space of all bounded
easurable functions on Td .
If f ∈ L1(Td ), then

f̂ (k) =

∫
Td

f (x)e−2π i(k,x)dx, k ∈ Zd ,

enotes the kth Fourier coefficient of f . The Fourier transform of f ∈ L1(Rd ) is defined by
F( f )(ξ ) =

∫
Rd f (x)e−2π i(x,ξ )dx .

Let D = C∞(Td ) be the space of infinitely differentiable functions on Rd that are periodic
with period 1. The linear space of periodic distributions (continuous linear functionals on D)
is denoted by D′. It is known (see, e.g., [30, p. 144]) that any periodic distribution ϕ̃ can be
expanded in a weakly convergent (in D′) Fourier series

ϕ̃(x) =

∑
k∈Zd

ˆ̃ϕ(k)e2π i(k,x), (2.1)

where the sequence {̂ϕ̃(k)}k has at most polynomial growth. Also, conversely, for any sequence
{̂ϕ̃(k)}k of at most polynomial growth the series on the right-hand side of (2.1) converges
weakly to a periodic distribution. The numbers ˆ̃ϕ(k) are called the Fourier coefficients of a
periodic distribution ϕ̃ and ˆ̃ϕ(k) = ⟨e−2π i(k,·), ϕ̃⟩.

In what follows, M = diag(m1,m2, . . . ,md ) is a diagonal dilation matrix, m j is an integer
with |m j | > 1, m := | det M |, D(M) := (M[−1/2, 1/2)d ) ∩ Zd .

For a given matrix M , we will use the following set of trigonometric polynomials:

TM := {T : spec T ⊂ D(M)}.

The L p-error of the best approximation of f ∈ L p by trigonometric polynomials T ∈ TM is
denoted by

EM ( f )p := inf
{
∥ f − T ∥p : T ∈ TM

}
.

The L p-error of the best one-sided approximation of f ∈ B is given by

ẼM ( f )p := inf
{
∥t − T ∥p : t, T ∈ TM , t(x) ≤ f (x) ≤ T (x) for all x ∈ Td} .

Note that for p = ∞ the error of the best one-sided approximation coincides up to a constant
with the error of the unrestricted best approximation EM ( f )p, see, e.g., [31, p. 163].

For a sequence {ak}k∈D(M) ∈ C, we denote

∥{ak}k∥ℓp,M
:=

⎧⎪⎪⎨⎪⎪⎩
(

1
m

∑
k∈D(M)

|ak |
p
) 1

p

, if 1 ≤ p < ∞,

sup
k∈D(M)

|ak |, if p = ∞.

In this paper, we will use the following notation for the rectangular partial sums of the
ourier series and the de la Vallée Poussin means of f :

SM f (x) :=

∑
f̂ (k)e2π i(k,x),
k∈D(M)

4
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VM f (x) :=

∑
k∈D(M)

v(M−1k) f̂ (k)e2π i(k,x),

here v ∈ C∞(Rd ), v(ξ ) = 1 for ξ ∈ [−1/4, 1/4)d and v(ξ ) = 0 for ξ ̸∈ [−3/8, 3/8)d . Recall
he following well-known inequalities (see, e.g., [40, 2.1.6, 2.4.5, and 4.1.1]):

∥ f − SM f ∥p ≤ c(p, d)EM ( f )p, 1 < p < ∞, (2.2)

∥ f − VM f ∥p ≤
(
1 + ∥v∥L1(Rd )

)
E 1

2 M ( f )p ≤ c(d)E 1
2 M ( f )p, 1 ≤ p ≤ ∞. (2.3)

The Dirichlet kernel with respect to the matrix M is defined by

DM (x) =

∑
k∈D(M)

e2π i(k,x).

Let ϕ be a trigonometric polynomial and f ∈ L p, 1 ≤ p ≤ ∞. Denote

Kϕ,p := sup
∥ f ∥p≤1

∥ϕ ∗ f ∥p.

ote that (see, e.g., [40, Ch. 8]) if ϕ̂ j (ξ ) = χ
M j [− 1

2 ,
1
2 )

d (ξ ), where χG denote the characteristic
unction of the set G, then ϕ j ∗ f = SM j f and

Kϕ j ,p ≍

{
1, 1 < p < ∞,
jd , p = 1 or ∞.

he averaging operator with respect to the matrix M is defined by

AvgM f (x) = m−1
∫

M[− 1
2 ,

1
2 )

d
f (t + x)dt.

efinition 2.1. Let ϕ̃ ∈ D′ and 1 ≤ p ≤ ∞. We will say that a function f belongs to the
lass Bϕ̃,p if f ∈ L p and∑

ℓ∈Zd

ˆ̃ϕ(ℓ) f̂ (ℓ)e2π i(ℓ,x)

s a Fourier series of a certain bounded function, which we denote by ϕ̃ ∗ f .

Typical examples of Bϕ̃,p are the following: (1) if ϕ̃ is a finite complex-valued Borel measure
n Td and p = ∞, then Bϕ̃,p = B, see, e.g., [40, 7.1.4]; (2) if ϕ̃ ∈ Lq , 1/p + 1/q = 1, then

by Young’s convolution inequality, we have that Bϕ̃,p = L p.
Now, let us introduce the main object of this paper. Let j ∈ N, ϕ̃ j ∈ D′, ϕ j ∈ L p, and

f ∈ Bϕ̃ j ,p be given. We define the general multivariate periodic quasi-interpolation operator
by

Q j ( f, ϕ j , ϕ̃ j )(x) =
1

m j

∑
k∈D(M j )

ϕ̃ j ∗ f (M− j k)ϕ j (x − M− j k). (2.4)

Note that for functions f from some special Wiener and Besov classes, similar quasi-
nterpolation operators have been recently studied in [18]. Particularly, in terms of decay of
he Fourier coefficients of f , there were obtained several types of estimates of approximation
y operators (2.4) in the Wiener-type spaces and the spaces L p(Td ) with 2 ≤ p ≤ ∞.
n the present paper, we essentially extend and improve the results given in [18] in several
5
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directions. First of all, using an approach based on the best one-sided approximations and
Fourier multipliers, we obtain error estimates in L p(Td ) for all 1 ≤ p ≤ ∞. Second, using

ew type of compatibility conditions for ϕ j and ϕ̃ j , we give the corresponding error estimates in
erms of classical and fractional moduli of smoothness and K -functionals, which are commonly
sed in approximation theory and in most cases provide sharper estimates than those given
n [18] in terms of the Fourier coefficients of f . Third, together with estimates from above
f the L p-error of approximation, we obtain also the estimates from below, which show the
harpness of our results for particular classes of quasi-interpolation operators.

. Auxiliary results

The next lemma is one of the main auxiliary results in this paper.

emma 3.1. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, δ ∈ (0, 1], and j ∈ N. Suppose that ϕ̃ j ∈ D′

nd ϕ j ∈ TM j . Then, for any f ∈ Bϕ̃ j ,p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(

∥ψ j ∗ T j∥p + EδM j ( f )p

+ Kϕ j ,q
(
ẼM j (ϕ̃ j ∗ f )p + ∥ϕ̃ j ∗ f − ϕ̃ j ∗ T j∥p

) )
,

here

ψ j (x) =

∑
ℓ∈D(M j )

(
1 − ϕ̂ j (ℓ) ˆ̃ϕ j (ℓ)

)
e2π i(ℓ,x), (3.1)

he polynomial T j ∈ TM j is such that ∥ f − T j∥p ≤ c(d, p, δ)EδM j ( f )p, and the constant C
oes not depend on f and j .

