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The subject of this investigation is the class of difference functionals��linear com-
binations of finitely many function and�or derivative evaluations��which annihilate
the nullspace of a certain constant coefficient differential operator. Any such func-
tional can be viewed as an integral-differential operator whose Peano kernel is a
compactly supported exponential spline. Besides extending some earlier results
(1996, T. Kunkle, J. Approx. Theory 84, 290�314), we show that these functionals
are the only ones whose convolutions with the associated exponential truncated
powers have compact support. It is then proven that, in case the functional depends
entirely on function values at rational points, it must be a linear combination of
forward differences. These results have applications in the areas of (a) placing
compactly supported exponential splines in the span of the box splines, and (b)
interpolation by exponential polynomials to function values at the support points
of the forward difference functional. � 2000 Academic Press

Key Words: exponentials; polynomials; multivariate splines; box splines; expo-
nential box splines; piecewise exponential.

1. INTRODUCTION

An earlier investigation of multivariate divided differences [15] focused
on linear combinations of finitely many function evaluations whose
nullspace contains that of a certain homogeneous differential operator,
specifically, a product of directional differentiations. In that paper, it is
shown that the convolution of such a functional with the corresponding
truncated power is always compactly supported and that, like the B-spline,
the resulting spline acts as a Peano kernel of the difference functional.

Examples of splines resulting from such a convolution include the tensor
product B-spline, the box spline, and a box-like spline that later became
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the subject of two papers [16, 17]. But, because the difference functional
was allowed to depend on function values only, none of the original
analysis [15] applied to the simplex spline or to the spline obtained by
letting the knots of the box-like spline coalesce.

Instead, such splines and their associated differences are the subject of
this paper, which broadens the scope of investigation by allowing the dif-
ference functionals to consist of function and derivative evaluations and by
allowing the differential operator to be nonhomogeneous, in which case the
resulting splines are piecewise exponential-polynomial. Some of the results
contained here (Section 3) are extensions of previous results to this more
general setting. Others (Theorem 3.14, Sections 4 and 5) have no antece-
dents in the earlier paper but use these extensions as their foundation.

Theorems 3.12 and 3.14 and Corollary 3.13 concern a large class of linear
functionals which include these differences. These basic results concern the
convolution of such a functional with the corresponding truncated power,
specifically its support and its role as the functional's Peano kernel.
Theorem 3.15 characterizes differences in terms of their restrictions to lower
dimensional subspaces. Corollary 3.16 states a geometric condition that is
necessary in order for a nontrivial difference to consist of function evalua-
tions only. Corollary 3.25 draws a connection between these differences and
exponential polynomial interpolation.

The next results deal with spanning sets for the special class of differences
which depend on function values only. Theorem 4.1 generalizes an old
result from the polynomial case to the exponential polynomial case: when
the directions of differences are linearly independent, then any such dif-
ference can be written entirely in terms of tensor product divided differen-
ces. Theorem 4.11 and Corollary 4.13 deal with the more difficult case that
the directions of the difference are dependent. In that case, if the difference
is supported on the rationals, then it must be a linear combination of the
evenly spaced differences associated to the box spline.

The paper concludes with applications of these results and two open
questions. Corollary 5.1 states that if a linear combination of rational shifts
of the truncated power has compact support, then it must be a linear com-
bination of box splines. Corollary 5.4 shows that, under some restrictions,
one can interpolate to function values at the support points of the forward
difference with exponential polynomials annihilated by the associated dif-
ferential operator if and only if the forward difference of the data is zero.

There is a thorough review of univariate exponential divided differences
and B-splines in Ref. [25] and a brief review in an earlier paper [17]. The
(multivariate) exponential box spline has been studied by many people,
including Ben-Artzi [1], de Boor [4], Dahmen and Micchelli [7],
Dyn [8�10], Goodman and Taani [12], and Jia [13], Sivakumar [24, 26],
and its inventor, Ron [21�24].
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We begin by introducing some notation in the next section.

2. NOTATION

The i th component of a point x in Rd is denoted x(i) and the scalar
product between x and y, points in Rd, is written x } y. For H/Rd, define
H= to be the set of all vectors in Rd perpendicular to H in the usual
sense.

The space of all d-variate polynomials is denoted 6 and the space of
exponential-polynomials (sums of exponentials-times-polynomials) is
denoted Exp 6. For p # 6, the associated constant coefficient differential
operator is denoted p(D). By test function we mean an element of C �

c (Rd),
the space of all compactly supported infinitely differentiable functions on
Rd. For + in Cd, the function e+ is given by the rule

e+ : Rd � R : x [ e+ } x.

For x and y in Rd, let [x . .y] be the set of all u for which x�u� y in
the usual sense. In case x and y are in Zd, let [x . .y] denote all the multi-
integers in [x . .y].

The symbol S shall always stand for a subset of Rd with finite
cardinality.

The cone generated by the subset T of Rd is denoted �T�+ .
From the box-spline literature [3] we borrow the following convention.

If N is a matrix with typical column & in Rd, then one can think of N as
a multiset in Rd, eliminating the need for an index set for N other than N
itself. For instance, RN denotes the space of all functions from N into R,
that is, the set of all real vectors indexed by N. When N is viewed as a
map, this space is its domain:

N: RN � Rd: x [ Nx := :
& # N

x(&) &.

The image of this map (the column space of N) is denoted ran N. For
x # RN and H/N, let x(H) denote the restriction of x to H.

For any set X, the vector in RX of all 1s is written 1. The set X can often
be made clear by context. For instance A1 always stands for the sum of the
columns of A.

Let :(&) denote the multiplicity of & in N; that is, the number of columns
in N that are identical to &, so that :(&)>0 for all & in N. Let &:(&) be the
multisubset of N consisting of :(&) copies of &.
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The differentiation operator in the (not necessarily unit) direction & is
written D& . If + # CN, let

D&, +=D&++(&)

and, more generally, for H�N,

DH, += `
& # H

D&, + .

Note that DH, + and DH, +(H) are the same operator. The set of all exponential-
polynomials p for which DN, + p=0 is denoted Exp 6N, + .

If F(x | P) denotes the value at x of a function F depending on
parameters P, the function itself F( } | P) will be written simply as F(P).

Since the difference functionals of interest here are continuous on the
space of test functions, we will draw no distinction between the functionals
and the distributions which represent them. The support of a functional�
distribution * is denoted supp *. The convolution of two functionals *1 and
*2 , if it exists, is defined by the rule

(*1 V *2) f=*1*2 f (x1+x2),

where *i views f (x1+x2) as a function of xi .

