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Abstract

In this paper we study the asymptotic behaviour of polynomials orthogonal with respect to a Sobolev-
type inner product

o0 . .
(p.q)s = /O P @)x%e  dx + NpW (0)g ¥ (0),

where N € RT and j € N.

We will focus our attention on the outer relative asymptotics with respect to the standard Laguerre
polynomials as well as on an analog of the Mehler—Heine formula for the rescaled polynomials.
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let (o, (1, - .., i j) be a vector of positive measures supported on the real line such that

/ |x|" dpg < o0,
r

fork=0,1,2,...,jand foreveryn € N.
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In the linear space P of polynomials with real coefficients we can define an inner product

J
(Poa)=) f PN g™ (Ddu, 0]
k=0 /R

p,q €P.

This inner product is known in the literature as a Sobolev inner product. The study of
the sequences of monic polynomials orthogonal with respect to (1) has attracted the interest
of many researchers during the last twenty years. One of the reasons is the fact that many
properties of the standard polynomials (j = 0) are lost when (1) is considered. In particular, the
existence of recurrence relations of low order only holds when the measures { Mk}li:l are discrete.
Furthermore, the zeros can be complex or, if real, they can be located outside the convex hull of
the union of the support of the measures {uk},](:() .

Most of the contributions deal with measures of bounded support (see [13] and [15] for a
survey of the main results concerning the analytic properties of such polynomials).

If 1o has an unbounded support and {uk},i:] are discrete measures very few results are known.
From an algebraic point of view a first approach was made in [12] where, as an example, the case
of dug = e~*’dux is considered. When j =1, fordug = x*e ™ dx + Mod(x) and dpu| = M15(x)
in [8] a representation of the corresponding sequence of monic orthogonal polynomials in terms
of Laguerre polynomials as well as its representation as hypergeometric series is found. Later
on, in [2] the authors analyzed the outer relative asymptotics in terms of Laguerre polynomials
{L‘,"l}n>0. Furthermore, a Mehler—Heine-type formula is obtained for such polynomials. As an
application, some results concerning the behaviour of their zeros are obtained. For some more
extra information see the survey [11].

For higher derivatives, i.e. j > 1, when dug = x%e ™ dx + Mod(x), dux = Mid(x), k =
1,2,...,j, in [7] an explicit expression for the Sobolev orthogonal polynomials in terms of
classical Laguerre polynomials is given. Furthermore, their representation as a hypergeometric
function and the holonomic second-order linear differential equation that such polynomials
satisfy are obtained.

Unfortunately, no asymptotic results for such polynomials are known. More recently, in [1]
the authors analyzed asymptotic properties when dug = e_xzdx + MyS(x), duyr = Mid(x), k =
1,2, 3.

The structure of the paper is as follows. In Section 2 we present the basic background
concerning classical Laguerre orthogonal polynomials. Section 3 deals with the connection
formula between the monic polynomials {L‘,’l‘ }n>0 orthogonal with respect to the Sobolev-type
inner product

o0
(p.q)s = / pgx®e*dx + Np (0)g(0),
0

where N € RT and j € N, and the Laguerre polynomials {L;X,H +1} o In Section 4 we obtain
n>

in terms of {Le} as well as a

the outer relative asymptotic of the polynomials {Lz }n>0 >0

Mehler-Heine-type formula, i.e. the behaviour of w

plane, where L% (x) = (_n—].)nﬁ(,f (x).

on compact subsets of the complex
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This last result constitutes a partial answer to a question posed in [2] about the outer relative
asymptotics and the existence of a Mehler—Heine-type formula for the corresponding sequence
of Sobolev orthogonal polynomials.

2. Preliminaries

Let {un},>0 be a sequence of real numbers and let u be a linear functional defined in the
linear space [P of the polynomials with real coefficients, such that

(u,x"):un, n=0,1,2....

w is said to be a moment functional associated with {u,},>o. Moreover u,, is the n-th moment of
the functional .

Given a moment functional u, a sequence of polynomials { P}, is said to be a sequence of
orthogonal polynomials with respect to p if:

(i) The degree of P, is n.
(i) (u, Pp(x) Py (x)) =0, m # n.
(iii) (u, P2(x))#0,n=0,1,2,....