Before proving Lemma 3.1, we give one simple corollary of Lemma 3.1 for the partial sums
f the Fourier series SM j f and the de la Vallée Poussin means VM j f .

orollary 3.1. Under the conditions of Corollary 3.1, we have:
(a) if 1 < p < ∞, then

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
∥ψ j ∗ SM j f ∥p + EM j ( f )p + Kϕ j ,q ẼM j (ϕ̃ j ∗ f )p

)
, (3.2)

(b) if 1 ≤ p ≤ ∞, then

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
∥ψ j ∗ VM j f ∥p + E 1

2 M j ( f )p + Kϕ j ,q Ẽ 1
2 M j (ϕ̃ j ∗ f )p

)
,

(3.3)

here the constant C does not depend on f and j and the function ψ j is given by (3.1).

roof. The inequalities (3.2) and (3.3) can be obtained repeating the proof of Lemma 3.1
resented below by taking T j = SM j f in the case 1 < p < ∞ and T j = VM j f in the case
≤ p ≤ ∞. We need also to use (2.2), (2.3), and the following simple inequalities

∥ϕ̃ j ∗ f − ϕ̃ j ∗ VM j f ∥p = ∥ϕ̃ j ∗ f − VM j (ϕ̃ j ∗ f )∥p

≤ C E 1
2 M j (ϕ̃ j ∗ f )p ≤ C Ẽ 1

2 M j (ϕ̃ j ∗ f )p.
□ (3.4)

To prove Lemma 3.1, we will use a standard Marcinkiewicz–Zygmund inequality for
multivariate trigonometric polynomials given in the following lemma. Its proof follows easily
from the corresponding one-dimensional result, see, e.g., [24].
6
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Lemma 3.2. Let 1 ≤ p ≤ ∞, j ∈ N, and T j ∈ TM j . Then

{T j (M− j k)}k

ℓp,M j

≤ c(d, p)∥T j∥p.

The next lemma was proved in [18, Lemma16].

Lemma 3.3. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, j ∈ N, {ak}k ∈ C, and ϕ j ∈ TM j . Then 1
m j

∑
k∈D(M j )

akϕ j (· − M− j k)


p
≤ C Kϕ j ,q ∥{ak}k∥ℓp,M j

,

here the constant C does not depend on j and {ak}.

roof of Lemma 3.1. We consider only the case 1 ≤ p < ∞. The case p = ∞ can be treated

imilarly. We have f −
1

m j

∑
k∈D(M j )

ϕ̃ j ∗ f (M− j k)ϕ j (· − M− j k)


p

≤ ∥ f − T j∥p +

T j −
1

m j

∑
k∈D(M j )

ϕ̃ j ∗ T j (M− j k)ϕ j (· − M− j k)


p

+

 1
m j

∑
k∈D(M j )

(
ϕ̃ j ∗ f (M− j k) − ϕ̃ j ∗ T j (M− j k)

)
ϕ j (· − M− j k)


p

:= I1 + I2 + I3.

(3.5)

First, we consider I2. We have

T j (x) −
1

m j

∑
k∈D(M j )

ϕ̃ j ∗ T j (M− j k)ϕ j (x − M− j k)

=

∑
ℓ∈D(M j )

⎛⎝T̂ j (ℓ) −
ϕ̂ j (ℓ)
m j

∑
k∈D(M j )

ϕ̃ j ∗ T j (M− j k)e−2π i(ℓ,M− j k)

⎞⎠ e2π i(ℓ,x)

=

∑
ℓ∈D(M j )

⎛⎝T̂ j (ℓ) − ϕ̂ j (ℓ)
∑

ν∈D(M j )

ˆ̃ϕ j (ν)T̂ j (ν)
1

m j

∑
k∈D(M j )

e2π i(ν−ℓ,M− j k)

⎞⎠ e2π i(ℓ,x)

=

∑
ℓ∈D(M j )

(
T̂ j (ℓ) − ϕ̂ j (ℓ) ˆ̃ϕ j (ℓ)T̂ j (ℓ)

)
e2π i(ℓ,x)

= ψ j ∗ T j (x),

(3.6)

which implies that

I = ∥ψ ∗ T ∥ . (3.7)
2 j j p

7
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Consider I3. Let u j ,U j ∈ TM j be such that u j (x) ≤ ϕ̃ j ∗ f (x) ≤ U j (x) for all x ∈ Td and
∥u j − U j∥p ≤ 2ẼM j (ϕ̃ j ∗ f )p. Then, using Lemmas 3.2 and 3.3, we derive

I3 ≤ C Kϕ j ,q

(
1

m j

∑
k∈D(M j )

|ϕ̃ j ∗ f (M− j k) − ϕ̃ j ∗ T j (M− j k)|
p
) 1

p

≤ C Kϕ j ,q

( (
1

m j

∑
k∈D(M j )

|U j (M− j k) − ϕ̃ j ∗ T j (M− j k)|
p
) 1

p

+

(
1

m j

∑
k∈D(M j )

|U j (M− j k) − ϕ̃ j ∗ f (M− j k)|
p
) 1

p
)

≤ C Kϕ j ,q

(
∥U j − ϕ̃ j ∗ T j∥p +

(
1

m j

∑
k∈D(M j )

|U j (M− j k) − u j (M− j k)|
p
) 1

p
)

≤ C Kϕ j ,q
(
∥U j − ϕ̃ j ∗ T j∥p + ∥U j − u j∥p

)
≤ C Kϕ j ,q

(
∥U j − ϕ̃ j ∗ f ∥p + ∥U j − u j∥p + ∥ϕ̃ j ∗ f − ϕ̃ j ∗ T j∥p

)
≤ C Kϕ j ,q

(
ẼM j (ϕ̃ j ∗ f )p + ∥ϕ̃ j ∗ f − ϕ̃ j ∗ T j∥p

)
.

(3.8)

Finally, combining (3.5), (3.7), and (3.8), we prove the lemma. □

In Lemma 3.1, the error estimate was given in terms of the best one-sided approximation
ẼM j (ϕ̃ j ∗ f )p for the function f ∈ Bϕ̃ j ,p. Under more restrictive conditions on the function ϕ̃ j ,
we can take Bϕ̃ j ,p = L p and replace the best one-sided approximation with the unrestricted
best approximation. For this, we will use the following special norms for a function ϕ̃ j ∈ Lq ,
j ∈ N:

∥ϕ̃ j∥Lq, j :=

⎛⎝m j
∫

M− jTd

(
1

m j

∑
k∈D(M j )

|ϕ̃ j (x − M− j k)|
)q

dx

⎞⎠ 1
q

if 1 ≤ q < ∞

nd

∥ϕ̃ j∥L∞, j :=
1

m j
sup
x∈Rd

∑
k∈D(M j )

|ϕ̃ j (x − M− j k)| if q = ∞.