3. BASIC RESULTS

The basic objects of study in this paper are the following classes of
distributions.

Definition 3.1. A difference functional is a linear combination of
finitely many shifts of the Dirac $ and its derivatives, that is, a functional
of the form

*: C�(Rd) � R: f [ :
S

ps(D) f (s), (3.2)

where S is a finite subset of Rd and ps is a d-variate polynomial for each
s in S.

Definition 3.3. Let N be a matrix whose columns lie in Rd"[0] and
let + be in CN. We say that the compactly supported distribution * is a
(N, +)-annihilator if there is an open disk U containing the support of *
such that f # C�(Rd) and DN, + f#0 on U together imply (*, f ) =0.
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Definition 3.4. A (N, +)-difference is a difference functional which is
also a (N, +)-annihilator.

When +=0, Definition 3.4 and the earlier one [15, Definition 3.1] are
equivalent [15, Theorem 3.5] and so (N, +)-annihilators and (N, +)-
differences are generalizations of the Nth difference studied earlier. While
the main focus of this paper is the (N, +)-difference, the first results in this
section apply to the larger class of (N, +)-annihilators.

We say that N is a directional matrix if:

(3.5) The elements of N lie in some open half-plane; that is; _# # Rd

\& # N, # } &>0 (or, equivalently, 0 is not in the convex hull of N)
and

(3.6) N contains no distinct parallel elements.
For example, of the three matrices

\2
0

1
0

0
1

1
1+ \1

0
1
0

0
1

&1
&1+ \1

0
1
0

0
1

1
1+

only the last is a directional matrix.
For _ # (R"0)N, a vector of nonzero scalars indexed by N, define the

rescaling (N_ , +_) of (N, +) by the rule

N_ :=[_(&) & : & # N]

and

(+_)(&) :=_(&) +(&).

Clearly, * is a (N, +)-difference (or annihilator) if and only if it is a
(N_ , +_)-difference (annihilator) for any rescaling (N_ , +_) of (N, +). If N
satisfies condition (3.6), and if 0 � N, then there exists a _ # [&1, 1]N for
which N_ is a directional matrix, in which case N_ is called a normalization
of N. (In these circumstances, _ itself may be referred to as a rescaling or
normalization.)

The following proposition details a connection between the normaliza-
tions of N and the extreme points of N[0, 1]N, the image under N of the
unit cube in RN.

Proposition 3.7. Let ; # [0, 1]N (or, equivalently, 1&2; # [&1, 1]N).
Then N; is an extreme point of N[0, 1]N if and only if 1&2; is a
normalization of N.
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Proof. The proof consists of a series of straightforward equivalences.

N; is an extreme point of N[0, 1]N

iff N; is an extreme point of N[0, 1]N

iff* N; is an extreme point of [N;+(1&2;(&)) & : & # N]

iff _# # Rd such that \& # N, # } N;<# } (N;+(1&2;(&)) &)

iff _# # Rd such that \& # N, 0<# } (1&2;(&)) &

iff 1&2; is a normalization of N.

The last obvious equivalence is the second (*). The forward direction is
trivial. To prove the backward direction suppose that N; is extreme in
[N;+(1&2;(&)) & : & # N] so that there exists a # in Rd such that 0<# }
(1&2;(&)) & for all & in N, and let ! be a point in [0, 1]N. Since ! and ;
have only 0�1 entries, if !(&)&;(&) is not zero then !(&)&;(&)=1&2;(&).
Therefore

# } N!=# } N(!&;)+# } N;�# } N;

with equality if and only if !=;. Consequently, N; is an extreme point of
N[0, 1]N. K

As a simple illustration, Fig. 1 shows the image in R2 of the unit cube in
R3 under the map N=( 2

0
0
2

1
1), with the points N[0, 1]N marked with dots

v . Leaving each dot are three multiples of the columns of N, either & if
;(&)=0 or && if ;(&)=1. In this case, Proposition 3.7 states that the three
vectors emanating from a point v lie in a half plane exactly when that
point is extreme.

For N a directional matrix and + # CN, the (exponential) truncated
power T+(N) is the distribution which acts on test functions , by the
rule [7]

(T+(N), ,) :=|
[0, �)N

e&+ } t,(Nt) dt. (3.8)

Condition (3.5) guarantees the existence of this integral. For completeness,
T+(<) is defined as the Dirac $ distribution. If H�N, let T+(H) stand for
T+(H)(H).

Clearly, T+(N) is supported on the cone �N�+ and

\x # Rd, T+(x | N)=T+(&x | &N).
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FIG. 1. A simple example for Proposition 3.7.

Among the other well-known properties of T+(N) are that if H�N and
+ # CN then

T+(H) V T+(N"H)=T+(N)

and

DH, +T+(N)=T+(N"H).

In particular, DN, +T+(N)=$ so

DN, +(T+(N) V ,)=, (3.9)

for any test function ,.

Definition 3.10. If * is an (N, +)-annihilator, define its kernel with
respect to (N, +) as the distribution

M(*, N, +)=* V T+(&N).

In general, this convolution is well defined since * is compactly supported
[11, Sect. 5.2]. For example, if * is a (N, +)-difference, then for any t # Rd,

M(t | *, N, +)=*T+( } &t | N)

=:
S

ps(D) T+(s&t | N),

where S and ps are as in Eq. (3.2).
The distribution in Definition 3.10 acts as the Peano kernel of * in the

following sense. If f # C� and DN, + f is compactly supported, then, by
Eq. (3.9), f and T+(N) V DN, + f have the same (N, +)th derivative, and
therefore

(*, f ) =(*, DN, + f V T+(N))

=(* V T+(&N), DN, + f ) (3.11)
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for any (N, +)-annihilator *. (To see that these *N applications of integra-
tion by parts are legitimate, note that, for any H/N, * V T+(&H) is supported
on supp *&�N�+ and DN, + f V T+(N"H) is supported on supp DN, + f +
�N�+ , and therefore their product has compact support.)

Thus the relationship between M and * is on par with that between the
(appropriately normalized) B-spline and the corresponding difference.
Another similarity between M(*, N, +) and the B-spline is their compact
support, detailed in the next theorem.

Theorem 3.12. Let N be a directional matrix and + # CN, and let * be
a (N, +)-annihilator. Then M(*, N, +) is supported on the convex hull of
supp *. More specifically, its support lies in �$ (supp *&�N_ �+), where the
intersection �$ is taken over all normalizations N_ of N.

