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Abstract

Let X denote a (real) Banach space. If P : X → X is a linear operator and S ⊂ X such that P S ⊂ S
then we say that S is invariant under P . In the case that P is a projection and S is a cone we say that P is a
shape-preserving projection (relative to S) whenever P leaves S invariant. If we assume that cone S has a
particular structure then, given a finite-dimensional subspace V ⊂ X , we can describe, in geometric terms,
the set of all shape-preserving projections (relative to S) from X onto V . From here (assuming that such
projections exist), we can then look for those shape-preserving projections P : X → V of the minimal
operator norm; that is, we look for minimal shape-preserving projections.

If Pi : Xi → Vi is a minimal shape-preserving projection (relative to Si ) defined on Banach space Xi
for i = 1, 2 then it is obvious that P1⊗P2 is a shape-preserving projection (relative to S1⊗S2) on X1⊗X2.
But is it true that P1 ⊗ P2 must have minimal norm? In this paper we show that in general this need not
be the case (note that this is somewhat unexpected since, in the standard minimal projection setting, the
tensor of two minimal projections is always minimal). We also identify a collection of operators in which
P1⊗ P2 is always a minimal shape-preserving projection (within that collection). This result is then applied
to a (well-known) special case to reveal a (non-trivial) situation in which P1 ⊗ P2 is indeed a minimal
shape-preserving projection (among all possible shape-preserving projections).
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1. Introduction

We say that set S is invariant under mapping P if Ps ∈ S for every s ∈ S (or more briefly as
P S ⊂ S). The pairing of mappings with their invariant sets is a basic problem, with variations
appearing throughout the mathematical literature. As an initial refinement of this problem, one
may take P as a linear operator (defined on Banach space X ) and S as a cone – a convex set,
closed under nonnegative scalar multiplication; in this setting, P is said to be a cone -preserving
map if P S ⊂ S (see [12] for an overview) (of course if S induces a proper lattice structure on X
then P can be regarded as a positive operator, as in [11]).

To further refine, suppose the elements of (cone) S ⊂ X possess a common characteristic,
or shape, and let P denote a collection of operators on X of (fixed) finite rank. This setting
gives rise to two fundamental questions (and provides a starting point for this paper): does there
exist P ∈ P leaving S invariant (i.e., what can be said about the existence of a shape-preserving
operator in P ) and, if such an operator exists, determine the smallest possible norm of an element
in P which preserves S (i.e. find a minimal shape-preserving operator in P ).

In the paper [5], these two questions were addressed in the case when P is a projection
operator (P2 is the identity map) mapping X = C L

[0, 1] (Lth continuously differentiable
functions) onto finite-dimensional polynomial spaces. For a large class of cones (or shapes) S,
the existence of shape-preserving projections was established and formulas for minimal shape-
preserving projections (and their norms) were given. The goal of this paper is to extend the results
of [5] to tensor product spaces (tensor product spaces are a natural setting in which to construct
minimal shape-preserving projections of multi-variate functions; general results in this direction
are contained in the (upcoming) paper [6]). One would expect that such a generalization would
utilize the main result from [4], which says (roughly speaking) that tensor product of two minimal
projections is again a minimal projection (on a tensor product space). Unfortunately this is not
true (in general) in the setting of minimal shape-preserving projections. Indeed, we demonstrate,
in Example 4.1, a case in which the tensor product of two minimal shape-preserving projections
does not have minimal norm. However, in the specific setting of [5], we can prove the main result
from [4] and, consequently, construct minimal shape-preserving projections for tensor product
spaces involving C L

[0, 1].
In the Sections 2 and 3 we give basic definitions and results from, respectively, tensor

product theory and shape-preserving projection theory. Section 4 contains the main results, with
Example 4.1 demonstrating that the tensor product of two minimal shape-preserving projections
need not have minimal norm and Theorem 4.6 accomplishing the goal of generalizing (to tensor
product spaces) the results from [5].

2. Preliminaries from tensor product theory

Definition 2.1. Let X, Y be two real Banach spaces. Fix x1, . . . , xk ∈ X and y1, . . . , yk ∈ Y .
Then

∑k
i=1 xi ⊗ yi denotes an operator from X∗ into Y defined by(
k∑

i=1

xi ⊗ yi

)
f =

k∑
i=1

f (xi )yi .

In particular, (x ⊗ y) f = f (x)y for any x ∈ X, y ∈ Y and f ∈ X∗. Then X ⊗ Y denote the
space of all finite-dimensional operators from X∗ into Y (we put into one equivalence class all
different representations of any fixed operator).
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Definition 2.2. Let α denote any norm on X ⊗ Y. Then X ⊗α Y means the completion of X ⊗ Y
(in the sense of Banach spaces).

Definition 2.3. Let α be any norm on X ⊗ Y.α is called a cross-norm if

α(x ⊗ y) = ‖x‖ · ‖y‖

for any x ∈ X, y ∈ Y.

Definition 2.4. Let α be any norm on X ⊗ Y . For f ∈ X∗, g ∈ Y ∗ define

( f ⊗ g)

(
k∑

i=1

xi ⊗ yi

)
=

k∑
i=1

f (xi )g(yi ).

α is called reasonable if

α∗( f ⊗ g) = ‖ f ‖ · ‖g‖

for any f ∈ X∗, g ∈ Y ∗, where α∗ denote the norm in (X ⊗α Y )∗.

Definition 2.5. Let X and Y be Banach spaces. Assume A ∈ L(X) and B ∈ L(Y ). Then we can
define a linear operator A ⊗ B by

(A ⊗ B)(x ⊗ y) = A(x)⊗ B(y).

A norm α on X ⊗ Y is called uniform if

‖A ⊗ B‖α ≤ ‖A‖ · ‖B‖

for any A ∈ L(X) and B ∈ L(Y ).

To the end of the paper, unless otherwise stated, we assume that any norm α on X ⊗ Y is a
reasonable cross-norm.
We use X ⊗λ Y and X ⊗γ Y to denote, respectively, the injective tensor product and the
projective tensor product of X and Y . Both λ and γ are uniform, reasonable cross-norms (see
e.g. [2] Lemma 1.6, 1.8 and 1.12]).