If every polynomial P, (x) has 1 as leading coefficient, then {P,},~ is said to be a sequence
of monic orthogonal polynomials. It is clear that for every sequence of orthogonal polynomials
there exists a corresponding family of monic orthogonal polynomials. In the sequel we will work
with monic polynomials.

The next theorem, whose proof appears in [5], gives necessary and sufficient conditions for
the existence of a sequence of monic orthogonal polynomials { P}, > with respect to a moment
functional u associated with {1, },5(

Theorem 1 (/5]). Let @ be a moment functional associated with {i,},>o. There exists a
sequence of monic orthogonal polynomials { P, }, > associated with p if and_only if the leading
principal submatrices of the Hankel matrix [/L,'_H]l.’j o are non-singular.

A moment functional such that there exists a corresponding sequence of orthogonal polyno-
mials is said to be regular or quasi-definite [5]. If ¢ (x) is a complex polynomial, we define the
moment functional ¢u, the left multiplication by a polynomial ¢, and Dy, the usual distribu-
tional derivative of u, as follows:

(P, p(x)) = (1, ¢ () p(¥)), (D, p(x)) = — (i, p'(x)).

A sequence of orthogonal polynomials { P, },>( is said to be classical if there exist polynomi-
als ¢ and ¥, withdeg ¢ < 2 and deg s = 1, such that u satisfies the Pearson differential equation

D (pu) = yrpn.

Classical orthogonal polynomials (Hermite, Laguerre, Jacobi, and Bessel) are extensively
used in the literature taking into account their applications in mathematical physics. Indeed,
one of their most popular applications is in the study of problems involving hypergeometric
differential equations (see [3,6,9,16,18]).

The Laguerre orthogonal polynomials are defined as the polynomials orthogonal with respect
to the inner product

o0
(P, Q) =/ pgx®e*dx, a>—1,p,qeP. 2)
0
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We need to summarize some properties of the monic Laguerre orthogonal polynomials that
we will use in the sequel. The details of the proof can be found in [3,5,6,10,18].

Proposition 1. Let {ij} be the sequence of Laguerre monic orthogonal polynomials.

n>0
(1) For everyn € N,
xLy(x) =Ly () +QCn+1+a)Ly(x)+nn+a)Ll;_(x) 3)

with Ly (x) =1, LY (x) = x — (¢ + 1).
(2) Foreveryn € N,

x (L)) =nL%(x) +n(n+a) LY (x). )
(3) For everyn € N, LS (x) satisfies the differential equation
xy" +(@+1—-x)y =—ny. ®)
(4) Foreveryn € N,
0 k
(= x
L% (x) = (=1)" Dy —_ 6
“(x) = ( )(“+)Z(a+1>km Q

k=0
where (a), =a(a+1)---(a+n—1),n> 1, and (a)g = 1, is the Pochhammer symbol.
(5) Foreveryn € N,
L%(x) = L& (0) +nL%H (x). @)

(6) Foreveryn € N,

|28]2 = n'P(n +a + 1), ®)
(7) For everyn € N,

@ I m+a+1)
L,(0) = (=D TetD ©
(8) (Christoffel-Darboux formula) If
nL%(y)L%(x)
Kn(x,y) =) ——5—

j=0 (

o
L;

o

denotes the n-th kernel polynomial then, for every n € N,
Ly OLy(y) — Ly (WLy(x) 1

Kn(x.y) = — 5. (10)
y lze ],
As a consequence, notice that
LY(0
Ky(x,0) = 1O ey, (11)

nI'n+a+1) "
(9) (The Mehler—Heine-type formula) Let J,, be the Bessel function of the first kind defined by

0 1vj 2j+a
fay = 32 CD /2

S G e+ D)
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Then
_L(x/(n+ k)
lim +———— =

n—o00 n<

x 72 ], (24/%) (12)

uniformly on compact subsets C and, uniformly in k € NU {0}. Here Zﬁ (x) = (7,1]!)" LS (x).
(10) (Outer ratio asymptotics)

Zot+t X
lim —25‘# = (—x)"/?, (13)
n—oo pt/ Ln+h(x)

k,h € N, t € Z, uniformly on compact subsets of C \ [0, 00) (see [2] and [18]).
We will use the following notation for the partial derivatives of K, (x, y):

IR (K (x, y)

i,k
Tty = K.

