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Let G be a domain bounded by a Jordan curve 1, and let A(G� ) be the Banach
space of functions continuous on G� and holomorphic in G. The Faber operator T
is a linear mapping from A(D� ) to A(G� ) mapping wn onto the n th Faber polynomial
Fn(z) (n=0, 1, 2, ...). We show that &T&<� if 1 is piecewise Dini-smooth, and
give an example of a quasicircle 1 for which &T&=�. � 1999 Academic Press
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1. INTRODUCTION AND MAIN RESULTS

In the following G is a domain in C bounded by a Jordan curve 1, and
A(G� ) is the Banach space of functions F which are holomorphic in G and
continuous on G� ; we let &F&=max[ |F(z)| : z # G� ]. If G is the unit disk D,
we get the Banach space A(D� ). Given F # A(G� ), our problem is to find
estimates for

En(F, G� ) :=min[&F&P& : P # 6n]

where 6n is the set of all polynomials of degree En. This is a classical
problem; see for example Gaier [6] or Smirnov�Lebedev [12] and referen-
ces given there.

One elegant method to achieve this is the use of the Faber polynomials
Fn and the Faber operator T associated with the domain G. Assume we
have such an operator T with the following properties:

(i) T maps wn onto Fn(z) (n=0, 1, 2, ...);

(ii) T is linear and bounded on 6=��
n=0 6n /A(D� ) and can

therefore be extended to a linear and bounded map from A(D� ) to A(G� );

(iii) given F # A(G� ), there is an f # A(D� ) with F=Tf.
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Then we have, for arbitrary coefficients ak ,

F& :
n

k=0

ak Fk=T \ f & :
n

k=0

akwk+
and

"F& :
n

k=0

akFk"E&T& } " f & :
n

k=0

akwk" ,

from which it follows that

En(F, G� )E&T& } En( f, D� ), (1.1)

so that the original problem is reduced to an approximation problem in D� .
It is therefore important to know which conditions on 1 imply &T&<�.

We deal with this question in Sections 3 and 4. We give a new geometric
criterion for &T&<� and an example of a domain with &T&=�.

Theorem 1. If 1 is piecewise Dini-smooth, then &T&<�.

A subarc # of 1, z=z(s) (where s # [a, b] is arc length) is called
Dini-smooth if # is smooth, i.e. z$(s) is continuous in [a, b], and if further-
more z$(s) has a modulus of continuity | which satisfies

|
c

0

|(t)
t

dt<� for some c>0. (1.2)

Equivalently, the tangent angle �=�(s)=arg z$(s) will have a modulus of
continuity satisfying (1.2). And 1 is called piecewise Dini-smooth if
1=� #j with a finite number of Dini-smooth arcs #j . Here 1 may have
corners and cusps.

Theorem 2. There is a domain G with quasiconformal boundary 1 for
which &T&=�.

This will be an analytical construction using the exterior mapping
function �. We do not know of a purely geometric way to construct such
a Jordan curve 1.
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2. THE FABER POLYNOMIALS AND THE FABER OPERATOR

In the following we give some definitions and survey known results.

2.1. Jordan Curves of Bounded Secant Variation

If 1 is rectifiable, z=z(s) with arc length s # [0, L], and if �(s) :=
arg z$(s) can be defined on [0, L] to become a function of bounded varia-
tion, then 1 is called of bounded rotation (1 # BR), and �1 |d�(s)| is called
the total rotation of 1.

For our purposes a larger class of Jordan curves is important. We con-
sider the function h(`) :=arg(`&z) for fixed z # 1 or z # G, and where `
traverses 1. If z=z(s) is on 1, ` starts at z(s+) and stops at z(s&); the
total variation of h(`) as a function of ` will be denoted by Var` arg(`&z).
If this is finite, it is clear that arg (`&z) has limits as ` � z(s+) and as
` � z(s&): 1 possesses forward and backward tangents at z.

Definition. If there is a fixed constant M such that

Var` arg(`&z)EM<� for all z # 1,

then 1 is called of bounded secant variation. We write 1 # BSV.

