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Abstract

We generalize a classical result by A. Macintyre and W. Rogosinski on best H?-approximation in L?
of rational functions. For each inner function 6 we give a description of H”-badly approximable functions
infHP.
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1. Introduction

The classical problem of best analytic approximation in L? on the unit circle T reads as
follows: given a function g € L”, find a function p, in the Hardy space H” such that

lg — pellLr = distzr(g, HP).

In 1920, F. Riesz proved [10] that best H'-approximation in L' of a trigonometric polynomial
of degree n is an analytic polynomial of degree at most n. His result was generalized in 1950 by
A. Macintyre and W. Rogosinski [6], who treat the problem of best analytic approximation in L”
for rational functions with finite number of poles in the open unit disk.
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Theorem 1 (A. Macintyre, W. Rogosinski). Let 1 < p < oo, and let g be a rational function
with n poles B; in |z| < 1, each counted according to multiplicity. Then best HP -approximation
Dg of the function g exists uniquely. Moreover, there exist n — 1 numbers a; with |a;| < 1 such
that

g — pg = const - 1_[ — Y H(l—azz)z/‘"l_[ e )

where ]_[/ is extended over all, some, or none of the o; with |a;| < 1.

Among other things, this result shows that best H'-approximation of a rational function is a
rational function as well. The same holds for best H°°-approximation.

In 1953, W. Rogosinski and H. Shapiro [11] presented a uniform approach to the problem of
best analytic approximation in L? based on duality for classes H?. Their paper contains a refined
(but still rather complicated) proof of Theorem 1.

The matrix-valued case of the problem of best analytic approximation has been studied
extensively in the past years. In particular, V. Peller and V. Vasyunin [9] consider this problem for
rational matrix-valued functions motivated by applications in H°°—Control Theory. A survey of
results related to best analytic approximation in L” of matrix-valued functions can be found in
L. Baratchart, F. Nazarov, V. Peller [1].

Our aim in this note is to give a short proof of Theorem 1 and present its analogue in more
general situation. We will consider the problem of best analytic approximation for functions of
the form /6, where h € H? and 6 is an inner function. If 6 is a finite Blaschke product we
are in the setting of Theorem 1. In general, functions of the form 4 /6 may have much more
complex behavior near the unit circle than rational functions. To be more specific, we need some
definitions.

A bounded analytic function 6 in the open unit disk is called inner if |#| = 1 almost
everywhere on the unit circle T in the sense of angular boundary values. Given an inner function
0, define the coinvariant subspace K of the Hardy space H” by the formula K} = H? NZ0 H?.
Here and in what follows we identify the Hardy space H” in the open unit disk D with the
corresponding subspace of the space L? on the unit circle T via angular boundary values. All the
information we need about Hardy spaces is available in Sections II and IV of [3]. Basic theory
of coinvariant subspaces K é’ can be found in [7,12].

Our main result is the following.

Theorem 2. Let 0 be an inner function and let 1 < p < oo. Take a function g € OHP and
denote by py its best H?-approximation. The functwn g — Dg can be uniquely represented in the
formg—p,=c- O1F?/P, where c = disty»(g, HP), F is an outer function in K2 of unit norm,
F () > 0, and I is an inner function such that [ F € K 2.

Taking & = 7" and p = 1in Theorem 2, we get the mentioned result by F. Riesz: trigonometric
polynomials are preserved under best analytic approximation in L. Our paper contains the fourth
proof of this fact (see Section 3); previous proofs can be found in [10,6,5]. Similarly, Theorem 1
follows from Theorem 2 by taking the function 6 to be a finite Blaschke product. The choice
6 = ¢'“% leads to the following fact.

Theorem 3. Let g be a function in L' (R) with compact support of Fourier transform: supp § C
[—a, al. Then we have supp p, C [0, al for best H'-approximation Dg of the function g.
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Proofs of Theorems 1, 2, 3 are given in Sections 3, 2, 4, correspondingly. In §ection 5 we discuss
how the problem of best analytic approximation in L? for functions from 6 H? can be reduced
to a special problem of interpolation.

2. Proof of Theorem 2
We need the following known result from [2].

Lemma 2.1 (K. Dyakonov). A nonnegative function ¢ can be represented in the form ¢ = |F 2
for some outer function F € K92 ifand only if ¢ € z0H'.

The proof is included for completeness.