If p(x) is a polynomial with deg p < n, then we can write it as a linear combination of the
Laguerre polynomials as follows:

" (LY (x), p(x)
Z( B apzx >_a Ly (x).
=gl

As a consequence,
; " (LY (x), p(x) ;
v =3 % ()" 0,
i Ll
and, taking into account that
: 2 L) (L)Y )

(K07, 3. pc0) = <Z L@ .,
S V=i 7 o
_3 (L¢ (). p),

= L)l

px) =

()" o,
we get

(K703, p)) = PP 0. (14)

Let {P,},,>0 be a sequence of monic orthogonal polynomials. From the Christoffel Darboux
formula (see [3,5,6,18]), we have
1 Py(x)Pp—1(y) — Puo1(x) Pu(y)

Kn-1(x,y) =
| Py |? x—y

Calculating the j-th partial derivative with respect to y, we get

©.)) _ 1 8_j<Pn_1(y)>_ 8_-’(Pn(y)>>
O TR (&(x)ayj 1) - P . as)

X xX—y
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Using the Leibnitz rule
8_j Pa (y) Z]' P ()
ayl \x — k! (x — y)i—k+1”
and replacing the last expression in (15), we obtain

J ~| P(k) (y) Jo (k)()
©.7) 1 J! Y
2 = gt (o S e e 3 £ )

j!
P 1||2(x— y)it

(P <x)Z k,P( Y@ == P, l(x)Z k,P,i")(y)(x - y)") :

Asa consequence,

il
K0 0) = s (P05 0. Piot) = Pt 0Q5.0.P) - (16)
n—1

where Q;(x,0, P,—1) and Q;(x, 0, P;) denote the Taylor polynomials of degree j of the poly-
nomials P,_j and P, around x = 0, respectively.

Next, we will compute K,E_{ )(x, 0). Indeed

Jj!

(0 J)
K (x, 0) e —
| Py || x /1

_|_

[(P () + P, Ox + 5= ~

P (0) pY O
X <Pn—l(0)+P,:_l(O)x—‘r%xz_k..._’_ ]1'

AU P,§”><0>x,,>

P Do
—( w—1(0) + P, (0)x + "21() 24 ~~+—()x” 1)

(n—1)!

p )
x <P (0) + P/ (0)x + = G/ -~+Pn,(0)xj>]. (17)

2! j!

If we make some computations in the last expression, the coefficients of the monomials of
degree less than or equal to j inside the bracket are cancelled. Thus, when x = 0, we have

. (]+1) P(J+l)(0)
KOP0.00= 1 (0O p 0 le=l D)
00 = PO T MO
and
KCD0.0) = ———— (PP ©0) - P PI 0) (18)
1Pt PG+ 1) (s )
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In order to find K ,E]_{ )(0, 0), we just need to deduce in (17) the coefficient of x2/*! inside the
bracket which is

Po1 () PPV 0)  P/_,0) PPV (0) PP 0) P+ (0)
o (2j+ 1! T it G+
P, PP o) PO PP ) PYTV(0)
o @i+ o)y il G+ D!
__ 1! @j+1) @) <2J+1)
RECTESY [( n—1(0) Py )+ P,_,(0) P, (0) +

N (2JJ+ 1) P, (O)P(]+l)(0))
- (Pn(O)P,fz’1+1’(0) + PP (0) <21 + 1) 4.
+ (Zj N 1) PO PYY ”(0))} |

Furthermore, in the case of the Laguerre monic polynomials, we get

) (j1? 2j +1
K(]J(O ) . 22( )

Qj+ 0L
< [(L2) Y @00 — (L) ® O )PP )]

B (j)? L (241
_(2j+1)!(n—1)!F(n+ot);< k )

x[(n =1 = LS Ol =1+ = 2] + L 0)

— e (n—k+DLFFO)YR - 1) - (n-2j—1+k)L“+2ff‘k+‘(0)]

n—2j—2+k
k=0

y GN2Qj —2%k+Dntn—1) - (n—k+Dn—1-(—2j+k(n+a+1)
Qj+Dn— DI+ k+ DI(@+2j —k+2)

’