This result was proven earlier in the special case that * is an (N, 0)-
difference [15, Theorem 3.15].

Proof. For N_ any normalization of N, the distributions M(*, N, +)
and M(*, N_ , +_) >N _(&) are the same, since for any test function , there
exists f # C� satisfying ,=DN, + f =>N _(&) DN_ , +_

f, so that

(M(*, N, +), ,) =(*, f )=�M(*, N_ , +_) `
N

_(&), ,�.

Therefore, the support of M lies in supp *+supp T+_
(&N_)=supp *&

�N_ �+ .
It follows from the separation corollary that �$(supp *&�N_ �+) is

contained in the convex hull of supp * [cf. 15, Theorem 3.15]. K

Since M(*, N, +) has compact support, we can remove the restriction in
Eq. (3.11) in which DN, + f has compact support. The resulting corollary is
the Peano formula for (N, +)-annihilators.

Corollary 3.13. If * is a (N, +)-annihilator, then, for all f # C�(Rd),

(*, f ) =(M(*, N, +), DN, + f ).

The converse of Theorem 3.12 is straightforward to prove, and therefore
(N, +)-annihilators are characterized by having compactly supported
convolutions with the associated truncated power.

Theorem 3.14. Let * be a compactly support distribution. Then * is a
(N, +)-annihilator if and only if * V T+(&N) has compact support.
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Proof. If * V T+(&N) has compact support, then so must * V T+(&H)
for any H a subset of N, since the latter distribution is simply D&N"H, + of
the former. Consequently by *N applications of integration by parts,

(*, f ) =(* V T+(&N), DN, + f ).

Consequently, if DN, + f is identically zero on the support of * V T+(&N),
then (*, f ) is zero. K

Let N be a directional matrix in Rd and S be a finite subset of Rd. For
H�N, and s # S, let (s : H) denote the set of all points in S which differ
from s by an element of ran H.

Theorem 3.15. Let * be a difference functional, let N be a directional
matrix, and + # CN. Then the following statements are equivalent.

A. * is a (N, +)-difference.

B. For any s in S, and H a subspace of Rd, let H :=N & H. Then
*| (s : H) is an (H, +)-difference.

C. For any s in S and & in N, *| (s : &) is an (&:(&), +)-difference.

In case +=0, the equivalence of A and C was proven earlier [15].

Proof. A O B: This is trivial unless H is a proper subspace of Rd, so
suppose that to be the case. Let U be the open disk associated to * as in
Definition 3.3. If f # C�(s+H) satisfies DH, + f#0 on (s+H) & U, then f
can be extended to all of Rd so that f#0 on S"(s : H) and DH, + f (and
therefore DN, + f ) is identically zero on U. Consequently,

*| s : H f =*f =0.

B O C: trivial.

C O A: The proof is practically the same as one that has already
appeared [15, Theorem 4.18]. K

Corollary 3.16. Suppose the nontrivial (N, +)-difference * consists of
function evaluations only. In the special case that + is real, each (s : &) must
contain more than :(&) members. More generally, there is a positive constant
= depending on N and + such that any (s : &) which contains at most :(&)
members must have diameter larger than =.

Whether or not + is real, if * consists of function evaluations only, and
if s is in the support of *, then (s : &) must have more than one member.
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Proof. In case +=0, this result [15, Corollary 3.3] follows from
Theorem 3.15(C) via univariate polynomial interpolation. Corollary 3.16 is
proven similarly using the following known proposition and corollary. K

Proposition 3.17. If +1 , ..., +n are real numbers, then any nontrivial
element of the univariate function space

Exp 6+ :=ker (D&+1) } } } (D&+n)

can have at most n&1 zeros, counted according to their multiplicities
(=: CATTM). More generally, if +1 , ..., +n are complex numbers, then there
exists a positive number = such that any nontrivial element of Exp 6+ can
have at most n&1 zeros, CATTM, on any interval of length =.

With no direct reference for this result, we include a short proof
suggested by Ron [20].

Proof. The proof in the real case appears elsewhere [19, Part 5,
Problem 75]. For the complex case, suppose t1 , ..., tn are real numbers,
and note that a smooth function f vanishes at t1 , ..., tn if and only if
i! [t1 , ..., ti] f=0 for i=1, ..., n.

Pick [u1 , ..., un] a basis for Exp 6+ . Then there exists a nontrivial
p # Exp 6+ vanishing at t1 , ..., tn if and only if the determinant

det(i ! [t1 , ..., t i] uj)
n
i, j=1 (3.18)

is zero.
As the points t1 , ..., tn coalesce to 0, this determinant converges to the

Wronskian of [u1 , ..., un] at 0, which is nonzero [5, Theorems 6.1, 6.5].
Consequently, there exists a positive = such that, if [t1 , ..., tn]/(0, =), then
the determinant (3.18) is nonzero. That is, no nontrivial p in Exp 6+ can
vanish at n points in (0, =). Since Exp 6+ is shift invariant, the proof is
complete. K

Since Exp 6+ has dimension n, an immediate corollary to Proposi-
tion 3.17 is that Exp 6+ always allows unique Hermite-type interpolation
at n points, with some restrictions if + is nonreal.

Corollary 3.19. Let f be a smooth function of one variable, and let
t1�t2� } } } �tn . If +1 , ..., +n are real numbers, then there exists a unique
element p of Exp 6+ such that f &p vanishes at t1 , t2 , ..., tn , CATTM. More
generally, if +1 , ..., +n are complex numbers, then there exists a positive
number = depending only on +1 , ..., +n such that, if t1 , ..., tn lie within an inter-
val of length less than =, then there exists a unique element p of Exp 6+ such
that f &p vanishes at t1 , t2 , ..., tn CATTM.
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Note that if Exp 6+ allows Hermite interpolation at any n points that
are within = of each other, then, for any positive scalar a, the space
Exp 6a+ allows Hermite interpolation provided the points are within =�a of
each other.

If N is a directional matrix and + # CN, we shall say that + provides
cardinal interpolation in the directions N if, for each & in N, the :(&)-
dimensional space

ker `
!=&

(D++(!)) (3.20)

of univariate functions always provides an interpolant to function values at
:(&) consecutive integers. In that case, one can always interpolate to
function values at the points

[&, 2&, ..., :(&) &]/Rd

from the space

Exp 6& :(& ), +=ker `
!=&

(D!++(!)),

since, for any p in (3.21), f (x)= p(x } &�& } &) is in Exp 6& :(& ), + .
The following well-known result can be proven via multivariate

Bernstein polynomials [2, 18].