Definition 2.6 (see e.g. [[2], Def.1.45, p.27). ] Let X, Y be Banach spaces. For 1 ≤ p ≤ ∞ the
p-nuclear norm of z ∈ X ⊗ Y is defined by:

αp(z) = inf


(

n∑
i=1

‖xi‖
p

)1/p

aq(y1, . . . , yn) : z =
n∑

i=1

xi ⊗ yi

 .
Here q is so chosen that 1/p + 1/q = 1 and

aq(y1, . . . , yn) = sup


(

n∑
i=1

| f (yi )|
q

)1/q

: f ∈ SX∗

 .
If q = ∞, then

aq(y1, . . . , yn) = sup{max1≤i≤n| f (yi )| : f ∈ SX∗}.



934 G. Lewicki, M. Prophet / Journal of Approximation Theory 162 (2010) 931–951

By [[2], Lemma 1.46, p.27] the p-nuclear norm is a reasonable cross-norm. Observe that by [[2],
Lemma 1.44, p. 27] for any B ∈ L(Y )

aq(By1, . . . , Byn) ≤ ‖B‖aq(y1, . . . , yn).

Hence αp is a uniform, reasonable cross-norm. By a result of [9] we have:

L p(S)⊗αp L p(T ) = L p(S × T )

where S and T are finite measure spaces.

3. Preliminaries from shape-preserving projection theory

For a given real Banach space X and subspace V ⊂ X , let P(X, V )(P for brevity) denote the
set of all continuous linear projections from X onto V .

Definition 3.1. Let X be a (fixed) Banach space and V ⊂ X a (fixed) n-dimensional subspace.
Let S ⊂ X denote a closed cone. We say that x ∈ X has shape (in the sense of S) whenever
x ∈ S. If P ∈ P and P S ⊂ S then we say P is a shape-preserving projection; we denote
the set of all such projections by PS(X, V ) (PS for brevity). For a given cone S, define
S∗ = {φ ∈ X∗ | φ(x) ≥ 0 ∀x ∈ S}. We will refer to S∗ as the dual cone of S.

In a (real) topological vector space, a cone K is a convex set, closed under nonnegative scalar
multiplication. K is pointed if it contains no lines. For φ ∈ K , let [φ]+ := {αφ | α ≥ 0}. We
say [φ]+ is an extreme ray of K if φ = φ1 + φ2 implies φ1, φ2 ∈ [φ]

+ whenever φ1, φ2 ∈ K .
We let E(K ) denote the union of all extreme rays of K . When K is a closed, pointed cone of
finite dimension we always have K = co(E(K )) (this need not be the case when K is infinite-
dimensional; indeed, we note in [7] that it is possible that E(K ) = ∅ despite K being closed and
pointed).

Definition 3.2 ([8]). Let X be a Hausdorff topological vector space over R and let X∗ be the
topological dual of X . We say that a pointed closed cone K ⊂ X∗ is simplicial if K can be
recovered from its extreme rays, (i.e., K = co(E(K ))) and the set of extreme rays of K form an
independent set (independent in the sense that any generalized representing measure for x ∈ K
supported on E(K ) must be a representing measure.)

Proposition 3.1 ([8]). A pointed closed cone K ⊂ X∗ of finite dimension n is simplicial iff K
has exactly n extreme rays.

The following result gives necessary and sufficient conditions for the existence of a shape-
preserving projection.

Theorem 3.1 ([8]). Suppose S∗ simplicial. Then PS 6= ∅ if and only if S∗
|V

is simplicial.

Without the assumption that S∗ simplicial we still have one direction of above characteriza-
tion; and it is this result that will be of most use to us.

Corollary 3.1 ([8]). If S∗
|V

is simplicial then PS 6= ∅.
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4. Main results

Let X be a (real) Banach space, V ⊂ X an m-dimensional subspace and S ⊂ X a closed cone,
S 6= {0}. As in Definition 3.1, set

S∗ = {φ ∈ X∗ : φ(x) ≥ 0 for any x ∈ S}.

With Corollary 3.1 in mind, we assume throughout this paper that S∗|V is simplicial, i.e.

S∗|V = conv([g1], . . . , [gl ]),

where l = dim(S∗|V ) and for i = 1, . . . , l[gi ] are extreme rays determined by linearly indepen-
dent g1, . . . , gl ∈ V ∗, each with unit norm.

Lemma 4.1. Let Vo = V ∩ (S∗)⊥. Choose a subspace V1 ⊂ V such that

V = Vo ⊕ V1.

Then dim(V1) = l. Moreover, there exist {v1, . . . vl} ⊂ S a basis of V1 such that gi (v j ) = δi j .

Proof. By definition of S∗, for any fixed v ∈ V1 if g j (v) = 0 then v = 0. Since g1, . . . , gl are
linearly independent, there exist v1, . . . , vl ∈ V1 such that g j (vi ) = δi j for i, j = 1, . . . , l. Now
fix i ∈ {1, . . . , l}. Since g j (vi ) ≥ 0 for j = 1, . . . , l and S∗|V is simplicial, f (vi ) ≥ 0 for any
f ∈ S∗. Hence vi ∈ S. �

Lemma 4.2. Let Vo = V ∩ (S∗)⊥. Let wl+1, . . . , wm be a fixed basis of Vo. Choose a subspace
V1 ⊂ V such that V = V0 ⊕ V1. Let v1, . . . , vl ∈ S be a basis of V1. Define

PS,V1 = {P ∈ P(X, V1) : P(S) ⊂ S, P|Vo = 0},

PV1(X, Vo) = {P ∈ P(X, Vo) : P|V1 = 0}

and

LV (X, Vo) = {L ∈ L(X, Vo) : L|V = 0}.

Then

PS = PV1(X, Vo)+ PS,V1 = Po + LV (X, Vo)+ PS,V1 ,

where Po is a fixed element from PV1(X, Vo).

Proof. Take any P ∈ PS . Since P is a projection onto V and wl+1, . . . wm, v1, . . . , vl is a basis
of V ,

P =
m∑

j=l+1

φ j (·)w j +

l∑
j=1

ψ j (·)v j .