(19)
and as a consequence,
[v 1 2j+1
kY9 (0,0) ~ (”+“f n (20)
n!
where Cy, ; is a real constant number that depends of o and j. More precisely,
G2 N (2j+1 Qj—2%k+1)
Coj=——"—Y_ : : 1)
Q2j+ D! & k 'le+k+DI'a+2j+2—k)
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In particular if j =1

1

Co,1 = . (22)
“T @3N+ )P
3. Connection formula
Let introduce the following Sobolev-type inner product:
oo . .
(p.q)s = / pax®e”*dx + Np ()¢ (0), (23)
0

where N € R™ and j € N. Let {C% }n>0 be the monic Laguerre—Sobolev-type orthogonal poly-
nomials with respect to the above inner product.

Our aim is to obtain an explicit expression for these polynomials in terms of classical Laguerre
polynomials. In order to do this, we will consider the Fourier expansion of LY in terms of
{L% }n>0. Indeed

n—1
LE(x) = LY + Y a" LE (v),
k=0

where

(n) <‘Cg(x)’ Lg (x)>o(

ak = —2
|LE @],

But, from (23)

a(ﬂ) _ <£g(x)v LZ(x))S - N(Lg)(j)(o) (Lg)(j) 0)
k B k)

L2

and taking into account that (£ (x), Lg(x))s =0fork=0,...,n— 1, we get

o NLHD ) (L9)Y (0)
a,’ = —
‘ |Lg ol

Asa consequence,

n—1 a\(J) «
LE(x) = LEx) = N(LHD(©0) > (L)(—O)sz(x)
= Ly,

= LY(x) = N(LHD O KT (x, 0. (24)

Notice that forn < j, L% (x) = L% (x).
Next, we will express Kﬁ{)(x, 0) as a linear combination of some Laguerre polynomials.
Using the orthogonality of the Laguerre polynomials, we have

KD, 0L 2
(x, )”(]) 1(x)“a _ oz+j+1( )+Zb(n)La+j+l( ),
(Ly_)"" O k=0
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where
0,
21 (K, @ 0, L“*f“( )
b(")_ a+j+1
kK — .
1
(L2 ) o et o
a+j+1
Using (14) we get
0,7) a+}+]
() <K 0), L° >
(01) _ ( gfl) 0) a+j+1 (x, 0), ()a+j+1 a+j+1
(x,0) = == — 1 ) 5 L )
I ol e o
a+j+1
- a+j+1 ()l+j+]( ). (25)
La+]+1
H n—j-1 atjtl

Now we compute each one of the coefficients of the previous expression. From (4),
XL (x) = LYx) + (n + o) LY, (x),
and thus

xLH @ = o (L + o —k+a+ H LT )
= L@+ o -kt j oL @
+ o —ktat ) (Lt @ ko + - DL )]

- xH[ @) + 20—k +a+ HL T 0

+ =kt PDo—k+a+ - DL 0]
Iterating the procedure, we will prove by induction that
Jjt+l

i + 1
L () = Z(Jj )(n_k+a+j_r+1),Lz_k+,-_,<x>- (26
r=0

Indeed, assuming that the above expression holds for j — 1, i.e.

. I/
fozir]Z_l(x) = Z (i) m—k+oa+j—r), Lz—k-rj—r—l(x)’

r=0
then

,+1La+/+1(x) — ( ]L(a+1)+j (x)>

j .
:xZ(}{)(n—k+oz+j—r—i—l)rL‘Hkﬂ )

r=»

0
(i
:Z(r)(n—k—l—oz—l—j—r—i—l),
r=0
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o G R R R S C))

i .
— Z(J) (m—k+oa+j—r+1,Ly 4 ()
+Z<ri1)(n—k+a+i—r+1>rL3—k+f—r(x)

Ly ey j () + Z <<i) + (r i 1)) m—k+oa+j—r+1D, Ly ()
r=1

+m—k+a) Ly ;1 (x)
J+l
+1 .
Z(J ) —k+a+]—r+l)rLf;_k+j_r(x),

and our results follows.
Now, we use this to compute the coefficients in (25). Using (26), for 1 <k < j,