This class of Jordan curves was introduced by Andersson [2], see also
Korevaar [8]. Andersson showed that 1 # BR implies 1 # BSV but not
conversely. Furthermore, it is not difficult to construct a smooth 1 which
is not of BSV.

If z # G, the total variation of h(`), as ` traverses 1, is independent of the
starting point, and will be denoted by

Var` arg(`&z), z # G.

By way of an example, take 1 to be the unit circle. We get

Var` arg(`&1)=? and Var` arg(`&0)=2?.

Lemma 1. If 1 is of bounded secant variation,

Var` arg(`&z)EM<� for all z # 1, (2.1)

then

Var` arg(`&z)EM+2? for all z # G. (2.2)
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Proof. Let `0 , `1 , ..., `j , `j+1 , ..., `N=`0 be N different points on 1 in
positive orientation. We study

hN(z) := :
N&1

j=0

|arg(`j+1&z)&arg(`j&z)|

for z # G. This is a subharmonic function in G, and since 1 has half-
tangents at each point `j , each term arg (z&`j) is bounded in G, so that
each hN is subharmonic and bounded in G. Now let z � z0 # 1, z0 {` j

( j=1, 2, ..., N). Assume that z0 is on an arc from `j0
to ` j0+1 . It is clear that

hN(z) � :
j{ j0

|arg(`j+1&z0)&arg(`j&z0)|+: (2.3)

where : is the angle at z0 of the triangle `j0
, z0 , `j0+1 and thus 0E:E2?,

while the sum in (2.3) is EM by assumption. We get

lim hN(z)EM+2? as z � z0 # 1, z0 {` j .

Lindelo� fs maximum principle for subharmonic functions (Ahlfors [1], p. 38
or Heins [7], p. 76) now gives hN(z)EM+2? for all z # G, and (2.2) is
established. K

2.2. The Faber Polynomials

We collect a few known facts; see for example [6], p. 46ff. If

z=�(w)=bw+b0+
b1

w
+ } } } |w|>1 (2.4)

is the normalized exterior mapping function which maps [w : |w|>1] onto
the exterior of the Jordan curve 1, the Faber polynomials can be defined
by a generating function:

w�$(w)
�(w)&z

=1+ :
�

n=1

Fn(z) w&n, |w|>1, z # G� . (2.5)

From this follows an integral representation

Fn(z)=
1

2?i |
�D

wn �$(w)
�(w)&z

dw, z # G; n=0, 1, 2, ... (2.6)

provided that 1 is rectifiable so that �$ is integrable on �D. Another
integral representation

Fn(z)=
1
? |

2?

t=0
eint dt arg[�(eit)&z], z # 1; n=1, 2, ... (2.7)
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was proved by Pommerenke [9], p. 425 whenever 1 # BR, but (2.7) is
actually true for the wider class 1 # BSV; see Andersson [2], p. 4.

Finally, we note that there is a direct relation between the coefficient bn

in (2.4) and the Faber polynomial Fn :

nbn

b
=

1
2?i |

�D

Fn(�(|)) d| n=0, 1, 2, ... . (2.8)

In Pommerenke [10], p. 58 this is shown via the Grunsky coefficients, but
these can be avoided by integrating (2.5) with z=�(|) on �D and
applying the residue theorem.

2.3. The Faber Operator

Motivated by (2.6), we can give an integral representation of the Faber
operator T by

(Tf )(z) :=
1

2?i |
�D

f (w)
�$(w)

�(w)&z
dw z # G, (2.9)

provided that 1 is rectifiable. The function F=Tf, for f # A(D� ), will be
holomorphic in G, but if T is a bounded operator, i.e. if there is a constant
C such that

sup[ |F(z)| : z # G] E C } sup[ | f (w)| : w # D] (2.10)

holds for all f # A(D� ), then the image function F will be in the subspace
A(G� ) of Hol G, and T satisfies the assumptions (i) and (ii) of the introduc-
tion.