Here for j = l + 1, . . . ,m, φ j ∈ X∗, φi (w j ) = δi j for i, j = l + 1, . . . ,m and φi |V1 = 0 for
i = l + 1, . . . ,m. Analogously, for j = 1, . . . , l, ψ j ∈ X∗, ψi (v j ) = δi j for i, j = 1, . . . , l
and ψi |Vo = 0 for i = 1, . . . , l. Moreover, since P ∈ PS, ψ j ∈ S∗ for j = 1, . . . , l. Indeed, if
ψ j 6∈ S∗ for some j = 1, . . . , l, then ψ j (x) < 0 for some x ∈ S. Fix f ∈ S∗ with f |V1 = g j .

Since gi (v j ) = δi j and f |Vo = 0,

f (Px) = ψ j (x) f (v j ) = ψ j (x)g j (v j ) = ψ j (x) < 0.
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Hence Px 6∈ S; a contradiction. Set

P1 =

m∑
j=l+1

φ j (·)w j

and

P2 =

l∑
j=1

ψ j (·)v j .

It is clear that P1 ∈ PV1(X, Vo) and P2 ∈ PS,V1 . Hence P = P1 + P2 ∈ PV1(X, Vo)+ PS,V1 .

Now assume P = P1+P2,where P1 ∈ PV1(X, Vo) and P2 ∈ PS,V1 .Hence P2 =
∑l

j=1 f j (x)v j ,
where f j ∈ S∗ for j = 1, . . . , l. It is clear that P is a projection onto V . Fix x ∈ S and f ∈ S∗.
Note that

f (Px) = f (P1x)+ f (P2x) = f

(
l∑

j=1

f j (x)v j

)
≥ 0

since v j ∈ S and f j ∈ S∗ for j = 1, . . . , l. Hence P ∈ PS, as required.
Notice that for any fixed Po ∈ PV1(X, Vo)

PV1(X, Vo) = Po + LV (X, Vo),

which completes the proof. �

Now we fix some notation concerning tensor product case. Let X1, X2 be two Banach spaces.
Let for i = 1, 2Wi ⊂ X i be and mi -dimensional subspace and let Si ⊂ X i be a ki -dimensional
cone. Assume that S∗i |Wi is simplicial and dimS∗i |Wi = li for i = 1, 2. Let gi j for j = 1, . . . , li
be the elements from W ∗i of norm one which determine the extreme rays of S∗i |Wi . Denote for
i = 1, 2

Wio = Wi ∩ (S
∗

i )
⊥

and fix wi j , j = 1, . . . ,mi − li a basis of Wio. Fix for i = 1, 2 an li -dimensional subspace of
Wi ,Wi1 given by (Lemma 4.1) such that

Wi = Wio ⊕Wi1.

Assume that vi j is a basis of Wi1 satisfying giu(vi j ) = δu j for j, u = 1, . . . , li , i = 1, 2. Now
we are ready to define the corresponding notions concerning tensor product. Let α be a fixed
reasonable cross-norm on X1 ⊗ X2. Define:

X = X1⊗α X2, (1)

and

V = W1⊗α W2. (2)

We define

S∗1 ⊗ S∗2 = {s1 ⊗ s2 | s1 ∈ S∗1 , s2 ∈ S∗2 }.

From this definition, note that co (S∗1 ⊗ S∗2 ) (the convex hull) is a cone in X∗1 ⊗ X∗2 . This allows
us to define the following cone in X :

S = (co (S∗1 ⊗ S∗2 ))
∗
∩ (X1⊗α X2). (3)
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Note that

V ∩ (S∗)⊥ = Vo = W1o ⊗W2o +W1o ⊗W21 +W11 ⊗W2o (4)

and

V1 = W11 ⊗W21, (5)

where V1 is a subspace of V determined by Lemma 4.1. Note that dim(V ) = m1 · m2 and
dim(S∗|V ) = l1 · l2.

Lemma 4.3. Assume that X1, X2 are finite-dimensional. Then S∗1 ⊗ S∗2 is a closed set.

Proof. Let fk = gk ⊗ hk ∈ S∗1 ⊗ S∗2 converges to f ∈ X∗1 ⊗ X∗2 . Since ‖ fk‖ = ‖gk‖‖hk‖,

without loss of generality, we can assume that ‖hk‖ = ‖gk‖ =
√
‖ fk‖. Since X1 ⊗ X2 is finite-

dimensional, and ‖ fk − f ‖ → 0, we can assume that gk → g ∈ S∗1 and hk → h ∈ S∗2 . Note
that,

‖g ⊗ h − gk ⊗ hk‖ ≤ ‖g ⊗ (h − hk)‖ + ‖(g − gk)⊗ hk‖ ≤ ‖g‖‖h − hk‖ + M‖g − gk‖.

Hence ‖ fk − g ⊗ h‖ → 0 which gives that f = g ⊗ h ∈ S∗1 ⊗ S∗2 , as required. �

Note that Lemma 4.3 remains valid when X1, X2 are reflexive separable spaces.

Lemma 4.4. Let X1, X2 be finite-dimensional. Assume that for i = 1, 2 and f ∈ S∗i \ {0} there
exists xi ∈ X i with f (xi ) > 0. Then

S∗ = co (S∗1 ⊗ S∗2 ).

Proof. Since S = (S∗1 ⊗ S∗2 )
∗, S∗ = cl(conv(S∗1 ⊗ S∗2 )). Hence we only need to show that

conv(S∗1⊗S∗2 ) is a closed set. Let f ∈ cl(conv(S∗1⊗S∗2 )).Choose a sequence fk ∈ conv(S∗1⊗S∗2 )
such that ‖ fk − f ‖ → 0. Since dim(Si ) = ki , for i = 1, 2, dim(S∗1 ⊗ S∗2 ) = k1k2. By the
Carathéodory theorem, for any k ∈ N,

fk =

k1k2+1∑
j=1

a jk f jk,

where a jk ≥ 0 and f jk ∈ S∗1⊗S∗2 . Now we show that there exists M > 0 such that ‖ f jka jk‖ < M
for any j = 1, . . . , k1k2 + 1 and k ∈ N. If not, passing to a subsequence if necessary, we can
assume that

‖a1k f1k‖ → ∞

and for any j = 1, . . . , k1k2 + 1,

lim sup
‖a jk f jk‖

‖a1k f1k‖
<∞.