<K(0 J)(x O) ]+1La+]+l( )>

<K(OJ)( 0) Z( ) —k—l—O{+J —r+ 1)r LZ—k+j—r(x)>

j+1
=Z<]+l>(” kbatj—r+ D (K0P 0000 Ly, )

r=0

o

Therefore, everything comes down to calculating <K ©.5 (x,0),L%_, - r(x)> forO0 <r <
o
j + 1. Using (2) and (23), we get

<K(0])(x 0), LY. ke r(x)> =0,
forO <r <j—k,and
) . .
<K<oj>(x 0, L% 4, ;- r(x)> (Lg e ) ©) j—k+l<r<j+1

As a conclusion, for 1 <k < j,

<K<°f)(x 0), x/H L (x )>

j+1 . i
+ 1 )
= Z (Jr >(” k+a+]_r+1)r< n—k+j— r) ).
r:/—k+l
Therefore
0, 1 i i+1 j+1
KD 0) = AN LA 0o + AL L o + -+ AY LT ) Q27
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where
)
o _ L) O
n,1 — 2
”L‘r)l[—l(x)”a
and
, 1
Al = PNE
Lot
H ner (%) atj+1
j+1 . '
. 4 ‘ )
x 3 <J ) ) (n—r+a+j—s+2); (Lﬁ_r+,~-s+1) OF
s=j—r42

for2 <r<j+1.
In order to compute Af,j 2, we use the next expression which is a consequence of (7):
N P Ty
(Ln) x) = o j)!Lnfj (x).
Indeed,

(n—1)! ya+j _il1 Tnta)
Gy ik 1O DT Ry

LT = DIM'n4+a)  (m—j—DII'(n+ )
_ p/!
T m—j-DITa+j+1)’

and
AU _ 1
n,r — .
(=T +a+j—r+2)
(i1 +
. o
X Z ( P )(n—r+oz+] —s+2)(n—r—s+2); (Ln—Z—erl) 0)
s=j—r+2
1 J+1 . _1yn—r—s+l
(n—r).S:j_r+2 S I'a+j+1)
for2 <r<j+1.
Thus (24) becomes
. j+ .
L) = LE(x) = N(LHV(©0) Y ALy (). (28)

r=1

Using this equality, we can compute (E‘,’{)(j )(0). Taking the j-th derivative on both sides,

(L) @) = (= j + D;Le ()

j+1
i i . 2j
—N(LHDO) Y AN —r = j+ DLy ),

r=1



432 H. Duenias, F. Marcelldn / Journal of Approximation Theory 162 (2010) 421-440

and thus
. +j
NG _ (n_J+1)jL7,,}(O)
)" 0= —
L+ N A —r—j+1);D,a. j.r)
r=1
; —j Lntatl
- G ’
1+N Y Aly(n—r—j+1);Dn,a,jr)
r=1
with
0 ifr>n—j
D(n,a, j,r)= (_1)n,r,jf(n+a+j—r+2) ifr<n_j°
I'e+2j+2) -

As a consequence, we obtain:

Theorem 2. Let {Lz}n>0 be the monic Laguerre orthogonal polynomials and { LY (x)}n>0 be
the monic Laguerre-Sobolev-type orthogonal polynomials corresponding to the inner product

defined in (23). Then, for everyn > j,

) j+1 ) )
L£2(x) = LY ) = N(LHD0) > AP Ly ), (29)
r=1
where
o o 1vn—j Dnta+1)
()9 (0) = (n—j+D;=D" o
n - j+1 0 ’
1+N Y Ali(n—r—j+1);D0n,a,jr)
r=1
0 ifn—r—j<0
oy T i—r 1
D(n,a, j,r) (1y—r=i (n—i—a-}-j‘ r+1) fn—r—j=0"
I'a+2j+2)
) _ (/!