To obtain (2.10), we bring (2.9) into different form. For this, we need a
lemma.

Lemma 2. Let g be continuous on �D, and h # L1 on �D. Assume that

g(eit)t :
ke0

ak eikt and h(eit)t :
ke0

bkeikt.

Then

1
2?i |

2?

0
g(eit) f (eit) dt=&ia0b0 . (2.11)

Proof. Let

g(z) := :
�

k=0

akzk # A(D� ) and h(z) := :
�

k=0

bkzk # H 1(D)
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be the holomorphic extensions of g and h into D. The residue theorem
gives

1
2?i |

2?

0
g(eit) h(eit) dt=

1
2?i |

|z|=r<1
g(z) h(z)

dz
iz

=
1
i

g(0) h(0)=&ia0b0 . K

Now put w=eit in (2.9) to get

F(z)=
1

2?i |
2?

0
f (eit) _�$(eit) ie it

�(eit)&z& dt z # G. (2.12)

Here [ ]=i+ negative powers of eit and hence its conjugate

_ &
&

=&i+ :
k>0

dkeikt.

Therefore by (2.11)

1
2?i |

2?

0
f (eit) _�$(eit) ie it

�(eit)&z& dt=&if (0) } (&i)=& f (0).

Subtracting this from (2.12) we get our alternative representation of the
operator T :

F(z)=(Tf )(z)=
1
? |

2?

0
f (eit) Im _�$(eit) ieit

�(eit)&z& dt& f (0)

or

F(z)=(Tf )(z)=
1
? |

2?

0
f (eit)

d
dt

arg[�(e it)&z] dt& f (0), z # G; (2.13)

see Korevaar [8], p. 288 with a somewhat different derivation.
If now 1 is of BSV, we have (2.2), and from (2.13) we obtain

|F(z)| E & f & }
1
?

Vart arg[�(eit)&z]+& f & E & f & } _M
?

+3& .

Theorem 3 (Andersson [2], Korevaar [8]). If 1 is of BSV, the Faber
operator is bounded.
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3. A NEW CONDITION FOR &T&<�

As we noted in Section 2.1, a smooth Jordan curve 1 need not be of
BSV. However, we are now going to prove

Theorem 4. If the Jordan curve 1 is piecewise Dini-smooth, then
1 # BSV.

Combining this with Theorem 3 from above, this will prove Theorem 1.
Notice that corners and cusps are permitted in 1.

3.1. Reduction of the Problem

1. Let # : `=`(s) be a piecewise smooth Jordan arc, and let z0 # C.
We denote by

V(#, z0)=Var` arg(`&z0)

the total variation of arg(`&z0) as ` traverses #. This is an additive
function of #: If 1=�j #j then

V(1, z0)=:
j

V(#j , z0). (3.1)

2. We now give a rough estimate. Again, let # be piecewise smooth,
with |`$(s)| E m on # and l as the length of #. Assume that dist(#, z0)=
r>0. If then

%(s)=arg(`(s)&z0)=Im log(`(s)&z0)

we have

%$(s)=Im
`$(s)

`(s)&z0

and hence |%$(s)| E
m
r

,

so that

V(#, z0) E
m
r

l. (3.2)

This means that an arc # at a positive distance from z0 gives only a
bounded contribution to the secant variation with respect to z0 .
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3. We now reduce our problem: It is sufficient to prove Theorem 4
for Dini-smooth Jordan curves 1. So let 1 be piecewise Dini-smooth, and
let z0 # 1. We write

1= .
m

j=&n

#j and assume z0 # #0 .

We may assume that any two adjacent arcs #j and #j+1 form an angle {?.
Because of (3.1) we have

V(1, z0)= :
m

j=&n

V(#j , z0).

For j>1 and j<&1 the arcs #j are at a distance dist(#j , z0)er>0, with
r depending on 1 only, so that (3.2) gives

V(#j , z0) E
m j

r
lj for j>1 and j<&1.