We have the following improvement of Lemma 3.1 for ϕ̃ j ∈ Lq :

emma 3.4. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, δ ∈ (0, 1], and j ∈ N. Suppose that ϕ̃ j ∈ Lq
and ϕ j ∈ TM j . Then, for any f ∈ L p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
∥ψ j ∗ T j∥p + (1 + Kϕ j ,q∥ϕ̃ j∥Lq, j )EδM j ( f )p

)
,

here ψ j is given by (3.1), the polynomial T j ∈ TM j is such that ∥ f − T j∥p ≤ c(d, p, δ)EδM j

f )p, and the constant C does not depend on f and j .

The proof of Lemma 3.4 is based on the following result (see Lemma 17 in [18]):

emma 3.5. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, j ∈ N, and ϕ̃ j ∈ Lq . Then, for any f ∈ L p,
e have{ϕ̃ j ∗ f (M− j k)

}
k

 ≤ ∥ϕ̃ j∥Lq, j ∥ f ∥p.
ℓp,M j

8
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Proof of Lemma 3.4. The proof is similar to the proof of Lemma 3.1. It is sufficient to use
inequalities (3.5) and (3.7) as well as the following estimate

I3 ≤ C Kϕ j ,q

⎛⎝ 1
m j

∑
k∈D(M j )

|ϕ̃ j ∗ ( f − T j )(M− j k)|
p

⎞⎠ 1
p

≤ C Kϕ j ,q∥ϕ̃ j∥Lq, j ∥ f − T j∥p

(3.9)

instead of inequality (3.8). The above estimate easily follows from Lemmas 3.3 and 3.5. □

4. Main results

4.1. Estimates of approximation in terms of best approximation

In this subsection, we give an explicit form of the error estimates from Lemmas 3.1 and 3.4
in the case of the so-called strictly compatible functions/distributions ϕ j and ϕ̃ j .

Theorem 4.1. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, 0 < δ ≤ ρ ≤ 1, and j ∈ N. Suppose that
ϕ j ∈ D′ and ϕ j ∈ TM j are such that

ϕ̂ j (k) ˆ̃ϕ j (k) = 1 for all k ∈ D(ρM j ). (4.1)

Then, for any f ∈ Bϕ̃ j ,p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
EδM j ( f )p + Kϕ j ,q

(
ẼM j (ϕ̃ j ∗ f )p + ∥ϕ̃ j ∗ ( f − T j )∥p

))
,

(4.2)

where T j ∈ TρM j is such that ∥ f − T j∥p ≤ c(d, p, δ)EδM j ( f )p; if, additionally, ϕ̃ j ∈ Lq , then,
or any f ∈ L p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C(1 + Kϕ j ,q∥ϕ̃ j∥Lq, j )EδM j ( f )p, (4.3)

here the constant C does not depend on f and j .

Note that inequality (4.3) was earlier obtained in [18].

roof. To prove the theorem, it is enough to use Lemmas 3.1, 3.4 and to take into account that
ψ j ∗T j∥p = 0 and all estimates in the proof of Lemma 3.1 remain the same for T j ∈ TρM j . □

Similarly to Corollary 3.1, we derive the following result:

orollary 4.1. Under the conditions of Theorem 4.1, we have that inequality (4.2) can be
eplaced by

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(

EδM j ( f )p + Kϕ j ,q ẼδM j (ϕ̃ j ∗ f )p

)
,

here δ < ρ if p = 1,∞ and the constant C does not depend on f and j .

xample 4.1. If ϕ̃ j is the periodic Dirac delta function for all j ∈ N and ϕ j = DM j is

he Dirichlet kernel, then equality (4.1) obviously holds with ρ = δ = 1 and inequality (4.2)

9
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implies the following well-known error estimate for the corresponding interpolation operator
(cf. [10, Corollary 3]): f −

1
m j

∑
k∈D(M j )

f (M− j k)DM j (· − M− j k)


p
≤ Cκ j,p ẼM j ( f )p,

here f ∈ B, 1 ≤ p ≤ ∞,

κ j,p :=

{
1, 1 < p < ∞,
jd , p = 1, ∞

(4.4)

nd the constant C does not depend on f and j .

In the next example, we deal with a periodic Kantorovich-type quasi-interpolation operator
enerated by the samples {AvgσM− j f (M− j k)}k .

Example 4.2. Let f ∈ L p, 1 ≤ p ≤ ∞, σ ∈ (0, 1], and j ∈ N. Then f −
1

m j

∑
k∈D(M j )

AvgσM− j f (M− j k)Dχ

M j ,σ
(· − M− j k)


p

≤ Cκ j,p EM j ( f )p, (4.5)

here

Dχ

M j ,σ
(x) =

∑
ℓ∈D(M j )

d∏
i=1

πσm− j
i ℓi

sinπσm− j
i ℓi

e2π i(ℓ,x),

he constant κ j,p is given in (4.4) and C does not depend on f and j .

The proof of estimate (4.5) easily follows from inequality (4.3) with ϕ j = Dχ

M j ,σ
and

ϕ j = σ−dm jχM− j [− σ
2 ,
σ
2 )d . One only needs to take into account that (4.1) holds with ρ = δ = 1,

AvgσM− j f (x) = f ∗ ϕ̃ j (x) ∼

∑
ℓ∈Zd

d∏
i=1

sinπσm− j
i ℓi

πσm− j
i ℓi

f̂ (ℓ)e2π i(ℓ,x),

up j ∥ϕ̃ j∥Lq, j < ∞, and sup∥ f ∥p≤1 ∥ f ∗Dχ

M j ,σ
∥p ≤ C sup∥ f ∥p≤1 ∥ f ∗DM j ∥p ≤ Cκ j,p. The last

stimate follows from the fact that the function

ηχ (ξ ) = η(ξ )
d∏

i=1

πσξi

sinπσξi
,

where η ∈ C∞(Rd ), η(ξ ) = 1 for ξ ∈ [−1/2, 1/2)d and η(x) = 0 for ξ ̸∈ [−1, 1)d , is a Fourier
ultiplier in L p(Rd ) for all 1 ≤ p ≤ ∞ (see Lemma 4.3).

4.2. Estimates of approximation in terms of moduli of smoothness and K -functionals

We need to introduce some additional notation. For a given matrix M , s ∈ N, and a function
f ∈ L p, we set

Ωs( f,M−1)p := sup
|Mδ|<1,δ∈Rd

∥∆s
δ f ∥p,

where

∆s
δ f (x) :=

s∑
(−1)ν

(
s
ν

)
f (x + δν)
ν=0

10
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and
(
α

ν

)
=

α(α−1)...(α−ν+1)
ν!

,
(
α

0

)
= 1, for any α > 0. This is the so-called (total) anisotropic

odulus of smoothness. Together with this modulus of smoothness, we will also use the
lassical mixed modulus of smoothness, which for a given vector β ∈ Zd

+
and a diagonal

atrix M = diag(m1, . . . ,md ) is defined by

ωβ( f,M−1)p := sup
|δi |<m−1

i , i=1,...,d

∥∆
β1
δ1e1

. . .∆
βd
δd ed

f ∥p.