LT = DI+ +1)
and, for2 <r < j+1,

A(J') _ 1 /Z—H (] + 1) (_l)n—r—s-i-l (n —r—==s +2)j
T (=) T\ s Fa+j+1) '

From (7), we get
j+1 .
+1 i+1
Lix)=Y (n—r+1), (’ ; ) Lyt ),
r=0

and using the notation of the above theorem, we obtain another equivalent expression:
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Corollary 1. For everyn € N,

) Jj+1 . ) . .
i@ =Ly o+ ) [(n —r+1), (J N 1) - N(Lg)U)(O)A,S{)] Lyt (). 30)

r=1

If we define
Cil) =(m—r+1), (f ; ) - N(LHD 04 31
forr =1, ..., j+1, we can write the Laguerre-Sobolev-type orthogonal polynomials as follows:
: s S .
Lie) =Ly @+ > el ). (32)
r=1

This means that {Eﬂ (x) } >0

linear functional associated with the weight function w4 j11(x) = x@title=x (see [4]).

is a quasi-orthogonal sequence of order j + 1 with respect to the

4. The zeros

In this section, we are going to prove that the zeros of the monic Laguerre—Sobolev-
type orthogonal polynomials, are real, simple and interlace with the zeros of monic Laguerre
orthogonal polynomials for n > j. The ideas of the proofs are the same as those used by Meijer
in [14].

Theorem 3. The monic Laguerre—Sobolev-type orthogonal polynomial L% (x) has n real simple
zeros and at most one of them is outside of (0, 00) .

Proof. Let &) < & < --- < & be the positive zeros of L% (x) of odd multiplicity. Let

p(x) = (x — &) —8&) - (x —&).

Thus ¢(x) L} (x) does not change sign on (0, 00). Suppose that deg¢ < n — 2; then, using the
fact that (xg(x))Y) (0) = j=D(0) we get

(o), Ly (x0)) = / PN L ()x"e  dx + NoP(0) (£2)7 (0) = 0,
0
(x<p(x), Ly (x))S = /OO xp(x) LY (x)x%e " dx + NV (0) (Eg)(j) 0) = 0.
0

Taking into account that the integrals in the last expressions are positive, then ¢/)(0)
(£2) (0) < 0 and =D(0) (£2) (0) < 0. This means that ¢/)(0) and ¢~V (0) have
the same sign. But this is a contradiction with the well known fact that if p(x) is a polynomial
with simple zeros in (0, 00), then p’(0) and p(0) have different signs.

In other words, deg ¢ = n — 1 or deg ¢ = n, which proves our statement. W

Theorem 4. Let & < & < --- < &, be the zeros of the monic Laguerre—Sobolev-type or-
thogonal polynomials LS (x) and let x| < x2 < --- < X, be the zeros of the monic Laguerre
orthogonal polynomials LS (x). Then & < x1 and x; < &1 <xip1fori=1,2,...,n—1.



434 H. Duenias, F. Marcelldn / Journal of Approximation Theory 162 (2010) 421-440
Proof. From the Gauss quadrature formula there exist positive constants A1, A2, ..., A, such that
n o0
Zkiﬁ‘;(xi)x{ = / x"Ly(x)x%e *dx, O0<r<n-1,
i=1 0
ie.,
n
S hiLdnxl = —jIN (€)Y 85, 0<r<n—1.

i=1

We consider the system of n linear equations in the n unknowns £ (x1), £ (x2), ..., L% (x,).
The determinant of the matrix of the coefficients in this linear system is

D=MAy- -2y V(x1,%2, ..., %)

where V (x1, x2, ..., x,) denotes the Vandermonde determinant of x1, x2, ..., x,. As a conse-
quence, D is a positive real number. On the other hand, if for 1 <i < n we define

1 1 1 1 1
X1 X2 e Xi—1 Xi41 o o Xn
2 2 2 2 2
X1 Xy X Xipr o Xy
Di=| j-1 _j-1 j-1 -1 -1/,
X1 X B L
G+ G+ j+1
xl _x2 “e 'x[—l xl-‘,—l P _xn
n—1 n—1 n—1 n—1 n—1
X X X X o X
then
o i+ - o\ () D;
Ly (xi) = (=D jIN (£3)7 (0)

)“iv(-xlax27'-'axn)‘

But D; is a positive real number according to problem 48 in page 43 in [17]. This means that
sign(L3(xi)) = (=D sign(LHD(0)) = (=1 sign((LY)P(0)) = (=1)"*. In other
words, £%(x) has at least one zero in every interval (x;, x;4+1) fori = 1,2,...,n — 1. Finally,
taking into account that the sign of £ (x1) is (— 1)"*+!, we conclude that &, < x;. W

5. Asymptotic behaviour

We will analyze the outer relative asymptotic behaviour of £ (x). From (24) we have

n—1

Le(x) LY (x)