Theorem 3.21. If f is infinitely differentiable on Rd, if K is a compact
subset of Rd, and if k is a natural number, then to any =>0 there corresponds
a polynomial q such that

\; # Zd
+ with |;|�k, &D;( f &q)&K<=,

where & }&K is the uniform norm on K.

That is, polynomials provide simultaneous approximation to smooth
functions on compact sets. For our purposes here, it will be useful to note
that when DN, + f =0 one can similarly approximate f with (exponential)
polynomials p satisfying DN, + p=0.

Theorem 3.22. If f # C�(Rd) satisfies DN, + f =0 on a compact disk K
and if k # N, then to any =>0 there corresponds a q # Exp 6N, + such that

\; # Zd
+ with |;|�k, &D;( f &q)&K<=.

Proof. Without loss of generality, assume that & } &=1 for all & in N
and that K is centered at the origin.
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The proof is by induction on *N. For the simplest case, assume that N
is the singleton set [&] and + is a complex scalar. Let A denote the
orthogonal projection onto the hyperplane &=. Since K is centered at the
origin, A maps K onto a (d&1)-dimensional disk concentric with K. Let H
be an orthonormal basis for &=.

Assume D&, + f#0 on K. Then for all x in K,

f (x)= f (Ax) e&+& } x.

Each D; with |;|�k can be expressed (uniquely) as a linear combination
of

[E; :=D;(&)
&, + D;(H)

H : ; # ZH _ &
+ , |;|�k].

If q is any polynomial, then

q(Ax) e&+& } x # Exp 6&, + ,

and

E;( f (x)&q(Ax) e&+& } x)=(D;(&)
&, + e&+& } x)(D;(H)

H ( f (Ax)&q(Ax))).

By Theorem 3.21, the norm of this on K can be made arbitrarily small for
all |;|�k by choosing the polynomial q appropriately.

For the inductive step, choose & # N, and let A and [E;] be as above.
For any p # 6 and q # Exp 6N"&, + , define the exponential polynomial P by
the rule

P(x)= p(Ax) e&+& } x+e&+& } x |
x

Ax
e+& } yq( y) dy,

where � is a line integral. It is straightforward to see that

E;p(Ax) e&+& } x=(D;(H)
H p(Ax)) D;(&)

&, + e&+& } x

which is zero if ;(&)>0, and

D&, +e&+& } x |
x

Ax
e+& } yq( y) dy=q( y),

so DN, +P=0. Also, from the identities

\' # H, D' e&+& } x |
x

Ax
e+& } yq( y) dy=e&+& } x |

x

Ax
e+& } yD' q( y) dy
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and

e+& } xf (x)= f (Ax)+|
x

Ax
e+& } yD&, + f ( y) dy

it follows that, for every multiindex ; with |;|�k,

E;( f (x)&P(x))=E;( f (Ax)& p(Ax)) e&+& } x

+E;e&+& } x |
x

Ax
e+& } y(D&, + f ( y)&q( y)) dy

=D;(H)
H ( f (Ax)& p(Ax)) D;(&)

&, + e&+& } x

+D;(&)
&, + e&+& } x |

x

Ax
e+& } yD;(H)

H (D&, + f ( y)&q( y)) dy.

By Theorem 3.21, the first term on the right side can be make arbitrarily
small by choice of the polynomial p, while, by the inductive hypothesis,
the second can be made arbitrarily small by choice of q # Exp 6N"&, + ,
completing the proof. K

Theorem 3.22 has three relatively immediate corollaries.

Corollary 3.23. For N is directional matrix, k a natural number, and
+ # CN, to every f # C�(Rd) with DN, + f =0 on a disk U containing the finite
set S, there corresponds a p # Exp 6N, + such that D;( f &p)(s)=0 for all
s # S and ; # Zd

+ with |;|�k.

Corollary 3.24. The difference functional * is a (N, +)-difference if
and only if it annihilates Exp 6N, + .

Corollary 3.25. Let N, +, S, and k be as in Corollary 3.23. For each
s # S, let 6s be a finite-dimensional space of d-variate polynomials, and let
6s(D) be the associated space of constant-coefficient differential operators.
Let f be a smooth function. Then it is possible to find an element p of
Exp 6N, + such that 6s(D)( f &p)(s)=0 for all s # S if and only if f is
annihilated by every (N, +)-difference * of the form

*: f [ :
S

ps(D) f (s)

with ps # 6s for each s.
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Proof. Let K be a compact disk containing S. All three corollaries
follow from the finite dimensionality of the image of Ck(K) under the map

p [ [D;p(s) : |;|�k, s # S]

(which maps functions to real vectors indexed by the set [(;, s) : |;|�k,
s # S]). Since Exp 6N, + is dense in ker DN, + in the topology of Ck(K),
these two spaces have the same image under this map, proving
Corollary 3.23. Corollary 3.24 follows immediately.

Let Exp 6N, +(S, k) denote this image. Corollary 3.25 follows from
Corollary 3.24 and the observation that

Exp 6N, +(S, k)===Exp 6N, +(S, k). K

As a simple example, suppose [x0 , ..., xn] and [ y0 , ..., ym] are increasing
sequences of real numbers and

S :=[(xi , yj) : i # [0 . . n], j # [0. . m]].

Let N consist of n copies of the vector (1, 0) and m copies of (0, 1), and
let +=0. Then it is possible to interpolate to the values of a function f on
S by some p # 6 satisfying DN p=0 if and only if *f =0 for * any linear
combination of function evaluations on S which annihilates ker DN .
As it turns out [15, Proof of Theorem 4.1], any such * is a scalar multiple
of the tensor product divided difference. Therefore, in this simple case,
Corollary 3.25 reduces to the well-known fact that one can find a polyno-
mial p agreeing with f on S for which

\ �
�x+

n

\ �
�y+

m

p=0

if and only if [x0 , ..., xn][ y0 , ..., ym] f (x, y)=0.

4. SPANNING SETS FOR (N, +)-DIFFERENCES

We begin this section by an immediate extension of an earlier result.

Theorem 4.1. Let N be a directional matrix whose distinct columns are
linearly independent, and let + # CN. Then any (N, +)-difference consisting
entirely of function evaluations can be written, after a linear change of
variables, as a linear combination of tensor product (N, +)-dividend differences.