The following relations for the moduli of smoothness defined above were proved in [39]:

Ωs( f,M−1)p ≍

d∑
i=1

ωsei ( f,M−1)p, f ∈ L p, 1 < p < ∞, (4.6)

nd

Ωs( f,M−1)p ≍

∑
[β]=s, β∈Zd

+

ωβ( f,M−1)p, f ∈ L p, 1 ≤ p ≤ ∞, (4.7)

here ≍ is a two-sided inequality with constants that do not depend on f and j .
Let us recall several basic properties of moduli of smoothness (see, e.g., [25, Ch. 4]). For

f, g ∈ L p, 1 ≤ p ≤ ∞, and s ∈ N, we have

(a) Ωs( f + g,M−1)p ≤ Ωs( f,M−1)p + Ωs(g,M−1)p;

(b) Ωs( f,M−1)p ≤ 2s
∥ f ∥p;

(c) for λ > 0,

Ωs( f, λM−1)p ≤ (1 + λ)sΩs( f,M−1)p.

We will also use the following Jackson-type theorem in L p (see, e.g., [25, Theorem 5.2.1
7)] or [38, 5.3.2]):

emma 4.1. Let f ∈ L p, 1 ≤ p ≤ ∞, and s ∈ N. Then, there exists T j ∈ TM j such that

∥ f − T j∥p ≤ C
d∑

i=1

ωsei ( f,M− j )p,

here C does not depend on f and T j .

The next lemma provides the Nikol’skii–Stechkin–Riesz type inequality (see, e.g.
38, p. 215]).

emma 4.2. Let 1 ≤ p ≤ ∞, s ∈ N, and n ∈ N. Then, for any trigonometric polynomial
Tn(x) =

∑
|k|≤n cke2π ikx , x ∈ T, we have

∥T (s)
n ∥L p(T) ≤

(
n

2 sin nδ
2

)s

∥∆s
δTn∥L p(T), 0 < δ ≤ 1/n.

Recall that the sequence Λ = {λk}k∈Zd is called a Fourier multiplier in L p, 1 ≤ p ≤ ∞, if
or every function f ∈ L p,∑

λk f̂ (k)e2π i(k,x)
k∈Zd

11
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is the Fourier series of a certain function Λ f ∈ L p and

∥{λk}k∥Mp = sup
∥ f ∥p≤1

∥Λ f ∥p.

In the next theorem and below, we denote vδ(ξ ) = v(δ−1ξ ), where v ∈ C∞(Rd ), v(ξ ) = 1
or ξ ∈ [−1/4, 1/4)d and v(ξ ) = 0 for ξ ̸∈ [−3/8, 3/8)d .

heorem 4.2. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, s ∈ N, δ ∈ (0, 1/2), and j ∈ N. Suppose
hat ϕ̃ j ∈ D′ and ϕ j ∈ TM j are such that

ϕ̂ j (k) ˆ̃ϕ j (k) = 1 +

∑
[β]=s

(M− j k)βΓ j,s(k) for all k ∈ D(δM j ), (4.8)

here

sup
j

∥{Γ j,s(k)vδ(M− j k)}k∥Mp < ∞. (4.9)

hen, for any f ∈ Bϕ̃ j ,p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
Ωs( f,M− j )p + Kϕ j ,q Ẽ δ

2 M j (ϕ̃ j ∗ f )p

)
; (4.10)

if, additionally, ϕ̃ j ∈ Lq , then for any f ∈ L p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C(1 + Kϕ j ,q∥ϕ̃ j∥Lq, j )Ωs( f,M− j )p, (4.11)

here the constant C does not depend on f and j .

roof. To prove estimate (4.10), we will use the following slightly modified version of
nequality (3.3):

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
∥ψ j ∗ VδM j f ∥p + E δ

2 M j ( f )p + Kϕ j ,q Ẽ δ
2 M j (ϕ̃ j ∗ f )p

)
.

hus, taking into account Lemma 4.1 and relations (4.7), we see that it is enough to show that

∥ψ j ∗ VδM j f ∥p ≤ CΩs( f,M− j )p. (4.12)

Using (4.8), (4.9), and Lemma 4.2, we derive

∥ψ j ∗ VδM j f ∥p ≤

∑
[β]=s

∑
k

(M− j k)βΓ j,s(k)vδ(M− j k) f̂ (k)e2π i(k,x)


p

≤ C
∑

[β]=s

∑
k

(M− j k)βv(M− j k) f̂ (k)e2π i(k,x)


p

≤ C
∑

[β]=s

∆β1

πm− j
1
. . .∆

βd

πm− j
d

VM j f


p

≤ CΩs
(
VM j f,M− j)

p .

(4.13)
12
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Next, applying the properties of moduli of smoothness (a)–(c), inequality (2.3), and Lemma 4.1
along with (4.7), we obtain

Ωs
(
VM j f,M− j)

p ≤ C
(
2s

∥ f − VM j f ∥p + Ωs( f,M− j )p
)

≤ CΩs( f,M− j )p.
(4.14)

Finally, combining (4.13) and (4.14), we get (4.12).
The proof of estimate (4.11) easily follows from Lemma 3.4, Lemma 4.1, and inequal-

ity (4.12). □

4.2.1. Two-sided estimates of approximation and fractional smoothness
Below, we will present some two-sided estimates of approximation by quasi-interpolation

operators using fractional K -functionals and moduli of smoothness.
For our purposes, we will use the K -functional corresponding to the fractional Laplacian:

K∆
s ( f,M−1)p := inf

g
{∥ f − g∥p + ∥(−∆M−1 )s/2g∥p},

here

(−∆M−1 )s/2g(x) ∼

∑
k∈Zd

|M−1k|
s
ĝ(k)e2π i(k,x).

Recall that if 1 < p < ∞, s > 0, and M = λId , where λ > 1 is integer, then the
K -functional K∆

s ( f,M−1)p is equivalent to the following fractional modulus of smoothness
(see, e.g., [43])

ωs( f, λ−1)p := sup
|h|≤λ−1

 ∞∑
l=0

(−1)l
(

s
l

)
f (· + hl)


p
,

i.e.,

K∆
s ( f,M−1)p ≍ ωs( f, λ−1)p, (4.15)

here ≍ is a two-sided inequality with positive constants that do not depend on f and λ.

Theorem 4.3. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, s ∈ N, δ ∈ (0, 1/2), and j ∈ N. Suppose
that ϕ̃ j ∈ D′ and ϕ j ∈ TM j are such that

sup
j

{1 − ϕ̂ j (k) ˆ̃ϕ j (k)
|M− j k|

s vδ(M− j k)
}

k


Mp

< ∞. (4.16)

hen, for any f ∈ Bϕ̃ j ,p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
K∆

s ( f,M− j )p + Kϕ j ,q Ẽ δ
2 M j (ϕ̃ j ∗ f )p

)
; (4.17)

f, additionally, ϕ̃ j ∈ Lq , then

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C(1 + Kϕ j ,q∥ϕ̃ j∥Lq, j )K
∆
s ( f,M− j )p, (4.18)

here the constant C does not depend on f and j .

roof. As in the proof of Theorems 4.2, it is sufficient to show that
∆ − j
∥ψ j ∗ VδM j f ∥p ≤ CKs ( f,M )p. (4.19)

13
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Using condition (4.16), we derive

∥ψ j ∗ VδM j f ∥p =

∑
k

1 − ϕ̂ j (k) ˆ̃ϕ j (k)
|M− j k|

s vδ(M− j k)v(M− j k)|M− j k|
s

f̂ (k)e2π i(k,x)


p

≤ C
∑

k

v(M− j k)|M− j k|
s

f̂ (k)e2π i(k,x)


p

= C∥(−∆M− j )s/2VM j f ∥p.