Law _ NEDVOK (0

But from (16), we get

Li JINLHDO) (LG () Q(x, 0, LY_ ) = L (x)Q,(x, 0, L))

Li Lo, I x Ly ) ’
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where Q(x,0, Ly_;) and Q;(x,0, L) are the Taylor polynomials of degree j of L;_, (x) and
L% (x) around x = 0, respectively. Therefore

L0 INEDOO,6 0. Ly ) (1_ Qj(x,0, L) L‘ifl(x)>' (33)

Lyx) [Le_ |2 i+ Q;(x,0,L%_) L&(x)

First, we will study the behaviour of the following three expressions:
Jj10;(x, 0, L% )
sl
Q;(x,0,L% Ly 1(x)
Q;(x,0,L¢ ) Lg(x)
(i) ()" (0).

®

(i) 1 —

For the first one,
1050, 0.L8 ) (L)Y O
Lo Lo |t
(=D =2)---(n—j) a+,
B n—D'I'(n+ )
_ n—Dm—=2)---(n—j) _pyn-ie I'n+ ) j

DTt Tatjtrl)

(O)x]

Asa consequence,

J'Q;(x,0,Ly ) (—Dr—1=ini
|Le 1” i+l x(n =D+ j+1)

(34)

On the other hand,

. 0j(x,0,Ly) Ly (x) 1 nm—1)---(n—j+DIn+a+1)Ly_(x)
Q;(x,0,L% ) L%(x) m—Dn—-2)---(n— j)[(n+a) L%x)

n—l—ocL 1(X)
n—j Lg(x)

=1-

(35)

where Zg (x) denotes the n-th Laguerre polynomial with leading coefficient (:z—l,)n
Finally, from (9), (20), and (24) we get

(Lot)(]) (0)
1+NKY2(0,0)
n(n— 1) (n— j + D(=1)"~] platety
14 NC,, M '

LHY(0) =

~

Thus

1 (=" i T(n+a+ 1)n—1)!
F'a+j+D)(m—DI+NCy;I'(n+a+ n’

LY (0) ~ (36)
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Using (13) in (35) we get
tim (1— 20 L) L) (37)
n—00 Qj(xvo’ Lz_l) L%(x)

uniformly on compact subsets of C \ [0, 00).
Then, from (33) and (34), we obtain
L@ NV 00, Ly ) (1 ;G 0.LY) Lzl(x)>
L%(x) HLZ_le,xf“ Qj(x,0,L% ) L%(x)
N(=D""'n/T(n+a+1) (=1)=1=in
(= D!+ NCy Tt +a+ Dn? x (M'a+ j + 1))2
§ (1 0j(,0.LY) Lg_l(x)>
Q;j(x,0,Ly_;) Lg(x)
N nHI(n+a+1)
x(IMa+j+1))> =D+ NCqo;I'(n+a+ 1)n?

x(l Q;(x,0,L%) Lg_l(x)>

CQj(x,0,L% ) L(x)

and therefore, using (37) we get:

Proposition 2.

Ly(x) {

i =
n— 00 L‘r)ll(x)

(38)

uniformly on compact subsets of C \ [0, 00).

Taking into account the Mehler—Heine formula (12), we will deduce an analogous Mehler—
Heine formula for the Laguerre—Sobolev-type orthogonal polynomials.

First, we will find an expression for the j-th Taylor polynomial of L{ (x) replacing the variable
x by x/n:

D" _1yn—1
Q.,‘(x/n,O,LZ):( D'Mnt+a+1) (=D"'nln+a+1x

I'a+1) I'a+2) n
+(—1)”_jn(n—1)-~(n—j+1)F(n+(x+1)x_j
I'(a+j+1)j! n’
D) Tate+ D[, 1 ,
= Tat D [Sj(x) nRj(x)+(9(n )i|,
where
Sy = 1= —5 . D
I VTP s M T
w x? 3x3 (—DIxi(j—1)j
RY(x) = — e —
Wa+1) 3N a+1); 2jia+1);
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Therefore

(=D'"T’'n+oa+1)
Ia+1)

1
Q;(x/n, 0, LY) = [S;* (x) = ~RY(x) + O(n—ﬂ . (39)

In an analogous way, we conclude that

D"+ 1
0 (e/n,0, L8 ) = )r(a Jr(’;) @) |:S;’-‘(x)+;TJ9‘(x)+(9(n2)i|, (40)
where
2 Cvi=laj i
Py = — W VTG
Ma+1) 2N a+ 1) 2+ 1), j!