Proof. We sketch the proof, since it is essentially the same as one
published earlier [15, Theorem 4.1]. See that paper to review the concept
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of a tensor product divided difference. A review of exponential divided
differences can be found in a more recent paper [17, Sect. 3].

It will suffice to prove Theorem 4.1 in case the unique elements of N
form the standard orthonormal basis for Rd.

Add points to S as necessary so that it forms a tensor product grid (that
is, the Cartesian product of d finite subsets of R). Add more points to S as
necessary so as to guarantee (by Corollary 3.19) the existence of tensor
product (N, +)-dividend differences (consisting of function evaluations
only) supported on S. Repeat the following step until impossible:

Choose a maximal element s* of S (in the lexicographic order).
Modify * by subtracting from it a scalar multiple of a tensor product
(N, +)-divided difference so that

s* � new S :=supp new */old S.

This process terminates when, for lack of the requisite number of points
in some direction, there are no more tensor product (N, +)-divided dif-
ferences supported on S. Corollary 3.16 now implies that no nontrivial
(N, +)-difference consisting of function evaluations only can be supported
on the resulting S, making the resulting * the zero functional. K

The remaining question of interest is what might serve for a spanning set
of all (N, +)-differences if the distinct columns of N are linearly dependent.
We give a partial solution to that problem in this section, showing that,
with the additional restriction that S/Qd, a (N, +)-difference which
consists entirely of function evaluations must be a linear combination of
forward differences. Several definitions and technicalities will precede these
main results.

Define the forward difference operators (which send functions to
functions) by the rules

{&
+ : f [ f &e+(&)f ( } &&)

and

{N
+ := `

& # N

{&
+ .

The corresponding forward differences (which send functions to scalars) are
defined as follows. Let

$&
0, + : f [ f (0)&e+(&)f (&).

As a distribution, $&
0, +={&

+$, so that {&
+ f =$&

0, + V f. Similarly define

$N
0, + :={N

+ $ (4.2)
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so that {N
+ f =$N

0, + V f. For arbitrary t in Rd, define

$N
t, + : f [ $N

0, + f ( } +t).

It is straightforward to see from Eq. (4.2) that if _ # [&1, 1]N,

$N
0, +=\ `

& # M

(&e+(&))+ $N_
M1, +_

, (4.3)

where M :=[& # N: _(&)=&1]. That is, a forward difference in the direc-
tions N beginning from 0 is, up to a scalar factor, the same as a forward
difference in the rescaled directions N_ , beginning at another point, M1.

In case +=0, the forward difference $N
t, + may be written more simply as

$N
t . For completeness, define

$<
t, + : f [ f (t).

Definition 4.4. Let N satisfy condition (3.5). For x and y in Rd, we
write x �

N
y provided that there exists z # RN

+ such that x+Nz= y.
Furthermore, we write x <

N
y if x �

N
y{x.

It follows from condition (3.5) that �
N

is a partial order.

Proposition 4.5. Let N be a directional matrix. If S and T are finite
subsets of Rd and if there exist nonzero scalars a(s) for all s # S and b(t) for
all t # T such that

:
S

a(s) $<
s =:

T

b(t) $N
t, + (4.6)

then the �
N

-wise minimal elements of T belong to S.

Proof. Expanding each $N
t, + ,

:
T

b(t) $N
t, +=:

T

b(t) :
M�N

c(M) $<
t+M ,

where c(<) is a nonzero scalar. If t* is �
N

-minimal in T, then the only
difference $N

t, + having support at t* is $N
t*, + ; hence t* is in S and a(t*)=

b(t*) c(<). K

In general it is not necessary that T/S for Eq. (4.6) to be true. For
instance, if N=( 1

0
0
1) and *=$N

(1, 1), 0&$N
(0, 0), 0 , then the point (1, 1) is not

in the support of *.
More detailed information on the relation between T and S is provided

by the next corollary.
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Corollary 4.7. Under the same hypotheses as Proposition 4.5, the
extreme points of T+N[0, 1]N must belong to S.

Proof. If t*+N; is an extreme point in T+N[0, 1]N for some t* in T
and ; in [0, 1]N, then N; is extreme in N[0, 1]N. As in Proposition 3.7,
let _=1&2; be the associated normalization of N. By (4.3), the functional
(4.6) can be rewritten as

:
T

b(t) $N
t, +=:

T

c(t) $N_
t+N;, + (4.8)

for some nonzero scalars [c(t) : t # T].
Since t*+N; is an extreme point in T+N[0, 1]N, there exists # # Rd

such that, for any s+N! in T+N[0, 1]N other than t*+N;,

# } (t*+N;)<# } (s+N!). (4.9)

In particular, letting s=t* and !=;+(1&2;(&)) & implies that

# } (1&2;(&)) &>0

for any & in N. Therefore, if s+N; �
N_

t*+N; for s in T, then # } (s+N;)
�# } (t*+N;) so that Eq. (4.9) implies s=t*. Consequently, t*+N; is

�
N_

-minimal in T+N; and, in light of Eq. (4.8), Proposition 4.5 implies
that t*+N; lies in S. K

Lemma 4.10. Let N be a finite subset of Zd and suppose the set L is
covered by the union of finitely many disjoint shifts of the lattice generated
by N; that is,

L� .
k

i=1

(zi+NZN)

for some points z1 , z2 , ..., zk in Rd. Suppose further that

& # N, k& # L&L O k # N.

Then, for * any (N, +)-difference supported on L, the restriction of * to any
zi+NZN is also a (N, +)-difference.

Proof. By Theorem 3.15, it will suffice to show that, for any i # [1. . k],
any s # supp *, and any & # N, the restriction of * to (s : &) & (zi+NZN) is
an (&:(&), +)-difference, where (s : &) is the set of points in supp * that differ
from s by a multiple of &. This is trivially the case if (s : &) & (zi+NZN) is
empty, so suppose that for some scalar k, the point s+k& is simultaneously
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in supp * and zi+NZN. Since this means k& # L&L, the scalar k must be
an integer and s # zi+NZN.