More critical are the cases j=\1 and j=0. To estimate V(#1 , z0), we
extend #1 by a Jordan arc #$1 in such a way that

#1 _ #$1 is a smooth Jordan curve 11

#0 lies inside 11 (except for the point #0 & #1).

Since #1 was Dini-smooth, #$1 can obviously be chosen so that 11 is Dini-
smooth, too.

Assume now that we know that a Dini-smooth Jordan curve is of BSV.
Then

V(#1 , z0) E V(11 , z0) E sup[V(11 , Q) : Q # 11]+2?

by an application of Lemma 1. Similarly we estimate V(#&1 , z0). To
estimate V(#0 , z0), we extend #0 by #$0 so that 10=#0 _ #$0 is a Dini-smooth
Jordan curve, and again

V(#0 , z0) EV(10 , z0)

where now z0 # 10 .

4. Our reduced problem is therefore to show that a Dini-smooth
Jordan curve 1 is of BSV. Because of (3.2) it suffices to show this for an
arc around z0 , and even for a subarc # of 1 with endpoint z0 which we may
choose to be the origin. This leads us to the following final problem:

272 DIETER GAIER



Given a Dini-smooth arc # : z=z(s) with 0 E s E s0 where z(0)=0 and
arg z$(0)=0 (horizontal tangent at 0). We need to estimate the total
variation of %(s)=arg z(s) in the interval [0, s0].

3.2. Secant Variation of a Dini-smooth Arc
We now come to the problem mentioned at the end of the last section.

However, we represent the arc # in a more suitable form.

Theorem 5. Let # be a Dini-smooth Jordan arc:

# : z=z(x)=x+ih(x) 0 E x E x0 , with h(0)=0, h$(0)=0,

where h$ is Dini-continuous, i.e. its modulus of continuity

|(t)=|(t, h$)=sup[ |h$(x1)&h$(x2)| : |x1&x2 | E t]

satisfies

|
x0

t=0

|(t)
t

dt E A<�. (3.3)

Then the secant variation V(#, z0) with respect to z0=0 is

V(#, 0) E 2A. (3.4)

Proof. If %=arg z(x), 0<x E x0 , we have to estimate

V(#, 0)=|
#

|d%|=|
x0

0 } d%
dx } dx E |

x0

0 }\h(x)
x +$} dx

since tan %=h(x)�x and therefore

} d%
dx }=cos2 % } }\h(x)

x +$}E }\h(x)
x +$} .

Notice that

\h(x)
x +$

=
h$(x)

x
&

h(x)
x2 ,

in which |h$(x)| E |(x) and

|h(x)|= } |
x

0
h$(t) dt }E |

x

0
|(t) dt E x } |(x).
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Hence

}\h(x)
x +$} E 2

|(x)
x

,

and (3.4) follows. K

This completes the proof of Theorem 4.

4. A DOMAIN WITH UNBOUNDED FABER OPERATOR

4.1. Preliminaries

The Faber operator T maps the powers wn onto the Faber polynomials
Fn(z), for n=1, 2, ... . If T is a bounded operator from the Banach space
A(D� ) to A(G� ), we therefore have

&Fn&A(G� ) E &T& } &wn&A(D� )=&T&,

that is the Faber polynomials must be uniformly bounded on G� . If this is
so, we see from (2.8) that the sequence [nbn]�

n=1 is bounded, where bn are
the coefficients of the exterior mapping �. In order to produce a domain
G with boundary 1 for which the Faber operator is unbounded, it suffices
to construct 1 such that [nbn] is unbounded.

A Jordan curve 1 with this property was first produced by Clunie [5].
His construction actually gives a quasiconformal Jordan curve 1 for which
the Faber operator is not bounded. Our main tool is Becker's univalence
criterion; see below.