From (16) and (24), we get

NjULEHD (0)

LY%(x) = L%x) —
' ’ 2

(L5 (1) Qj(x,0,Ly_}) — Ly (x)Q;(x,0, L],

and using (7) we have

NNLHY(0)

L5(x) = L% (x) — T
Ly |0 x/+!
(oY

[L‘,’,‘(X)Qj(x, 0,Ly_ )

L) - Ly ()

0,0, Lﬁ)j|

(LY @) . ’0’ L
= L‘V’l‘(x) — w |:<Qj(X, 0, L‘,’,‘_l) + M) Lg(x)
(o W Zhs n
Lyt

Q;(x,0, Lﬁ)} -

=n"

Multiplying both sides of the above expression by r;:z"‘ and using the change of variable

X — x/n, we get

Lix/n)  LE(x/n)  NLHWD ©O)ni!

" " 2] !

x [(Qj(x/n,o, Ly_p+ Q"(x/’: 0 Lg)) LZS;/n)
1 Le" (/)
i R

Qjx/n,0, LZ)] )
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and, from (8), (36), (39) and (40),

~ ~ Nj! (71)”*jnjf(n+ot+l)(n71)!nj+1
LY (x/n) N L% (x/n) _ T@+j+D (1=D4NCy,; I (n+atDn? D"'"I'n+ )

n n (n—DII'(n + o)x/+1 I'a+1)

x |:<gS;’~‘(x) _ lij’l(x) _ lR‘/%l(x) + o(n—2)> L‘,’fLa/n)
n n n n
Le-! 1
- H IR (500 - S RE + ow%)} .

As a consequence,

LA/ ap (=D7+j!
Jm e = @V + Co i@+ j+ DI (@ + Dxit!
x [0, V) (@800 = TE ) = RI@) ) — @020 v si]

uniformly on compact subsets of C. Using the fact that

Jx

_ X a+1
T;'x(x) + R?(x) = msj_l (x),

Ja—1Q2V%) + Jot12Vx) = —=Jo 24/), (41)

and doing some computations we get:

Proposition 3.

Lo —1)J j1get!
lim £10M ey o {1+ CU - }
n— 00 n

Cojl(@+j+ DI(+2)x/
(—l)fj!S;?‘(x)
Cojl(a+ j+ DI (a+ 1)xitl/2

—x 2 gy 1(2V/%) 42)

uniformly on compact subsets of C.

From (41), (42) becomes

~ i - +1 o
lim £20 ey 0 14 (DI (8540 - S5 0)
n—oo  pd% “ Co (@ +j+ 1) (a+2)x/
(=1)7 8% (x)
Cojl(a@+j+DI(a+2)x]

If j = 1, then we deduce after some straightforward computations a result obtained in [2].
Now, we are going to find another important asymptotic behaviour of L (x). Taking into
account

AR

— X7 Jy2(24/%)

= ('Cff’ Lz>s . ~
= (c2. L%), + N (£)7 ©) (L2 0
= |22 + N (£)Y © (£9)Y ().
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and, using the asymptotic behaviour of (Lf{)(j ) (0) and (36) which show us the behaviour of
([l‘,’f)(] ) (0), we then get

lels _ |, v o) o
2 2
= 1251

_i i C(n+a+1) i —j L(ntatl)
D" raren M DT T

1+ Nca’jwn%ﬂ nl'n+a+1)

2j I'(nta+1)
T(a+j+1)?

1+ .
n!+ NCq jI'(n + o + 1)n2/+1

=1+o(%).

Thus, we have proved:

~1+N

Proposition 4.

I
= L,

Finally, we present a result about the behaviour of the norm of the Laguerre—Sobolev-

type orthogonal polynomials that is a consequence of the above proposition and the fact that
_ 1 _
n~1 ||L‘,’{||O/" — e ! whenn — oc.

Corollary 2.

. —1 || pa|l/n _ —1

Jim oL =T (43)
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