(4.20)

ext, taking into account the fact that

sup
j

∥{v(M− j k)|M− j k|
s
}k∥Mp < ∞ for every s ≥ 0 (4.21)

see Lemma 4.3) and choosing a function g such that

∥ f − g∥p + ∥(−∆M− j )s/2g∥p ≤ 2K∆
s ( f,M− j )p,

e obtain

∥(−∆M− j )s/2VM j f ∥p ≤ ∥(−∆M− j )s/2VM j ( f − g)∥p + ∥(−∆M− j )s/2VM j g∥p

≤ C∥ f − g∥p +

VM j
(
(−∆M− j )s/2g

) 
p

≤ C
(
∥ f − g∥p + ∥(−∆M− j )s/2g∥p

)
≤ CK∆

s ( f,M− j )p.

(4.22)

hus, combining (4.20) and (4.22), we get (4.19). This implies that inequalities (4.17) and
4.18) are valid. □

Now we consider the estimates from below.

heorem 4.4. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, s > 0, δ ∈ (0, 1/2), and j ∈ N. Suppose that
j ∈ D′ and ϕ j ∈ TM j are such that

sup
j

{ |M− j k|
s

1 − ϕ̂ j (k) ˆ̃ϕ j (k)
v1/δ(M− j k)

}
k


Mp

< ∞. (4.23)

hen, for any f ∈ Bϕ̃ j ,p, we have

K∆
s ( f,M− j )p ≤ C

(
∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p + E 1

2 M j ( f )p + Kϕ j ,q Ẽ 1
2 M j (ϕ̃ j ∗ f )p

)
;

(4.24)

f, additionally, ϕ̃ j ∈ Lq , then for any f ∈ L p, we have

K∆
s ( f,M− j )p ≤ C(1 + Kϕ j ,q∥ϕ̃ j∥Lq, j )∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p, (4.25)

here the constant C does not depend on f and j .

emark 4.1. If in Theorem 4.4 instead of (4.23), we suppose that

sup
{ |M− j k|

sˆ χD(M j )(k)
}  < ∞,
j 1 − ϕ̂ j (k)ϕ̃ j (k) k Mp

14
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then, for any f ∈ Bϕ̃ j ,p, 1 < p < ∞, we have

K∆
s ( f,M− j )p ≤ C

(
∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p + Kϕ j ,q ẼM j (ϕ̃ j ∗ f )p

)
.

his follows from the proof of Theorem 4.4 presented below and Corollary 3.1(a).

emark 4.2. If d = 1 and in conditions (4.16) or (4.23) we replace |M− j k|
s with (iM− j k)s ,

M > 1, then for any f ∈ L p, 1 ≤ p ≤ ∞, and s > 0, the K -functional K∆
s ( f,M− j )p can be

replaced with the fractional modulus of smoothness ωs( f,M− j )p. This easily follows from the
roofs of Theorems 4.3 and 4.4 and the fact that for any f ∈ L p(T) and s > 0 (see, e.g., [5])

ωs( f, t)p ≍ inf
g

(
∥ f − g∥p + t s

∥g(s)
∥p
)
,

here ≍ is a two-sided inequality with positive constants that do not depend on f and t .

roof of Theorem 4.4. By the definition of the K -functional, we derive

K∆
s ( f,M− j )p ≤ ∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p + ∥(−∆M− j )s/2 Q j ( f, ϕ j , ϕ̃ j )∥p. (4.26)

et T j ∈ TM j be some trigonometric polynomial that will be chosen later. Taking into account
ondition (4.23) and using (4.21) and equality (3.6), we obtain

∥(−∆M− j )s/2 Q j ( f, ϕ j , ϕ̃ j )∥p

≤ ∥(−∆M− j )s/2 (Q j ( f, ϕ j , ϕ̃ j ) − T j
)
∥p + ∥(−∆M− j )s/2T j∥p

≤ C
(
∥Q j ( f, ϕ j , ϕ̃ j ) − T j∥p + ∥ψ j ∗ T j∥p

)
= C

(
∥Q j ( f, ϕ j , ϕ̃ j ) − T j∥p + ∥Q j (T j , ϕ j , ϕ̃ j ) − T j∥p

)
≤ C

(
∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p + ∥ f − T j∥p + ∥Q j ( f − T j , ϕ j , ϕ̃ j )∥p

)
.

(4.27)

Now, to prove inequality (4.24), we choose T j = VM j f . Then, applying estimates (3.4) and
3.8), we derive

∥Q j ( f − T j , ϕ j , ϕ̃ j )∥p ≤ C Kϕ j ,q
(
ẼM j (ϕ̃ j ∗ f )p + ∥ϕ̃ j ∗ ( f − T j )∥p

)
≤ C Kϕ j ,q

(
ẼM j (ϕ̃ j ∗ f )p + Ẽ 1

2 M j (ϕ̃ j ∗ f )p

)
≤ C Kϕ j ,q Ẽ 1

2 M j (ϕ̃ j ∗ f )p.

(4.28)

sing also estimate (2.3), we see that inequalities (4.27) and (4.28) imply that

∥(−∆M− j )s/2 Q j ( f, ϕ j , ϕ̃ j )∥p

≤ C
(
∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p + E 1

2 M j ( f )p + Kϕ j ,q Ẽ 1
2 M j (ϕ̃ j ∗ f )p

)
.

(4.29)

ombining (4.26) and (4.29), we get (4.24).
To prove inequality (4.25), it is enough to set T j = Q j ( f, ϕ j , ϕ̃ j ) and take into account that

y (3.9) and (4.27), we have

∥(−∆M− j )s/2 Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C(1 + Kϕ j ,q∥ϕ̃ j∥Lq, j )∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p,

hich together with (4.26) implies (4.25). □

In the next results, we deal with functions/distributions ϕ j and ϕ̃ j having the following
pecial form:

ϕ j (x) ∼

∑
Φ(M− j k)e2π i(k,x), ϕ̃ j (x) ∼

∑
Φ̃(M− j k)e2π i(k,x), (4.30)
k∈Zd k∈Zd

15
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where Φ, Φ̃ : Rd
→ C are appropriate functions, which will be specified below. Actually,

ost of the quasi-interpolation operators (2.4) are defined by means of functions/distributions
j and ϕ̃ j given by (4.30). Below, we would like to give a version of Theorem 4.2, in which

he conditions on ϕ j and ϕ̃ j are given only in terms of some simple smoothness properties of
he functions Φ and Φ̃.