Proof. Let ¢ be a function of the form ¢ = |F|?, where F € H? N z0 H2. Take a function
G € H? such that F = 76G. We have 0= 70GF € z0H!, as required.

Conversely, consider a nonnegative function ¢ € z6 H'. Since 6 is unimodular on the unit
circle T, we have logg € L. Let F be the outer function in H? with modulus /9 on T. We
have Z0|F|? € H'. Hence, z0|F|* = I F? for an inner function /. Thus, the function F = Z601F
belongs to the subspace z6 H2. It follows that F € K, 92, which completes the proof. [J

Proof of Theorem 2. Let g be a function in the subspace OHP, where 1 < p < oo. Denote by
p’ the conjugate exponent to p. There exist functions p, € H”, hy € zH? satisfying

llg — pelliLr = distzr (g, H?) = f(g — pghgdm, lhgl,y =1, 2
T

where m denotes the normalized Lebesgue measure on T. This well-known fact was first
established in [11]; its modern proof can be found, e.g., in Section IV of [3]. Denote by f the
function g — pg € OHP and set ¢ = || fllLr = distz»(g, HP). It follows from (2) that we have
equality in the Holder inequality || fhgll 1 < | fllr lhgll, - Therefore, fhy = =P fIP.

The function fh, belongs to the subspace 260 H'. Hence, the function | f|? belongs to z0 H' as
well, and we see from Lemma 2.1 that | f|? = ¢?|F|? for an outer function F € K 02 of unit norm.
We may assume that F(0) > 0. The function 8f lies in H? and has modulus c|F |2/P 1t follows
that 6f = cI F?/? for an inner function 1. Let us prove that [ F € Kg. By the construction, we
have

CPIFP? = |fIP =cP ™ fhy = cP -G F*Phy. (3)

Hence, the function hg € zH P’ has the form & ¢ =2JF 2/P" where J is an inner function. From

(3) we get the formula z§1JF = F. This yields the fact that I F € 70 H2. Thus, the inclusion
IF € ng is proved. By the construction, f = ¢ - 01 F%/?.

Now prove that functions /, F in the statement of the theorem are determined uniquely. For
1 < p < 00, best H”-approximation p, of the function g is unique; see [11] or Section IV in [3].
Hence, the function ¢ - I F2/? = (g — Dg) is determined uniquely. It remains to use uniqueness
in the inner—outer factorization for functions in H”. [

Remark 2.1. In the case p = oo, Theorem 2 holds provided the dual extremal function A, €
zH" in formula (2) exists. Indeed, under this assumption best H *°-approximation Dg is unique
and we get from (2) that fhy = c|hg|, where f = g — pg and ¢ = || flloo = distz=(f, H*). As
above, there exists an outer function F € Kg such that |hg| = |F . Hence, f hg = c|F |> and
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we have z01 F? = ¢|F|? for some inner function . It follows that IF € K7 and f = 01, as
required.

It can be shown that the dual extremal function &, exists for every continuous function g on
the unit circle T; see [4] or Section IV in [3]. In particular, it exists for every rational function
with poles in the open unit disk. This will allow us to prove Theorem 1 in the case p = oo; see
details in the next section.

Remark 2.2. As we have seen in the proof of Theorem 2, the dual extremal function g to
the function g is given by the formula h, = zJF 2/P' where J is the inner function such that
IJF = ZO F. It can be shown that every inner function U for which UF € K g is a divisor of the
function /J; see Theorem 2 in [2].

3. Proof of Theorem 1

Let us first prove the classical result by F. Riesz on best analytic approximation in L! of
trigonometric polynomials. By a trigonometric (correspondingly, analytic) polynomial of degree
n we mean a linear combination of harmonics z*, |k] < n (correspondingly, 0 < k& < n). Every
trigonometric polynomial can be regarded as a rational function with multiple pole at the origin.
Hence, the result below can be readily obtained from Theorem 1. However, we would like to give
a separate proof as an example of using Theorem 2.

Proposition 3.1. Let g be a trigonometric polynomial of degree n > 1 and let pg be its best
H'-approximation. Then Dg is an analytic polynomial of degree at most n. Moreover, the
function g — pg has the form

K M
g — pg =const- 2" [ [ = 2) e — 20 [ [ = im2)?, “)
1 1

where M| < 1, |um| < 1L, and K + M <n— 1.