Consequently, passing to a subsequence, if necessary, we can assume that for any j = 1, . . . ,
k1k2 + 1,

lim
k

a jk f jk

‖a1k f1k‖
= g j .
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By Lemma 4.3, g j ∈ S∗1 ⊗ S∗2 . Notice that

0 = lim
k

fk

‖a1k f1k‖
=

k1k2+1∑
j=1

g j .

Since ‖g1‖ = 1, and g1 = h1 ⊗ h2 there exists x1 ∈ X1 and x2 ∈ X2 with hi (xi ) > 0, i = 1, 2.
Hence

0 =
k1k2+1∑

j=1

g j (x1 ⊗ x2) ≥ h1(x1)h2(x2) > 0;

a contradiction. Passing to a subsequence, if necessary we get by Lemma 4.3

a jk f jk → m j ∈ S∗1 ⊗ S∗2 .

Consequently,

f = 1/(k1k2 + 1)
k1k2+1∑

j=1

(k1k2 + 1)m j ∈ co (S∗1 ⊗ S∗2 ),

as required. �

Lemma 4.5. Let X be a normed space and let v1, . . . , vk ∈ X. Let P : X → X be a continuous,
linear operator given by:

Px =
k∑

i=1

(
ki∑

j=1

ai j fi j (x)

)
vi ,

where for any i ∈ {1, . . . , k}
∑ki

j=1 ai j = 1 and fi j ∈ X∗ for any i, j . Set for i ∈ {1, . . . , k}Di =

{ai1, . . . , aiki } and

D =
k∏

i=1

Di .

Then

P =
∑

( j1,... jk )∈D

(a1 j1 · ... · ak jk )

(
k∑

i=1

fi ji (·)vi

)
. (6)

Proof. Note that for any i ∈ {1, . . . , k}, and j ∈ {1, . . . , ki },

ai j = ai j

∏
l 6=i

(
kl∑

j=1

al j

)
.

Applying the above equality to each ai j , we get that P can also be represented by the right-side
of (6), which completes the proof. �

Theorem 4.1. Assume that X1, X2 are finite-dimensional Banach spaces. Let X = X1⊗α X2,

where α is a reasonable cross-norm on X. Assume that V, V1, Vo, and S are given by (2)–(5).
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Additionally, assume that for i = 1, 2 and f ∈ S∗i \ {0} there exists xi ∈ X i with f (xi ) > 0.
Then

PS = LV (X, Vo)+ co (PS1 ⊗ PS2).

Proof. Fix Qo ∈ PS . By Lemma 4.2

Qo = Po + P1,

where Po ∈ PV1(X, Vo) and P1 ∈ PS,V1 . Let for i = 1, 2,Ci = {1, . . . , li }, where li =
dim(S∗i |Wi ). Notice that by definition of PS,V1 ,

P1 =
∑

(i, j)∈C1×C2

φi j (·)v1i ⊗ v2 j ,

where φi j ∈ S∗,

φi j (w1l ⊗ w2k) = δilδ jk, (7)

where i = 1, . . . , l1l = 1, . . . ,m1 j = 1, . . . , l2 and k = 1, . . . ,m2. Here for i = 1, 2, {wil , l =
1, . . . ,mi } is a fixed basis of Wi1 such that wil = vil for l = 1, . . . , li and {wil : l =
li + 1, . . . ,mi } is a fixed basis of Wio. By Lemma 4.4 for any (i, j) ∈ C1 × C2

φi j =
∑

(l,k)∈Di j

ai j
lk fli ⊗ hk j .

Here Di j ⊂ N2 is a finite set ai j
lk > 0,∑

(l,k)∈Di j

ai j
lk = 1 (8)

and fli ∈ S∗1 \ {0}, gk j ∈ S∗2 \ {0}. By (7) ∑
(l,k)∈Di j

ai j
lk fli ⊗ hk j

 (v1i ⊗ v2 j ) = 1 (9)

and  ∑
(l,k)∈Di j

ai j
lk fli ⊗ hk j

 (v1p ⊗ v2q) = 0 (10)

if (p, q) 6= (i, j). Since fli ∈ S∗1 \ {0}, gk j ∈ S∗2 \ {0}, by (10) for any (l, k) ∈ Di j

fli ⊗ hk j (v1p ⊗ v2q) = 0 (11)

if (p, q) 6= (i, j). By (9) and (11), without loss of generality, we can assume that fli (v1i ) > 0
and hk j (v2 j ) > 0 for any (l, k) ∈ Di j . Consequently, by (8), (10) and (11) and definition of Vo,
we can assume that for any (l, k) ∈ Di j ,

fli (v1i ) = 1, hk j (v2 j ) = 1 (12)

and

fli (v1m) = 0, hk j (v2u) = 0 (13)
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for m ∈ {1, . . . , l1},m 6= i and u ∈ {1, . . . , l2}, u 6= j. By Lemma 4.5 applied to P1 and the
above considerations

P1 ∈ conv(PS1,W11 ⊗ PS2,W21). (14)

Hence

P1 =

k∑
j=1

b j (P1 j ⊗ P2 j ), (15)

where for i = 1, 2, and j = 1, . . . , k Pi j ∈ PSi ,Wi1 , b j ≥ 0,
∑k

j=1 b j = 1.
Now for i = 1, 2 fix Qi ∈ PWi1(X i ,Wio). Let for i = 1, 2 and j = 1, . . . , k Qi j = Qi + Pi j .

Note that by definition of Wio,

Qi j ∈ PSi (X i ,Wi ) (16)

for i = 1, 2. By (15),

Qo = Po −

k∑
j=1

b j (Q1 ⊗ P2 j + P1 j ⊗ Q2 + Q1 ⊗ Q2)+

k∑
j=1

b j (Q1 j ⊗ Q2 j ).