For our purposes, we need to recall some facts about Fourier multipliers on L p(Rd ). First,
e recall that a bounded function µ : Rd

→ C is called a Fourier multiplier on L p(Rd ),
≤ p ≤ ∞ (we will write µ ∈ Mp(Rd )), if the operator Tµ defined by

F(Tµ f ) = µF( f ), f ∈ L p(Rd ) ∩ L2(Rd ),

s bounded on L p(Rd ), i.e., there exists a constant C such that ∥Tµ f ∥L p(Rd ) ≤ C∥ f ∥L p(Rd ).
he norm of the Fourier multiplier µ is given by

∥µ∥Mp(Rd ) = sup
∥ f ∥L p (Rd )≤1

∥Tµ f ∥L p(Rd ).

We will use the following basic properties of Fourier multipliers on L p(Rd ):

emma 4.3. (a) If µ ∈ Mp(Rd ), 1 ≤ p ≤ ∞, and µ(t) is continuous at the points t ∈ Zd ,
hen, for any dilation matrix M and j ∈ N, the sequence {µ(M− j k)}k∈Zd is a bounded Fourier
ultiplier in the space L p(Td ) and

sup
j

∥{µ(M− j k)}k∥Mp ≤ c(p, d)∥µ∥Mp(Rd ).

(b) Suppose that the function µ belongs to C(Rd ) and has a compact support. If µ ∈ W d
s (Rd )

or some s > 1, or more generally F(µ) ∈ L1(Rd ), then µ ∈ Mp(Rd ) for all 1 ≤ p ≤ ∞.

roof. (a) This assertion follows from the well-known de Leeuw theorem (see [8]) and the
act that for every affine transformation l : Rd

→ Rd , we have ∥µ ◦ l∥Mp(Rd ) = ∥µ∥Mp(Rd )
see, e.g., [9, p. 147]).

(b) The assertion can be found, e.g., in [23]. □

emark 4.3. The sufficient condition for Fourier multipliers given in assertion (b) is one of
he simplest and is rather rough. For more advanced sufficient conditions for Fourier multipliers
ee, e.g., [9, Ch. 5], [16,23].

Now, we are ready to present an analogue of Theorem 4.2.

heorem 4.5. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, s ∈ N, δ ∈ (0, 1/2), and j ∈ N.
uppose that ϕ̃ j ∈ D′ and ϕ j ∈ TM j , ϕ j and ϕ̃ j are given by (4.30), Φ, Φ̃ ∈ C s+d (2δTd )
nd Dα(1 − Φ̃Φ)(0) = 0 for all |α| < s. Then, for any f ∈ Bϕ̃ j ,p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
Ωs( f,M− j )p + Kϕ j ,q Ẽ δ

2 M j (ϕ̃ j ∗ f )p

)
,

if, additionally, ϕ̃ j ∈ Lq , then for any f ∈ L p, we have

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C(1 + Kϕ j ,q∥ϕ̃ j∥Lq, j )Ωs( f,M− j )p,

here the constant C does not depend on f and j .
16
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Proof. The proof easily follows from Theorem 4.2 and Lemma 4.3. One only needs to take
into account that using Taylor’s formula near zero, we have

Φ(ξ )Φ̃(ξ ) = 1 +

∑
[β]=s

s
β!

rβ
∫ 1

0
(1 − t)s−1 DβΦΦ̃(tξ )dt, β ∈ Zd

+
, [β] = s.

hen, denoting

Gβ(ξ ) = ρ(ξ )
∫ 1

0
(1 − t)s−1 DβΦΦ̃(tξ )dt,

here ρ(ξ ) ∈ C∞(Rd ), ρ(ξ ) = 1 for ξ ∈ δTd and ρ(ξ ) = 0 for ξ ̸∈ 2δTd , and taking into
ccount that Gβ ∈ Cd (Rd ), we have that by Lemma 4.3, conditions (4.8) and (4.9) hold with
j,β(k) = Gβ(M− j k). □

xample 4.3. Taking ϕ̃ j = m jχ
M− j [− 1

2 ,
1
2 )

d and ϕ j = DM j , it is not difficult to see that
heorem 4.5 provides the following error estimate for the corresponding Kantorovich-type
perator (cf. [19, Proposition 19]): f −

1
m j

∑
k∈D(M j )

AvgσM− j f (M− j k)DM j (· − M− j k)


p
≤ Cκ j,pΩ2( f,M− j )p, (4.31)

here f ∈ L p, 1 ≤ p ≤ ∞, σ ∈ (0, 1], the constant κ j,p is given in (4.4), and C does not
epend on f and j .

We omit the formulations of the corresponding analogues of Theorems 4.3 and 4.4 in
erms of the smoothness properties of Φ and Φ̃. Using Lemma 4.3 and Remark 4.3, one can
irectly and easily obtain appropriate statements. Instead of this, we give several examples of
pplications of Theorems 4.3 and 4.4 for some special quasi-interpolation operators.

First, we consider an estimate from below for the L p-error of approximation by the
uasi-interpolation operator from Example 4.3.

xample 4.4. Using Remark 4.1 and Lemma 4.3, we obtain that for any f ∈ L p, 1 < p < ∞,
∈ (0, 1], and j ∈ N

CK∆
2 ( f,M− j )p ≤

 f −
1

m j

∑
k∈D(M j )

AvgσM− j f (M− j k)DM j (· − M− j k)


p
,

here C does not depend on f and j . Combining this estimate and inequality (4.31), we derive
hat  f −

1
m j

∑
k∈D(M j )

AvgσM− j f (M− j k)DM j (· − M− j k)


p
≍ Ω2( f,M− j )p.

n the last estimate, we took into account the fact that Ω2( f,M− j )p ≤ CK∆
2 ( f,M− j )p, which

asily follows from relation (4.6) and inequality ∥∆2
h g∥L p(T) ≤ ∥g′′

∥L p(T).

Our next example concerns quasi-projection operators that are generated by an average
ampling instead of the exact samples of f . Note that in the non-periodic case such operators
re useful to reduce noise (see, e.g., [44]). However, we will show that some of these operators
annot provide as “good” an approximation order as in the case of the classical interpolation
perator, cf. Example 4.1.
17
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Example 4.5. Let d = 1 and M ∈ N, M ≥ 2. For f ∈ B, we denote

λ j f (x) =
1
4

f (x − M− j−1) +
1
2

f (x) +
1
4

f (x + M− j−1) ∼

∑
ℓ∈Z

ˆ̃ϕ j (ℓ) f̂ (ℓ)e2π iℓx ,

here ˆ̃ϕ j (ℓ) = cos2(2πM− j−1ℓ). Using Theorems 4.3 and 4.4 and Lemma 4.3 for ϕ̃ j and
j = DM j , taking also into account Remark 4.2, we derive

C1ω2( f,M− j )p ≤

 f −
1

M j

∑
k∈D(M j )

λ j f (M− j k)DM j (· − M− j k)


p

≤ C2
(
ω2( f,M− j )p + ẼM j (λ j f )p

)
,

here 1 < p < ∞ and C1, C2 are some positive constants that do not depend on f and j .