Proof. Consider the inner function §, = z". By the assumption, g € 6,H' N enﬁ. The
coinvariant subspace K 92n consists of analytic polynomials of degree at most n — 1. It follows

from Theorem 2 that g — p, = Z"IF 2, where F is an analytic polynomial of degree at most
n — 1 and without zeros in the open unit disk; / is a finite Blaschke product such that / F is an
analytic polynomial of degree at most n — 1. Denote by Ay the zeros of I and by 1/, those
zeros of F that are not poles of I, taking into account multiplicities. It is now evident that the
function g — py is of form (4). Since g and the right side in (4) are trigonometric polynomials of
degree at most 7, the function p, is an analytic polynomial of degree at mostn.  [J

Proof of Theorem 1. Let 1 < p < o0, and let g be a rational function with n poles S; in the
open unit disk, each counted according to multiplicity. Then g = h/B, where h € H” and B is
the Blaschke product with zeros §;,

_1_[ Z_:Bl

On the unit circle T we have g = Bh. Let P denote best H”-approximation of g. By Theorem 2
(see also Remark 2.1 for the case p = 00), the function g — p, can be uniquely represented in
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the form g — p, = c¢BIF*? where F is an outer function in K 123 and [/ is an inner function such
that IF € K3.

It follows from the definition of K 123 that every function f € K é has the form Py/Q p, where
0p = [[/_;(1 — Biz) and Py is an analytic polynomial of degree at most n — 1. Since the
function F is outer, the polynomial Pr has no zeros in the open unit disk. Let us write it in the
form Pr = ¢ - ]_['1’_1(1 — @;z), where c is a constant and |o;| < 1 (if deg Pr < n — 1, we
let some of «;’s equal to zero). By the construction, / F € K %. Hence, we have I = ]_[/ f:; iz’
where the product ]_[/ is extended over all, some, or none of the o; with |;| < 1. This yields
formula (1). The theorem is proved. O

Remark 3.1. The dual extremal function 4 to the function g has the form

n—1 n
" T — o — / 5 oN— /
heg=c2-z ] —[Ta-aa”” Ta- g7,
1 1

1 —a;z

where [ is complementary to [ with respect to the a; with |o;| < 1 and ¢; is a constant.
Indeed, this follows from Remark 2.2.

4. Proof of Theorem 3

A bounded analytic function 6 in the upper half-plane C_ of the complex plane C is called
inner if || = 1 almost everywhere on the real line R in the sense of angular boundary values.
Coinvariant subspaces of the Hardy space H” in C have the form K2 = H? N@HP. Theorem 2
holds for functions g in HP?, as can be easily seen from its proof. We will deduce Theorem 3
from the following more general result.

Proposition 4.1. Let 6 be an inner function in C, and let g € 6H' N OH!. Then we have
Dg € ICé for best H'-approximation D of 8.

Proof. By Theorem 2, we have g — p, = 61F2, where F , I F are functions in ICg. Hence, the
function g — p, belongs to the subspace

6 - (H2NOH?) - (H2NOH?) C 6 - (H' N6*HY) c 6H' oKL,
It follows that the function p, lies in the subspace Kl=H'nen'. O

Proof of Theorem 3. Consider the inner function S¢ : z +> €' in the upper half-plane C ;. A
function f in L'(R) belongs to the Hardy space ! if and only if supp f C [0, +00). It follows
that every function g € L!(R) with supp § C [—a, a] belongs to the subspace S“H' N SAHL, By
Proposition 4.1, we have p, € H'N saﬁ. Hence, supp ¢ C [0, a] and the result follows. [

5. Interpolation problems related to best analytic approximation

The problem of best H ?-approximation for functions in  H” can be rewritten in the following
form: given a function g € H?, find a function 7 € H? such that the norm ||g—6#||1» is minimal.
This is the problem of constrained interpolation in HP with respect to the inner function 6. An
account of results related to constrained interpolation in H is available in Chapter 3 of [8]. We
will consider the same problem in H”, 1 < p < 0o. Our observations are in line with [6], where
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the problem of best analytic approximation in L? for rational functions is reduced to a problem
of interpolation. For 6 is an inner function, define the class Ey , by the formula

Egp = {cIFz/p : ce€C, Ilisinner, Fisouter, [ F € Kg}. (®)]

If p is finite, there is no need in the constant ¢ in (5). We say that a function f, € H? interpolates
a function f; € HP with respect to the inner function 0 if fj — f, € 6 HP. For example, f]
interpolates f> with respect to z” if and only if fl(k) 0) = f2(k) (0) for all integers 0 < k < n — 1.
Another example: for 6 is a Blaschke product with simple zeros A, f; interpolates f, with respect
to 6 if and only if f1(A) = fo(1) forall A € A.