4.2. The Exterior Mapping Function �

Following Clunie, we define � so that log �$ is represented by a gap
power series:

log �$(w)= :
�

k=3

ckw&qk&2, |w|>1 (4.1)

with q=10 and coefficients ck with |ck | E M=1.01. Clearly �$(w)=
exp(��

k=3 . . .) and so

�(w)=w+
b1

w
+

b2

w2+ } } } , |w|>1 (4.2)
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is holomorphic in [w : |w|>1]. To see that � is univalent, we apply
Becker's criterion (Becker [3], p. 322; Pommerenke [10], p. 173): If

( |w|2&1) } }w �"(w)
�$(w) }E *<1 for |w|>1 (4.3)

then � maps [w : |w|>1] univalently onto the exterior of a quasiconformal
curve 1.

We show that (4.3) is satisfied with *=0.99. First,

}w �"(w)
�$(w) }E :

�

k=3

|ck | (qk+2) yqk+2 E m :
�

k=3

(qk+2) yqk+2

where we have put y=|w|&1 # (0, 1). Further,

|w|2&1= y&2&1 E 2(1& y) y&2

and therefore the left hand side of (4.3) is

E 2M(1& y) :
�

k=3

qkyqk
+4M :

�

k=3

(1& y) yqk
. (4.4)

In the second term 4M=4.04, while each term in the series is <q&k so that

:
�

k=3

(1& y) yq k
<10&3+10&4+ } } } ;

in other words, the second term in (4.4) is <0.0045.
In the first term of (4.4), the factor of M is less than

2 log
1
y

} :
�

k=1

qkyk=2q& j+x } :
�

k=1

qk exp(&q& j+x+k) E Bq<0.9699

where we have put y=exp(&q& j+x) and used the estimate in
Pommerenke [11], p. 190. Altogether, the left hand side of (4.3) is less than

1.01B10+0.0045<1.01 } 0.9699+0.0045<0.99.

Now we choose the coefficients in (4.1) to be constant: ck=c=1.01 and
put lk=qk+2 so that

�$(w)= `
�

k=3

exp(cw&lk)

=\1+
c

wl3
+ } } } + } \1+

c
wl4

+ } } } + } } } } } \1+
c

wlk
+ } } } + } } } } .
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Multiplying out, the coefficient of w&n, for n=l3+l4+ } } } +lk , is eck&2.
These coefficients in the expansion of �$ are therefore unbounded, and we
have proved:

If ck=c=1.01 in (4.1), the exterior mapping � in (4.2) will have coef-
ficients bn with nbn unbounded, and � will map [w : |w|>1] onto a
domain with a quasiconformal boundary 1. By what we have said in
Section 4.1, the finite domain G bounded by 1 will have an unbounded
Faber operator. Theorem 2 is proved.

Remark. For more on schlicht functions with large coefficients, see
Carleson and Jones [4].

4.3. Refinement

We saw that the Faber polynomials Fn associated with the curve 1 from
above are not uniformly bounded on 1. More is true: For each fixed z0 # C,
the Faber polynomials are unbounded at z0 . This was observed by Suetin
([13], p. 224) in connection with Clunie's example mentioned earlier.

To see this, we note that the sequence [nbn] is not only unbounded but
closer inspection shows that

n |bn |en# for some #>0 and infinitely many n. (4.5)

Using (4.5), we can even show: For each z0 # C, and for each p<# with #
from (4.5), the sequence [Fn(z0) } n&p] is unbounded.

To see this, we use the recursion formula

(n+1) bn=(z0&b0) Fn(z0)&Fn+1(z0)& :
n&1

k=1

bn&k Fk(z0) (n=1, 2, ...);

see Pommerenke [10], p. 57. If |Fn(z0)| E Mn p for all n and some M, then

n |bn | E An p+B :
n&1

k=1

|bn&k | k p=An p+B :
n&1

k=1

|bk | - k }
(n&k) p

- k
,

in which the sum is bounded by

_ :
n&1

k=1

|bk | 2 k&
1�2

} _ :
n&1

k=1

(n&k)2p

k &
1�2

E 1 } n p[1+log n]1�2

by the area theorem. Hence nbn=O(n p
- log n)(n � �). If p<#, this

contradicts (4.5) so that [Fn(z0) } n&p] cannot be bounded.
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