For any t # (s : &), there exists a scalar k, necessarily an integer, for which
t&s=k&, and therefore t # zi+NZN. It follows that

(s : &)=(s : &) & (zi+NZN)

and, since Theorem 3.16 implies that the restriction of * to (s : &) is a
(&:(&), +)-difference, the proof is complete. K

The next two results, the main ones of this section, form another charac-
terization of (N, +)-differences. Clearly, if (N*, +*) is a rescaling of
(N, +), then any linear combination of (N*, +*) forward differences is a
(N, +)-difference. As it turns out (Corollary 4.13), there are no other
(N, +)-differences which depend solely on function values at rational
points.

Theorem 4.11. Assume that N is a rational directional matrix for which

& # N, k& # NZN O k # Z (4.12)

and that + provides cardinal interpolation in the directions N. If * is a
(N, +)-difference consisting entirely of function-evaluations at points in NZN,
then there exist T/ZN and b # RT such that

*=:
T

b(t) $N
Nt, + .

While the hypotheses of Theorem 4.11 may seem somewhat restrictive,
we will see in the following corollary that a similar conclusion holds for a
broader class of (N, +)-differences.

Corollary 4.13. Let N be a directional matrix and let * be a
(N, +)-difference consisting entirely of function evaluations at rational points
S. Then there exists a rescaling (N_ , +_) of (N, +), a finite subset T of Rd,
and a vector b # RT such that

*=:
T

b(t) $N_
t, +_

.

Proof of Corollary 4.13. The conclusion is obvious if * is identically
zero. If * is nontrivial, then, since it consists of function evaluations only,
Corollary 3.16 implies that for any & in N there exists a multiple of &
in S&S. By choosing the appropriate rescaling, we may assume N is
this collection of rational directions. For every & in N, define &= to be
the smallest positive multiple of & found in the (necessarily discrete)
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lattice NZN. Define N= to be the set of all resulting &= and let += be the
corresponding rescaling of +. Then the lattice N=ZN generated by N= is the
same as that generated by N.

It will suffice to prove Corollary 4.13 in case S lies in ran N, since the
restriction of * to any (s : N) is a (N, +)-difference. Therefore, we may
assume that for each s in S there is a rational vector t # QN such that
N= t=s. Choose a natural number m so that mt # ZN for every such t, and
define N| :=N= �m and +| :=+= �m. Finally, pick a natural number l

(guaranteed by the remarks following Corollary 3.19) so that +_ :=+| �l
provides cardinal interpolation in the directions N_ :=N|�l. Then S lies in
the lattice generated by N_ , and N_ satisfies condition (4.12). Therefore, by
Theorem 4.11, * is a linear combination of various shifts of $N_

0, +_
. K

Proof of Theorem 4.11. We first show that it will suffice to prove
Theorem 4.11 under the additional assumption that N is an integer matrix
and contains a nonzero multiple of each of the columns e1 , e2 , ..., ed of the
d_d identity matrix.

Suppose Theorem 4.11 were true under these additional assumptions,
and assume that N/Qd has rank c�d and satisfies the hypotheses of the
theorem.

Take H a basis in N. Then there exists a rational c_d matrix K such
that KH is the (c_c) identity. Consequently, HKHt=Ht for any t # RH.
That is, the restriction of HK to ran N is the identity.

Choose a natural number m so that 1 :=mKN is an integer matrix. The
typical element # of 1 is mK&, and, since H is a subset of N, there can be
found in 1 multiples of e1 , e2 , ..., ec . If k# # 1Z1 for some #=mK& # 1 and
real number k, then multiplication on the left by H implies that k& # NZN,
and, by hypothesis, this forces k to be a natural number. Therefore 1
satisfies the hypotheses of Theorem 4.11.

Assume * is a (N, +)-difference consisting entirely of function evaluations
on NZN. Define

!: f [ *( f b mK).

Then ! is a linear combination of function evaluations on 1Z1.
Since N and 1 are in one-to-one correspondence, one can view the given

+ as a member of C1. For any smooth function f,

(D1, + f ) b mK=DN, +( f b mK), (4.14)

and therefore * being a (N, +)-difference forces ! to be a (1, +)-difference.
Therefore, Theorem 4.11, in the special case that the directional matrix is
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integral and contains multiples of e1 , ..., ec , implies the existence of a set
T/Z1 such that

!=:
T

b(t) $1
1t, + .

It is not hard to see from (4.2) that

$1
1t, +( f b m&1 H)=$N

Nt, + f (4.15)

so that, for any function f,

*f=!( f b m&1H)

=:
T

b(t) $N
Nt, + f.

With this sufficiency established, assume for the remainder of the proof
that N is an integer matrix containing elements parallel to each of e1 , ..., ed .

Partition N into the classes

Ni=N & (ran(ei , ..., ed)"ran(ei+1 , ..., ed)).

For & in N, let & a :=&(i) where i is the smallest integer for which &(i){0.
Since the conclusion of Theorem 4.11 is independent of the normalization
of N, we may assume that each & in N has been multiplied by \1 so as
to achieve & a >0. This is a normalization of N, as is any choice of \1 that
causes

\i \&, ' # Ni , sign(& a )=sign(' a ), (4.16)

since Na=0 and a�0 then implies a=0 (cf. (3.5)).
Choose # # Rd so that # } N>0 and % # Zd so that the support S of * lies

in %+Zd
+ . Then modify * and S according to the following algorithm.

Algorithm 4.17. Define

S$ :=[s # S : supp $&N
s /%+Zd

+].

If S$ is nonempty, choose s # S$ so that # } s�# } S$ and c a scalar so that
*&c$&N

s, &+ has no support at s. Redefine * :=*&c$&N
s, &+ and S :=supp *.

Repeat until S$=<.

Proposition 4.18. Algorithm 4.17 stops after finitely many iterations.
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Proof. Since N contains a positive multiple of each ei for each i between
1 and d, each component #(i) of # is positive. Consequently, for any
number r, the set

[z # %+Zd
+ : # } z=r]

has finite cardinality. At any time during Algorithm 4.17, S$ is a subset of
%+Zd

+ , so at no time is max# } S<# } %.
At each iteration, a point s at which # } takes its maximum on S$ is

removed, and the points x added to S$, if any, satisfy

# } x<# } s.

Were the loop to repeat indefinitely, max# } S$ would eventually be reduced
to less than # } %, a contradiction. K

Continuing with the proof of Theorem 4.11, since S$=< when
Algorithm 4.17 ends, S lies in

NZN & (%+(Zd
+"Z$)),

where

Z$ :=[z # Zd : \K�N, z&K1 # Zd
+]. (4.19)

To better understand S, we make the following observations.