Finally, we present two examples of the error estimates, in which we essentially use the
fractional smoothness of a function f . For our purposes, we consider the following Riesz kernel

Rγ

s,M j (x) =

∑
k

(1 − |cd M− j k|
s
)γ+e2π i(k,x), s, γ > 0 and cd = 4d1/2.

xample 4.6. Let 1 ≤ p ≤ ∞, s > 0, γ > d−1
2 , and j ∈ N.

(1) For any f ∈ B ( f ∈ C(Td ) in the case p = ∞), we have

C1K∆
s ( f,M− j )p ≤

 f −
1

m j

∑
k∈D(M j )

f (M− j k)Rγ

s,M j (· − M− j k)


p

≤ C2

(
K∆

s ( f,M− j )p + ẼcM j ( f )p

)
,

(4.32)

where c, C1 and C2 are some positive constants that do not depend on f and j
(2) For any f ∈ L p, s ∈ (0, 2], and σ ∈ (0, 1], we have f −

1
m j

∑
k∈D(M j )

AvgσM− j f (M− j k)Rγ

s,M j (· − M− j k)


p
≍ K∆

s ( f,M− j )p,

(4.33)

where ≍ is a two-sided inequality with positive constants that do not depend on f and
j .

The proof of inequalities in (4.32) follows from Theorems 4.3 and 4.4, Lemma 4.3, and the
act that with an appropriate parameter δ ∈ (0, 1/2), the Fourier transforms of the functions

g1(ξ ) =
|ξ |sv1/δ(ξ )

1 − (1 − |cdξ |
s)γ+

and g2(ξ ) =
1 − (1 − |cdξ |

s)γ+vδ(ξ )
|ξ |s

elong to L1(Rd ) (see, e.g., [29], see also the proof of Theorem 2 in [15]).
The proof of (4.33) is similar. In this case, one only needs to investigate, by analogy with

the previous case, the following two functions

g2(ξ ) =
|ξ |sv1/δ(ξ )

1 − Φ̃(ξ )(1 − |cdξ |
s)γ+

and g3(ξ ) =
1 − Φ̃(ξ )(1 − |cdξ |

s)γ+vδ(ξ )
|ξ |s

,

here Φ̃(ξ ) =
∏d sinπσξℓ .
ℓ=1 πσξℓ

18
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4.3. Error estimates for functions from Besov-type spaces

In the previous sections, we obtained error estimates for the quasi-interpolation operators
Q j ( f, ϕ j , ϕ̃ j ) under very general conditions on the distribution ϕ̃ j . These estimates were
iven in terms of the best one-sided approximation ẼδM j (ϕ̃ j ∗ f )p and appropriate moduli
f smoothness and K -functionals. At the same time, we proved that in the case ϕ̃ j ∈ Lq , the
est one-sided approximation can be replaced by the classical best approximation EδM j ( f )p.
n this section, we will present other possibilities (not so restrictive as the assumption ϕ̃ j ∈ Lq )
o avoid exploitation of a quite specific quantity ẼδM j (ϕ̃ j ∗ f )p.

First of all, we note that the best one-sided approximation can be estimated from above by
eans of the so-called τ -modulus of smoothness, which is defined by

τs(g, u)p := ∥ω(g, ·, u)∥p, s ∈ N, u > 0,

here

ω(g, x, u) = sup{|∆s
h g(t)| : t, t + sh ∈ D(su, x)}, x ∈ Rd ,

D(u, x) = {y ∈ Rd
: |x − y| ≤ u/2}.

ecall (see [1]) that for any g ∈ B, s ∈ N, and the isotropic matrix M = λId , λ > 1 we have

ẼM j (g)p ≤ Cs,dτs(g, λ− j )p, (4.34)

here the constant C does not depend on g and j .
For smooth functions, one can estimate one-sided best approximation as follows (see [27]):

f f ∈ W d
p ∩ B, then

ẼM j (g)p ≤ Cd

∑
α j ∈{0,1}, [α]>0

λ− j[α] EM j (Dαg)p. (4.35)

Thus, using (4.34) or (4.35) with g = ϕ̃ j ∗ f , we can replace ẼδM j (ϕ̃ j ∗ f )p in
Theorems 4.1–4.5 by the corresponding approximation quantity from the right-hand sides
of (4.34) or (4.35).

Below, using a special Besov space, we present another approach to replace ẼδM j (ϕ̃ j ∗ f )p in
he corresponding results. Note that this approach is based on some ideas from [10] and [18]. In
ontrast to formulas (4.34) and (4.35), we avoid calculations of special τ -moduli of smoothness
nd the consideration of functions from the Sobolev spaces.

We use the following anisotropic Besov spaces with respect to the matrix M . We say that
f ∈ Bs

p,q (M), 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and s > 0, if f ∈ L p and

∥ f ∥Bs
p,q (M) := ∥ f ∥p +

(
∞∑
ν=1

m
s
d qνEMν ( f )q

p

) 1
q

< ∞.

For our purposes, we need to specify the class of tempered distributions ϕ̃ j . We say that
sequence of tempered distribution ϕ̃ j belongs to the class D′

N , j,p for some N ≥ 0 and
≤ p ≤ ∞ if there exists a positive constant C , which does not depend on j , such that

or any trigonometric polynomial Tν ∈ TMν , one has

∥ϕ̃ ∗ T ∥ ≤ Cm
N
d (ν− j)

∥T ∥ for all ν ≥ j, j, ν ∈ N. (4.36)
j ν p ν p

19



Yu. Kolomoitsev and J. Prestin Journal of Approximation Theory 270 (2021) 105631

w
t

w

L

i

w
d

P
f

T
i
T
a

As a simple example of ϕ̃ j ∈ D′

N , j,p, we can take the distribution corresponding to some
differential operator. Namely, if we setˆ̃ϕ j (ℓ) =

∑
[β]≤N

cβ(2π iM− jℓ)β, N ∈ Z+,

here the numbers cβ do not depend on j , then by the well-known Bernstein inequality for
rigonometric polynomials (see, e.g., [38, p. 215]) n∑

k=−n

(ik)r ake2π ikx


L p(T)

≤ nr
 n∑

k=−n

ake2π ikx


L p(T)

,

e can easily derive that ϕ̃ j ∈ D′

N , j,p.

emma 4.4. Let 1 ≤ p ≤ ∞, M ≥ 0, δ ∈ (0, 1], j ∈ N, and ϕ̃ j ∈ D′

N , j,p. Then, for any
f ∈ BN+d/p

p,1 (M),∑
ℓ∈Zd

ˆ̃ϕ j (ℓ) f̂ (ℓ)e2π i(ℓ,x) (4.37)

s a Fourier series of a continuous function ϕ̃ j ∗ f on Td , i.e., BN+d/p
p,1 (M) ⊂ Bϕ̃ j ,p, and

∥{ϕ̃ j ∗ f (M− j k) − ϕ̃ j ∗ T j (M− j k)}k∥ℓp,M j ≤ Cm−( 1
p +

N
d ) j

∞∑
ν= j

m( 1
p +

N
d )νEδMν ( f )p, (4.38)

here T j ∈ TM j is such that ∥ f − T j∥ ≤ c(d, p, δ)EδM j ( f )p and the constant C does not
epend on f and j .

roof. First, we show that the series in (4.37) is a Fourier series of a certain continuous
unction, which we will denote by ϕ̃ j ∗ f .