Now we show that for any j = 1, . . . , k

L j = Q1 ⊗ P2 j + P1 j ⊗ Q2 + Q1 ⊗ Q2 ∈ PV1(X, Vo).

Let

U1 = {1, . . . , l1} × {l2 + 1, . . . ,m2} ∪ {l1 + 1, . . . ,m1} × {1, , . . . , l2}

∪ {l1 + 1, . . . ,m1} × {l2 + 1, . . . ,m2} (17)

and

U2 = {1, . . . , l1} × {1, . . . , l2}. (18)

Fix (u, l) ∈ U1. Note that for any j = 1, . . . , k, by definition of Q1, Q2 and Pi j ,

L j (w1u ⊗ w2l) = w1u ⊗ w2l .

Analogously for any (u, l) ∈ U2,

L j (w1u ⊗ w2l) = 0.

This shows that for any j = 1, . . . kL j ∈ PV1(X, V ). Hence

F1 = Po −

k∑
j=1

b j L j ∈ LV (X, Vo).

Consequently, by (16),

Qo = F1 +

k∑
j=1

b j (Q1 j ⊗ Q2 j ) ∈ LV (X, Vo)+ co (PS1 ⊗ PS2),

as required.
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Now assume that Qo ∈ LV (X, Vo)+ conv(PS1 ⊗ PS2). Hence

Qo = F1 +

k∑
j=1

b j (Q1 j ⊗ Q2 j ),

where F1 ∈ LV (X, Vo) and Qi j ∈ PSi . By definition, Qo ∈ P(X, V ). We show that Qo ∈ PS .

By Lemma 4.2 applied to X i , Si and Qi j i = 1, 2, j = 1, . . . , k

Qi j = L i j + Pi j ,

where L i j ∈ PWi1(X i ,Wio) and Pi j ∈ PSi ,Wi1 . Hence

Qo = F1 +

k∑
j=1

b j (L1 j ⊗ L2 j + L1 j ⊗ P2 j + P1 j ⊗ L2 j )+

k∑
j=1

b j (P1 j ⊗ P2 j ),

where for any j = 1, . . . , kb j ≥ 0 and
∑k

j=1 b j = 1. Note that by definition and Lemma 4.4

F1 +

k∑
j=1

b j (L1 j ⊗ L2 j + L1 j ⊗ P2 j + P1 j ⊗ L2 j ) ∈ PV1(X, Vo)

and
k∑

j=1

b j (P1 j ⊗ P2 j ) ∈ PS,V1 .

By Lemma 4.2 applied to X, S, V1, Vo, Qo ∈ PS, which completes the proof. �

Now for a Banach space X and its closed subspace V let

λ(V, X) = inf{‖P‖ : P ∈ P(X, V )}.

Analogously, if S ⊂ X is a cone, we define

λS(V, X) = inf{‖P‖ : P ∈ PS(X, V )}.

In both cases we assume that infimum is taken over nonempty sets.

Theorem 4.2. Let X1, X2 be finite-dimensional Banach spaces. Assume that for i = 1, 2 and
f ∈ S∗i \ {0} there exists xi ∈ X i with f (xi ) > 0. Let for i = 1, 2,

PSi = PWi1(X i ,Wio)+ PSi ,Wi1

where

PWi (X i ,Wio) = {P ∈ P(X i ,Wio) : P|Wi = 0}

and

PSi ,Wi1 = {P ∈ P(X i ,Wi1) : P(Si ) ⊂ Si , P|Wio = 0}.

Assume that P1 is a minimal projection in PS1 and P2 is a minimal projection in PS2 . Let for
i = 1, 2, Pi = Qi + Ri , where Qi ∈ PWi1(X i ,Wio) and Ri ∈ PSi ,Wi1 . Also define for i = 1, 2

Wi = L(X i ,Wio)− PSi ,Wi1 .
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Then

λS(X, V ) ≥ dist (Q1,W1)dist (Q2,W2).

Proof. Since for i = 1, 2,Wi is finite-dimensional, there exists Zi ∈ Wi such that

‖Qi − Zi‖ = dist (Qi ,Wi ).

Set for i = 1, 2

Ci = {(x
∗, x) ∈ SX∗i

× SX i : x
∗((Qi − Zi )x) = ‖Qi − Zi‖}.

Note that for i = 1, 2,Wi is a closed, convex subset of L(X i ). By the separation theorem
applied to the open ball in L(X1) of radius dist (Q1,W1) with a center at Q1 and W1 there
exists F1 ∈ (L(X1))

∗, ‖F1‖ = 1, such that

F1(Q1 − Q) ≥ F1(Q1 − Z1) = ‖Q1 − Z1‖ (19)

for any Q ∈ Wi . Analogously, there exists F2 ∈ (L(X2))
∗, ‖F2‖ = 1, such that

F2(Q2 − Q) ≥ F2(Q2 − Z2) = ‖Q2 − Z2‖ (20)

for any Q ∈ W2. By the Choquet Theorem (see e.g. [10,3]) for i = 1, 2, there exists a proba-
bilistic Borel measure µi supported on Ci such that

Fi (L) =
∫

Ci

x∗(Lx)dµi (x
∗, x)

for any L ∈ L(X i ). Let us define a functional T on L(X) by

T (L) =
∫

C1×C2

(x∗1 ⊗ x∗2 )L(x1 ⊗ x2)d(µ1 ⊗ µ2)(x
∗

1 , x1, x∗2 , x2).

Since α is a reasonable, cross-norm, and µi is a probabilistic measure for i = 1, 2, ‖T ‖ ≤ 1.
Note that by the Fubini theorem and definition of F1 and F2,

T ((Q1 − Z1)⊗ (Q2 − Z2)) = F1(Q1 − Z1)F2(Q2 − Z2) = ‖Q1 − Z1‖‖Q2 − Z2‖.