Proposition 4.20. If u is a minimal element of Z$ in the sense of the
standard �, then to each i in [1 . .d], there corresponds a K/N for which
(u&K1)(i)=0.

Proof. Define the multiinteger w by

w(i) := min
K�N

(u&K1)(i)�0.

For any H�N and i in [1. .d],

(u&w&H1)(i)=(u&H1)(i)& min
K�N

(u&K1)(i)�0.

Consequently, u&w # Z$, and since u is minimal, w=0, proving the
proposition. K

Proposition 4.21. There is a unique minimal element of Z$.
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Proof. That a minimal element exists follows from Z$�Zd
+ .

Suppose both u and v are minimal in Z$ and therefore not comparable.
Then u(i)<v(i) for some i in [1 . .d]. By Proposition 4.20, there is a subset
K of N for which

0=(v&K1)(i)>(u&K1)(i),

contradicting u # Z$ and proving the proposition. K

It is an easy consequences of Definition (4.19) that if u # Z$, then any
multiinteger greater or equal u must also belong to Z$. That is, Z$=
[u . .�] where u denotes the minimal element of Z$. Therefore, since the
support S of * is finite, there exists a multiinteger ; such that

S/NZN & [% . .;]"[%+u . .�].

The proof of Theorem 4.11 is completed by the following result.

Theorem 4.22. Let N be a directional integer matrix with & a >0 for
each & in N. Assume also that + provides cardinal interpolation in the
directions N. Assume that N contains a multiple of ei for each i in [1. .d],
and that N satisfies (4.12). Let % and ; be in Zd and let u denote the minimal
element of Z$. Then the only (N, +)-difference * supported on the set

S=NZN & [% . .;]"[%+u . .�]

is the trivial *=0.

Proof. The proof is by induction on d and *N.
In case d=1, the hypothesis (4.12) forces N=&:(&), the set consisting of

:(&) copies of the positive integer &. In this case, the minimal element of

Z$=[z�0 : z&:(&) &�0]

is simply u=:(&) &. The set S is at most the set of all integer multiples of
& between % # Z and %+:(&) &&1. Since one can always interpolate to
function values on this set from Exp 6& :(& ), + , the only (&:(&), +)-difference
supported on S is the trivial one.

Assume now that d>1 and that Theorem 4.22 (and consequently
Theorem 4.11) holds for matrices N� /Zd� and integers d� provided either

d� <d (4.23)

or

d� =d and *N� <*N. (4.24)
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Take ; minimal so that the (N, +)-difference * is supported on

S=NZN & [% . .;]"[%+u . .�].

We will first show that ;(1) is necessarily less than %(1)+u(1). Toward
that end, assume

;(1)�%(1)+u(1). (4.25)

Define

M :=N & ran[e2 , ..., ed]

K :=(N"M)"ran[e1]

H :=N"ran[e1]

=K _ M.

By hypothesis, H is a proper subset of N.
Define w to be the unique minimal element of

[z # Zd : \X�M, z&X1 # Zd
+]

so that for all i in [1. .d] and all X�M,

(w&X1)(i)�0 (4.26)

and for every i there exists an X for which (w&X1)(i)=0. Because
M�ran[e2 , ..., ed], the minimality of w forces w(1)=0.

Since ; is minimal, choose s in S satisfying s(1)=;(1).
Define %$ to have ;(1) for its first coordinate and, for its 2nd, ..., d th

coordinates, the same as %+u&w.
We will first show that * has no support at s if s�3 %$. This is vacuously

true in case K=<, since then u([2 . .d])=w([2. .d]), so assume K{<
and s�3 %$.

Since s(1)=%$(1), assume _i*>1 such that

s(i*)<%(i*)+u(i*)&w(i*).

By Proposition 4.20, there is a subset X of H for which

(u&X1)(i*)=0.

By Eq. (4.26),

(%+u&(X & M 1))(i*)�(%+u&w)(i*)>s(i*),
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so that

(s&(X & K) 1)(i*)=(s&X1+(X & M) 1)(i*)

<(%+u&X1)(i*)=%(i*).

Let H� =(&K) _ M, a normalization of H of the form (4.16), and let +̂
be the corresponding normalization of +. Since * is a (N, +)-difference, it
is also an (H� , +̂)-difference, and since NZN is the union of finitely many
disjoint shifts of H� ZH� , Lemma 4.10 and the induction hypothesis (4.24)
imply that * is a linear combination of (H� , +̂)-forward differences. That is,
for some V/NZN,

*=:
V

c(v) $H�
v, +̂ .

Since &K a <0, the point s cannot lie in the support of $H�
v, +̂ if v(1)<

;(1). If v(1)=;(1) and s # supp $H�
v, +̂ , then s=v+P1 for some P�M. But

then

(v&(X & K) 1+P1)(i*)=(s&(X & K) 1)(i*)<%(i*).

Thus V+H� [0, 1]H� contains a point which is not �%. Therefore, this set
contains an extreme point which is not �%. But this contradicts
Corollary 4.7, which implies that the extreme points of V+H� [0, 1]H� must
lie in S.

Hence if s # S satisfies s(1)=;(1) and s�3 %$, then s cannot be in the
support of *.

The restriction *$ of * to the hyperplane x(1)=;(1) is therefore supported
on the lattice points in NZN that also lie in

[%$ . .;]"[%+u . .�]=[%$ . .;]"[%$+w . .�].

Since these lattice points are covered by finitely many shifts of MZM,
Lemma 4.10 and the induction hypothesis (4.23) imply that *$ is identically
zero.

Having ruled out the alternative (4.25), we now conclude that

;(1)<%(1)+u(1).

Therefore the support of * lies in

NZN & [% . .;].
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Let H :=N"ran ed , by hypothesis a proper subset of N. By Proposition 4.20,
there exists M�H for which

(u&M1)(1)=0.

Since * is an (H, +)-difference, the induction hypothesis implies that it can
be written as a linear combination of forward differences:

*=:
V

c(v) $H
v, + .

By Corollary 4.7, the extreme points of V+H[0, 1]H must lie, as S does,
in the set

[x # Rd: %(1)�x(1)�;(1)].

But if v(1)�%(1), then

(v+M1)(1)�(%+M1)(1)=%(1)+u(1)>;(1)

which implies that V+H[0, 1]H contains an extreme point x with x(1)>
;(1). Therefore the finite set V must have no extreme points, which forces
it to be empty and * to be identically zero, which completes the proofs of
Theorems 4.22 and 4.11. K

5. APPLICATIONS AND OPEN QUESTIONS

The results of the last two sections have applications in the areas of box
splines and polynomial interpolation.