The main result of this section is the following.

Proposition 5.1. Let 1 < p < 400 and let 0 be an inner function. Each function fi € HP
can be interpolated by a unique function f, € Ey , with respect to 0. Moreover, we have
I f2llr = distur (f1, 0HP).

Proof. Take a function f; € H” and set g = 6 f}. Let pg denote best H?”-approximation of g.
By Theorem 2, we have g — p, = ¢ - 61F?'?, where the function f>» = ¢ - I F*/? belongs to the
class Ey ,. Note that fi — f> € O H?. Hence, the function f; interpolates f; with respect to the
inner function 6. By the construction, we have || f2||.» = distgr (f1, 6 H?).

Let us now prove that the interpolating function f> is unique. Suppose that there is an another
function f) = c*I*F *2/P in Eg,p that interpolates f; with respect to 6. We may assume
that functions F, F* are of unit norm in Kg and have positive values at the origin. Let also
¢ > 0, c* > 0. Consider the inner function J such that I JF = zO F. Since ¢l F2/P — ¢* [* F**/P
lies in 9 HP, we have

c= / COIFYP .z JFYP dm = / GO F*P . 2 JFP am < c*. (©6)
T T

Symmetric argument tells us that ¢, < c¢. Hence, we have equality in (6). It follows that outer
functions F, F* have the same modulus on T. Since F(0) > 0 and F*(0) > 0, we have F = F*.
Again by equality in (6), inner functions I and /* have the same argument on T. Hence, I = I'*
and o = f;. O

A function g € L? is called H”-badly approximable if the zero function is the best analytic
approximation of g in L”. Theorem 2 and Proposition 5.1 allow us to describe all H”-badly
approximable functions in 6 H”, where 6 is an inner function and 1 < p < oo.

Proposition 5.2. Let 1 < p < 00. A function g € QHP is HP-badly approximable if and only if
0g € Eg p.

Proof. By Theorem 2, we have 6g € Ey , for every H”-badly approximable function g € OHP.
Conversely, take a function g € 6 Ep, p» and consider its best H”-approximation p,. Set f| = 6g.
The function f> = fi — 0p, interpolates f1 with respect to the inner function . By Theorem 2,
we have f> € Eg ,. Hence, two functions f1, f> € Ey,, interpolate the function fi with respect
to 6. It follows from Proposition 5.1 that f; = f> andso pg =0. [

We conclude this section with some examples.
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Example 1. The class E,» | consists of polynomials of the form

K M
const - 1_[(1 — 2z — Ap) 1_[(1 — fim2)% )
1 1

where |Ax| < 1, |um| < 1,and K + M < n — 1. As to the author knowledge, the problem of
constructive interpolation by polynomials of form (7) with respect to z” is open until now. A
detailed discussion of this problem can be found in Section 5 of [6].

Example 2. Let us compute the upper bound of quantities | £(0) + f'(0)| over all f € H' of
unit norm. By duality and Proposition 5.1, this problem reduces to interpolation of 1 4 z with
respect to z> by a polynomial in E 2 ;. Itis easy to see that the polynomial i(Z + z)? solves this
problem. Hence, we have

1 5
sup {IF O+ SO £ ISy =1} =5 [ le+ 2P dm =3,
The general problem of calculation of sup{|a0f(0) +af'(0): feH!, Nfllg = 1} is
solved in Section 5 of [6].

Example 3. The problem of constrained interpolation in H* with respect to the inner function
z" is the classical Schur problem. It can be stated as follows: given n numbers ay, .. ., a@,—1, find
a function f € H® of minimal norm such that f®(0)/k! = a; for all k. This problem can be
solved constructive; see [13] or Paragraph 3.4.2.(ii).(b) in [8]. The solution has the form

K

Z— Ak
const - —, |M] <1, K<n—1. (8)

]1:[1 1 — Az
Clearly, class E;n o consists of functions of form (8). This agrees well with Proposition 5.1 (its
proof works in the case p = oo if there exists the dual extremal function to the function 6 f1).
Similarly, the classical Nevanlinna—Pick problem reduces to interpolation by functions of form

(8) with respect to a finite Blaschke product. For more information, see Chapter 3 in [8].
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