Now we show that

T (R) ≥ ‖Q1 − Z1‖‖Q2 − Z2‖

for any R ∈ PS . First assume that R = R1 ⊗ R2, where R1 ∈ PS1 and R2 ∈ PS2 . Note that by
the Fubini Theorem,

T (R) = T (R1 ⊗ R2)

=

∫
C1×C2

x∗1 (R1x1)x
∗

2 (R2x2)d(µ1 ⊗ µ2)(x
∗

1 , x1, x∗2 , x2)

= F1(R1)F2(R2).

Since for i = 1, 2, Qi − Ri ∈ Wi , by (19) and (20),

F1(R1)F2(R2) = F1(Q1 − (Q1 − R1))F2(Q2 − (Q2 − R2))

≥ F1(Q1 − Z1)F2(Q2 − Z2) = ‖Q1 − Z1‖ · ‖Q2 − Z2‖.

Now take any R ∈ PS . By Theorem 4.1,

R = L + C,
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where L ∈ LV (X, Vo) and C ∈ conv(PS1 ⊗ PS2). Consequently, by the previous reasoning,

T (R) = T (L)+ T (C) ≥ T (L)+ ‖Q1 − Z1‖ · ‖Q2 − Z2‖.

To end the proof, it is necessary to show that for any L ∈ LV (X, V )

T (L) = 0. (21)

Notice that for i = 1, 2, L − Zi ∈ Wi and −(L + Zi ) ∈ Wi . Hence the functionals Fi defined
by (19) and (20) satisfy

Fi (L i ) = 0 (22)

for any L i ∈ L(X i ,Wio). Note that LV (X, Vo) is spanned by mappings of type

Lx = f (x)w, (23)

where x ∈ X, f ∈ X∗, f |V = 0 and w ∈ Vo. By definition of Vo, we can assume that

w = w1l ⊗ w2k, (24)

where (l, k) ∈ U1 (see (17)). Hence l ≥ l1 + 1 or k ≥ l2 + 1. Since X i i = 1, 2 are finite-
dimensional, we only can consider f = h1 ⊗ h2, where hi ∈ X∗i and h1|W1 = 0 or h2|W2 = 0.
Notice that if k ≥ l2 + 1, the mapping L2 = h2(·)w2k ∈ L(X2,W2o). By (22)

F2(L2) = 0. (25)

If l ≥ l1 + 1, the mapping L1 = h1(·)w1l ∈ L(X1,W1o). Hence again by (22),

F1(L1) = 0. (26)

Since L = L1 ⊗ L2, by (25), (26) and the Fubini theorem,

T (L) = T (L1 ⊗ L2) = (F1 ⊗ F2)(L) = F1(L1)F2(L2) = 0,

which proves (21). The proof of our theorem is fully complete. �

Now we proof a version of Theorem 4.2 in the case of arbitrary Banach spaces X1, X2. First we
need the following two lemmas which permit us to approximate infinite-dimensional case by,
considered in Theorem 4.2, finite-dimensional situation.

Lemma 4.6. Let X be an infinite-dimensional Banach space, V ⊂ X be its finite-dimensional
subspace and S ⊂ X a closed convex cone. Assume that PS(X, V ) 6= ∅. Let {Xb}b∈B be a
directed (by inclusion) family of finite-dimensional subspaces of X such that V ⊂ Xb for any
b ∈ B,

cl

(∑
b∈B

Xb

)
= X

and

cl

(∑
b∈B

(Xb ∩ S)

)
= S.

Assume that Po ∈ PS(X, V ), Po = Qo + Ro, where Qo ∈ PV1(X, Vo) and Ro ∈ PS,V1 , (see
Lemma 4.2). Let W = L(X, Vo)− PS,V1 and for b ∈ B,Wb = L(Xb, Vo)− (PS,V1)|Xb . Then

dist (Qo,W) = sup
b∈B

dist (Qo|Xb ,Wb).
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Proof. Note that for any b ∈ B and L ∈ W,

‖Qo − L‖ ≥ ‖(Qo − L)|Xb‖ ≥ dist (Qo|Xb ,Wb)

which gives immediately that

dist (Qo,W) ≥ sup
b∈B

dist (Qo|Xb ,Wb).

To prove the converse, assume on the contrary that

dist (Qo,W) > sup
b∈B

dist (Qo|Xb ,Wb)+ d

for some d > 0. Let Lb ∈ Wb be so chosen that ‖Qo|Xb − Lb‖ ≤ dist (Qo,W)− d/2. Define

U =
∏

x∈
⋃

b∈B
Xb

BV (0, ‖x‖(dist (Qo,W)− d/2)),

where BV (0, r) denotes the closed ball in V with radius r and center at 0. Let us equip U with the
Tychonoff topology, where in each BV (0, ‖x‖(dist (Qo,W) − d/2)) we consider the topology
determined by the norm. Since V is finite-dimensional, by the Tychonoff theorem, U is a compact
set. Define for any b ∈ B, Zb :

⋃
c∈B Xc → V by

Zbx = Qo|Xb x − Lbx

if x ∈ Xb and Zbx = 0 in the opposite case. Note that Zb ∈ U for any b ∈ B. Define for b ∈ B

Db = cl({Zc : c ∈ B, c ≥ b}),

where c ≥ b means that Xb ⊂ Xc. Since {Xb}b∈B is directed by inclusion,

k⋂
n=1

Dbk 6= ∅

for any k ∈ N and b1, . . . , bk ∈ B. Since U is a compact set,⋂
b∈B

Db 6= ∅.

Take any Z ∈
⋂

b∈B Db. First we show that Z is a linear mapping. To do this, fix x, y ∈⋃
b∈B Xb. Then there exists b ∈ B, such that x, y ∈ Xc for any c ≥ b. Fix ε > 0. Since

Z ∈ Db, there exists d ≥ b such that ‖Z x − Zd x‖ ≤ ε/3, ‖Z y − Zd y‖ ≤ ε/3 and ‖Z(x + y)
− Zd(x + y)‖ ≤ ε/3. Since

Zd(x + y) = Zd x + Zd y,

‖Z(x + y) − Z x − Z y‖ ≤ ε. This shows that Z(x + y) = Z x + Z y. Analogously we can
demonstrate that Z(αx) = αPx for any x ∈

⋃
b∈B Xb and α ∈ R. Hence Z is linear. Moreover,

by definition of mappings Zb,

sup

{
‖Z x‖ : x ∈

⋃
b∈B

Xb, ‖x‖ = 1

}
≤ dist (Qo,W)− d/2.