The first of these follows from Theorems 3.14 and 4.11.

Corollary 5.1. Let B be a linear combination of finitely many shifts of
the truncated power T+(N) by rational points; that is, for some finite S/Qd

and c # RS,

B= :
s # S

c(s) T+( } &s | N).

Then B is compactly supported if and only if it is a linear combination of
finitely many shifts of a box spline B+*(N*) for some rescaling (N*, +*) of
(N, +).

By Corollary 3.25, one can restate the conclusion of Theorem 4.22 in
terms of polynomial interpolation as follows.
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Corollary 5.2. Under the same hypotheses as Theorem 4.22, for any
smooth function f there exists p # Exp 6N, + such that p(s)= f (s) for every s
in S.

One familiar example of a set S satisfying the hypotheses of
Theorem 4.22 is gained by removing an extreme point from the support of
the forward difference functional. Specifically, suppose that N satisfies the
hypotheses of Theorem 4.22 and define

S :=[&K1 : <{K�N]/NZN.

By Eq. (4.19), S�&u, where u is the minimal element of Z$ and since
N a >0, no point in S is in Zd

+ . Therefore the finite set S satisfies

S/NZN & [&u . .;]"[0. .�]

for some multiinteger ;. Since Exp 6N, + is translation invariant, this
proves the following corollary.

Corollary 5.3. Let N and + satisfy the hypothesis of Theorem 4.22.
For any smooth function f there exists p # Exp 6N, + such that p agrees with
f at the points

[K1 : K/N, K{N].

Since N1 is an extreme point among all the points in the support of the
forward difference $N

0, + , the conclusion of Corollary 5.3 is equivalent to say-
ing that there exists p in Exp 6N, + agreeing with f on [K1 : K�N] if and
only if $N

0, + f =0.
This result is easily extended in the next corollary.

Corollary 5.4. Let N be a directional rational matrix and let + provide
cardinal interpolation in the directions N. Suppose that N satisfies (4.12).
Then for any smooth function f there exists p # Exp 6N, + agreeing with f on
[K1 : K�N] if and only if $N

0, + f =0.

Proof. The proof consists of showing that assumptions placed on N in
Corollary 5.3 can be relaxed without forfeiting the conclusion.

As a first step, suppose N and + satisfy all the hypotheses of
Theorem 4.22 and that (N_ , +_) is a renormalization of (N, +). Let M=
[& # N : _(&)=&1]. By (4.3), there exists a function p in

Exp 6N, +=Exp 6N_ , +_
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agreeing with f on

[K1 : K�N]=[M1+K1 : K�N_]

if and only if

$N
0, + f =0=$N_

M1, +_
f.

The requirement that N be normalized so as to ensure N a >0 is therefore
superfluous: given that N satisfies all the other requirements of Theorem 4.22,
the conclusion of Corollary 5.3 holds for any normalization of N.

To finish the proof, assume that N/Qd has rank c�d and that

& # N, k& # NZN O k # Z.

Pick H�N a basis for ran N. Then there exists a c_d rational matrix K
such that KH=I, and, as a result, HKHt=Ht for any t in RH. That is, the
restriction of HK to ran N is the identity. Pick an integer m so that the
c_*N matrix 1 :=mKN=[mK& : & # N] is integral. Since mKH is con-
tained in 1, the latter contains multiples of each of e1 , ..., ec . Furthermore,
if k# # 1Z1 for some # # 1 and k # R, then kH# # mHKNZ1. By its defini-
tion, 1 is in one-to-one correspondence with N, and therefore one can view
Z1 and ZN as the same. This plus that fact that HK&=& for all & # N imply
that kH# # mNZN. If # is written as mK&, it follows that k& # NZN, which
implies that k must be an integer.

If f is a function with domain Rd, then f b m&1H has domain Rc, and, by
Corollary 5.3 and the first paragraph of this proof, there exists

p # Exp 61, + (5.5)

such that

p= f b m&1H on [M1 : M�1] (5.6)

if and only if

$1
0, +( f b m&1H)=0. (5.7)

But, by (4.14), Eq. (5.5) is equivalent to

p b mK # Exp 6N, +

and, since HKN=N, (5.6) is equivalent to

p b mK= f on [M1 : M�N]
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and, by (4.15), (5.7) is equivalent to

$N
0, + f =0,

completing the proof. K

Finally, we mention two open questions in this general area.
Examples indicate that the conclusion of Corollary 5.4 is true in more

general circumstances than the hypotheses describe. For instance, it is not
hard to show that if N=[u, v, w] is a directional matrix, then one can
interpolate to f at [K1 : K�N] from Exp 6N, 0 if and only if $N

0, 0 f =0,
whether or not N is rational or satisfies condition (4.12). On the other
hand, if N consists of 24 copies each of (2, 0), (0, 5), and (3, 3), a matrix
which violates condition (4.12), the conclusion of Corollary 5.4 is false. Can
Corollary 5.4 be generalized by weakening its hypotheses?

Do Theorems 4.1 and 4.11 have a mutual extension? In each, the conclu-
sion is that a (N, +)-difference which consists of function evaluations only
can be written as a linear combination of convolutions of not necessarily
evenly spaced divided differences in independent directions (Theorem 4.1)
or evenly spaced divided differences in possibly dependent directions
(Theorem 4.11). Under what more general hypothesis is it true that every
(N, +)-difference is a linear combination of convolutions of not necessarily
evenly spaced divided differences in possibly dependent directions? Such
differences arise in the study of the box-like spline introduced earlier
[16, 17]. Might these differences serve as a spanning set for all (N, +)-
differences of function values only?

Without further restrictions, the answer appears doubtful, as suggested
by the following bivariate example. Define a difference * by the rule

*: f [ f (?+1, ?+1)& f (?, ?+1)& f (?+1, 1)

+ f (?, 0)+ f (0, 1)& f (0, 0).

By Theorem 3.16, * is an (N, 0)-difference, where

N=\1
0

0
1

1
1+ .

Since each & in N has multiplicity one, the differences associated to the
corresponding box-like splines are simply forward differences in the
directions

N_=\a
0

0
b

c
c+
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with a, b, and c nonzero reals. In this case, the above question reduces to
the following. Is

*=:
T

d(t) $N_(t)
t

for some multiset T in R2 and scalars d(t) and rescalings _(t) depending on
t # T?
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