Using Nikolskii’s inequality of different metrics (see, e.g., [25, p. 133])

∥Tν∥∞ ≤ C pm
ν
p ∥Tν∥p

and inequality (4.36), we derive
∞∑
ν=1

∥ϕ̃ j ∗ Tν+1 − ϕ̃ j ∗ Tν∥∞ ≤ C
∞∑
ν=1

m
ν
p ∥ϕ̃ j ∗ (Tν+1 − Tν)∥p

≤ Cm−
N
d j

∞∑
ν=1

m( 1
p +

N
d )ν

∥Tν+1 − Tν∥p

≤ Cm−
N
d j

∞∑
ν=1

m( 1
p +

N
d )νEδMν ( f )p.

(4.39)

he estimates (4.39) imply that the sequence {ϕ̃ j ∗ Tν}ν∈N is fundamental in C(Td ). We denote
ts limit by ϕ̃ j ∗ f . It is clear that this limit does not depend on the choice of polynomials Tν .
hus, if Tν is defined using the de la Vallée Poussin means Vν f , we derive that { ˆ̃ϕ j (ℓ) f̂ (ℓ)}ℓ
re the Fourier coefficients of the function ϕ̃ j ∗ f since for a fixed ℓ and a sufficiently large ν

|ˆ̃ϕ j ∗ f (ℓ) − ˆ̃ϕ j (ℓ) f̂ (ℓ)| =

⏐⏐⏐⏐ ∫
Td

(ϕ̃ j ∗ f (x) − ϕ̃ j ∗ Vν f (x))e2π i(ℓ,x)dx
⏐⏐⏐⏐
≤ ∥ϕ̃ j ∗ f − ϕ̃ j ∗ Vν f ∥∞ → 0 as ν → ∞.
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Now, we prove inequality (4.38). Using the representation

ϕ̃ j ∗ f − ϕ̃ j ∗ T j =

∞∑
ν= j

ϕ̃ j ∗ (Tν+1 − Tν) in C(Td ),

Lemma 3.2, and (4.39), we obtain

∥{ϕ̃ j ∗ f (M− j k) − ϕ̃ j ∗ T j (M− j k)}k∥ℓp,M j ≤

∞∑
ν= j

∥{ϕ̃ j ∗ (Tν+1 − Tν)(M− j k)}k∥ℓp,M j

≤ m−
j
p

∞∑
ν= j

m
ν
p ∥{ϕ̃ j ∗ (Tν+1 − Tν)(M−νk)}k∥ℓp,Mν

≤ Cm−
j
p

∞∑
ν= j

m
ν
p ∥ϕ̃ j ∗ (Tν+1 − Tν)∥p

≤ Cm−
j
p

∞∑
ν= j

m
N
d (ν+1− j) νp ∥Tν+1 − Tν∥p

≤ Cm−( 1
p +

N
d ) j

∞∑
ν= j

m( 1
p +

N
d ) EδMν ( f )p,

hich proves the lemma. □

We have the following counterpart of Lemma 3.1:

emma 4.5. Let 1 ≤ p ≤ ∞, 1/p+1/q = 1, δ ∈ (0, 1], and j ∈ N. Suppose that ϕ̃ j ∈ D′

N , j,p

nd ϕ j ∈ TM j . Then, for any f ∈ Bd/p+N
p,1 (M), we have

∥ f − Q j ( f, ϕ, ϕ̃)∥p ≤ C

⎛⎝∥ψ j ∗ T j∥p + m− j( 1
p +

N
d )

∞∑
ν= j

m( 1
p +

N
d )νEδMν ( f )p

⎞⎠ , (4.40)

here ψ j is given in (3.1), T j ∈ TM j is such that ∥ f − T j∥p ≤ c(d, p, δ)EδM j ( f )p, and the
onstant C does not depend on f and j .

roof. The proof is similar to the one of Lemma 3.1. The only difference consists in the
stimate of the norm I3 in inequality (3.8). In particular, using Lemma 4.4 and the first
nequality in (3.8), we derive that

I3 ≤ C Kϕ j ,q

⎛⎝ 1
m j

∑
k∈D(M j )

|ϕ̃ j ∗ f (M− j k) − ϕ̃ j ∗ T j (M− j k)|
p

⎞⎠ 1
p

≤ C Kϕ j ,qm−( 1
p +

N
d ) j

∞∑
ν=1

m( 1
p +

N
d )νEδMν ( f )p.

(4.41)

hus, combining (3.5), (3.7), and (4.41), we prove the lemma. □

emark 4.4. If in Lemma 4.5 we replace the condition ϕ̃ j ∈ D′

0, j,∞ by

∥ϕ̃ ∗ f ∥ ≤ C∥ f ∥ , for all f ∈ B, j ∈ N, (4.42)
j ∞ ∞
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then, for any f ∈ C(Td ), the error estimate (4.40) can be improved in the following way

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥∞ ≤ C
(
∥ψ j ∗ T j∥∞ + Kϕ j ,1 EδM j ( f )∞

)
.

his estimate can be proved using the same argument as in the proof of Lemma 3.4.
Note also that condition (4.42) holds if, for example, ϕ̃ j is the periodic Dirac-delta function

or all j ∈ N.

Finally, we note that combining Lemma 4.5 with Theorems 4.1–4.4, we easily obtain the
ollowing error estimates given in terms of the unrestricted best approximation. Note also that
nequality (4.43) was earlier obtained in [18].

roposition 4.1. Let 1 ≤ p ≤ ∞, 1/p + 1/q = 1, and j ∈ N. Suppose that ϕ̃ j ∈ D′

N , j,p,

j ∈ TM j , and f ∈ Bd/p+N
p,1 (M).

(1) If condition (4.1) holds for some δ ∈ (0, 1], then

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C Kϕ j ,qm− j( 1
p +

N
d )

∞∑
ν= j

m( 1
p +

N
d )νEδMν ( f )p. (4.43)

(2) If conditions (4.8) and (4.9) hold for some δ ∈ (0, 1/2) and s ∈ N, then

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
Ωs( f,M− j )p + Kϕ j ,qm− j( 1

p +
N
d )

∞∑
ν= j

m( 1
p +

N
d )νEδMν ( f )p

)
.

(3) If condition (4.16) holds for some δ ∈ (0, 1/2) and s > 0, then

∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p ≤ C
(
K∆

s ( f,M− j )p + Kϕ j ,qm− j( 1
p +

N
d )

∞∑
ν= j

m( 1
p +

N
d )νEδMν ( f )p

)
.

(4) If condition (4.23) holds for some δ ∈ (0, 1/2) and s > 0, then

K∆
s ( f,M− j )p ≤ C

(
∥ f − Q j ( f, ϕ j , ϕ̃ j )∥p

+ Kϕ j ,qm− j( 1
p +

N
d )

∞∑
ν= j

m( 1
p +

N
d )νE 1

2 Mν ( f )p

)
.

In the above four inequalities, the constant C does not depend on f and j .
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