Hence Z is a continuous, linear mapping. Since cl(
∑

b∈B Xb) = X and V is finite-dimensional,
we can extend definition of Z onto the whole X . It is clear that

‖Z‖ ≤ dist (Qo,W)− d/2.
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To get a contradiction we show that Qo − Z ∈ W. To do this, fix x ∈ Xb ∩ S. Note that we can
find a sequence {bk} ⊂ Db, such that

Lbk x → (Qo − Z)x .

Since S is closed and Lbk x ∈ S, (Qo−Z)x ∈ S too. Since cl(
∑

b∈B(Xb∩S)) = S, (Qo−Z)x ∈
S for any x ∈ S. This shows that Qo − Z ∈ W. The proof is complete. �

Reasoning in an similar way, we can prove the following

Lemma 4.7. Let X be an infinite-dimensional Banach space, V ⊂ X be its finite-dimensional
subspace and S ⊂ X a closed convex cone. Assume that PS(X, V ) 6= ∅. Let {Xb}b∈B be a
directed (by inclusion) family of finite-dimensional subspaces of X such that V ⊂ Xb for any
b ∈ B,

cl

(∑
b∈B

Xb

)
= X

and

cl

(∑
b∈B

(Xb ∩ S)

)
= S.

Then

λS(V, X) = sup
b∈B

λS(V, Xb).

Theorem 4.3. For i = 1, 2 assume X i , Wi and Si satisfy the assumptions of Lemma 4.7.
Assume further that for i = 1, 2 there exists a directed (by inclusion) family {X i

b}b∈Bi of finite-
dimensional subspaces of X i such that Wi ⊂ X i

b for any b ∈ Bi which satisfies the assumptions
of Lemma 4.7. Assume for i = 1, 2 the cones Si are such that for f ∈ S∗i \ {0} there exists
xi ∈ X i with f (xi ) > 0. For i = 1, 2, let

PSi = PWi1(X i ,Wio)+ PSi ,Wi1

where

PWi (X i ,Wio) = {P ∈ P(X i ,Wio) : P|Wi = 0}

and

PSi ,Wi1 = {P ∈ P(X i ,Wi1) : P(Si ) ⊂ Si , P|Wio = 0}.

Assume that P1 is a minimal projection in PS1 and P2 is a minimal projection in PS2 . Let for
i = 1, 2, Pi = Qi + Ri , where Qi ∈ PWi1(X i ,Wio) and Ri ∈ PSi ,Wi1 . Also define for i = 1, 2

Wi = L(X i ,Wio)− PSi ,Wi1 .

Then

λS(X, V ) ≥ dist (Q1,W1)dist (Q2,W2).
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Proof. Let for any i = 1, 2 and b ∈ Bi , P i
b ∈ PSi (X

i
b,Wi ) be so chosen that

‖P i
b‖ = λSi (Wi , X i

b).

This is possible, since dim(X i
b) <∞. Let P i

b = Qi
b + Ri

b, where Qi
b ∈ PSi (X

i
b,Wi ) and Ri

b ∈

PSi ,Wi1(X
i
b,Wi1). By Theorem 4.2, for any (b1, b2) ∈ B1 × B2,

λS(X
1
b1
⊗α X2

b2
, V ) ≥ dist (Q1

b1
,W1b)dist (Q2

b2
,W2b)

(compare with Lemma 4.7). By 4.7 applied to X and {X1
b1
⊗α X2

b2
: (b1, b2) ∈ B1 × B2, }

λS(V, X) = sup{λS(X
1
b1
⊗α X2

b2
, V ) : (b1, b2) ∈ B1 × B2}

Notice that for i = 1, 2 and bi ∈ Bi ,

dist (Qi
bi
,Wi ) = dist (Qi

|Xbi
,Wib).

Hence by Lemma 4.6,

λS(V, X) ≥ sup
b1∈B1

dist (Q1
|Xb1

,W1b) sup
b2∈B2

dist (Q2
|Xb2

,W2b)

= dist (Q1,W1)dist (Q2,W2).

The proof is complete. �

From Theorem 4.3 one can get immediately.

Theorem 4.4. Assume that W1, S1, X1, P1 and W2, S2, X2, P2 satisfy the assumptions of
Theorem 4.3. Assume furthermore that α is a reasonable, uniform cross-norm and for i = 1, 2,

dist (Qi ,Wi ) = dist (Qi ,LWi (X i ,Wio)− PSi ,W1i ).

Then

λS(V, X) = λS1(W1, X1)λS2(W2, X2).

Proof. By Theorem 4.3,

λS(V, X) ≥ dist (Q1,W1)dist (Q2,W2)

= dist (Q1,LW1(X1,W1o)− PS1,W11)dist (Q2,LW2(X2,W2o)− PS2,W21).

Since ‖P1‖ = λS1(W1, X1) and ‖P2‖ = λS2(W1, X1),

dist (Qi ,LWi (X i ,Woi )− PSi ,W1i ) = ‖Pi‖

for i = 1, 2. Consequently,

λS(V, X) ≥ ‖P1‖‖P2‖.

Since α is uniform,

‖P1 ⊗ P2‖ = ‖P1‖‖P2‖.

Since P1 ⊗ P2 ∈ PS,

λS(V, X) ≤ ‖P1‖‖P2‖ = λS1(W1, X1)λS2(W2, X2).

The proof is complete. �
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Reasoning as in the proof of Theorems 4.2 and 4.4 we can show that, in general, P1 ⊗ P2 is a
projection of minimal norm in a smaller set than PS .

Theorem 4.5. Assume that W1, S1, X1 and W2, S2, X2 satisfy the assumptions of Theorem 4.3.
Assume that P1 is a minimal projection in PS1 and P2 is a minimal projection in PS2 . Then
P1 ⊗ P2 is a minimal projection in

W = L(X1,W1)⊗ LW2(X2,W2o)+ LW1(X1,W1o)⊗ L(X2,W2)+ conv(PS1 ⊗ PS2).

Proof. Applying the reasoning from Theorems 4.2 and 4.3, we only need to show that T (L) = 0
for any L ∈ L(X1,W1) ⊗ LW2(X2,W2o) + LW1(X1,W1o) ⊗ L(X2,W2). But this is true since
Fi (K ) = 0 for any K ∈ LWi (X i ,Wio), i = 1, 2. �

In general P1 ⊗ P2 is not a minimal projection in PS , as demonstrated in the next example.

Example 4.1. Let X1 = (R3, ‖ · ‖e), where ‖ · ‖e denote the Euclidean norm. Let W1 =

span[e1, e2], where e1 = (1, 0, 0) and e2 = (0, 1, 0). Let for x ∈ R3 and i = 1, 2, 3, fi (x) = xi
and g2(x) = x2 + x3. Define

S1 = {x ∈ R3
: g2(x) ≥ 0}.

Notice that in our case W10 = span[e1] and W11 = span[e2]. We show that a projection

P1x = f1(x)e1 + g2(x)e2 = (x1, x2 + x3, 0)

is a minimal projection in PS1 . It is clear that P1 ∈ PS1 . Since the function x → x2
1 + (x2 +

x3)
2 restricted to the unit Euclidean sphere in R3, achieves its maximum at x = (0, 1/

√
2,

1/
√

2), ‖P1‖ =
√

2. Take any R ∈ PS1 . Note that

Rx = g1(x)e1 + g2(x)e2,

where g1(e1) = 1 and g1(e2) = 0. Hence

‖R‖ ≥ ‖R(0, 1/
√

2, 1/
√

2)‖ ≥
√

2 = ‖P1‖,

which shows our claim.
Now we define X2,W2 and S2. Let for m ∈ N, Fm denote the classical Fourier projection from
Co(2π) onto πm, where πm denotes the space of all trigonometric polynomials of degree ≤ m.
Choose m ∈ N such that

‖Fm‖‖P1‖ > ‖Fm‖ + 2. (27)

This is possible since ‖Fm‖ ≥ (4/π2) log(m) (see e.g. [1], p. 213) and ‖P1‖ =
√

2. Let
X2 = Co(2π) and

S2 = {p ∈ X2 :

∫ 2π

0
sin(mt)p(t)dt ≥ 0}.

Let P2 = Fm . Note that

P2 = R2 + hm(·)(sin(m·)),

where

hm(p) = (1/π)
∫ 2π

0
p(t) sin(mt)dt
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and R2 is portion of Fm without the sin(m·) term. Hence P2 ∈ PS2 . Moreover P2 is a minimal
projection in PS2 , since P2 is a minimal projection in P(Co(2π), πm). Notice that in our case

W2o = span[cos( j ·), j = 0, . . . ,m, sin( j ·), j = 1, . . . ,m − 1]

and

W21 = span[sin(m·)].

Now we show that P1⊗ P2 is not a minimal projection in X1⊗α X2, for any reasonable, uniform
cross-norm α. Let us define

Z = ( f1(·)e1)⊗ R2 + ( f2(·)e2)⊗ R2 + ( f1(·)e1)⊗ (hm(·) sin(m·))

and

D = (g2(·)e2)⊗ (hm(·) sin(m·)).

Set Q = Z + D. It is clear that Q ∈ PS . Let

D1 = ( f2(·)e2)⊗ (hm(·) sin(m·))

and

Pox = f1(x)e1 + f2(x)e2 = (x1, x2, 0)

Note that, by (27),

‖Q‖ = ‖Z + D1 + D − D1‖ ≤ ‖Z + D1‖ + ‖D − D1‖

= ‖Po ⊗ P2‖ + ‖D − D1‖ ≤ ‖Po‖‖P2‖ + 2

= ‖P2‖ + 2 < ‖P1‖‖P2‖ = ‖P1 ⊗ P2‖,

since ‖Po‖ = 1. Hence P1 ⊗ P2 is not a minimal projection in PS, as required.

Now we show an application of Theorem 4.4. Let for i = 1, 2 X i = (C L i [0, 1], ‖ · ‖L i ),

denote the set of all L i -times continuously differentiable functions on [0, 1] normed by

‖ f ‖L i = max
j=0,...,L i

‖ f ( j)
‖sup.

Put W1 = πn1 and W2 = πn2 ,where πl denote the space of all algebraic polynomials of degree≤
l restricted to [0, 1]. Assume that 2 ≤ ni ≤ L i for i = 1, 2. Let for i = 1, 2, σi = (σio, . . . , σini )

be an (ni + 1)-tuple with σi j ∈ {0, 1}, such that σi 6= 0. Define

Si = { f ∈ X i : σi j f ( j)
≥ 0, j = 0, . . . , L i }. (28)

Also set

mi = min{ j : σi j = 1} and Mi = max{ j : σi j = 1}. (29)

Assume that

mi ≤ Mi − 1 (30)

for i = 1, 2. In ([5], Th. 2.1) it has been shown that PSi 6= ∅ if and only if Mi ≥ ni − 1 and
σi j = 1 for j = mi , . . . ,Mi . Moreover, minimal projections Pi ∈ PSi have been determined
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([5], Th. 2.3, 2.4 and 2.5) and it has been shown that

‖Pi‖ =

ni−mi−1∑
j=0

1/j !. (31)

Let

S = (co ((Sσ1)
∗
⊗ (Sσ2)

∗))∗ ∩ (X1⊗α X2).

Now, we show applying Theorem 4.4, that P1⊗α P2 is a minimal projection in X1⊗α X2 for any
uniform, reasonable cross-norm α.

Theorem 4.6. Let Pi ∈ PSi be minimal projections for i = 1, 2. Then P1⊗α P2 is a minimal
projection in PS for any reasonable, uniform cross-norm α.

Proof. The goal is to show that P1 and P2 satisfy the assumptions of Theorem 4.4. The majority
of this effort is contained in demonstrating that

‖Pi‖ = dist (Qi ,Wi ),

for i = 1, 2. To accomplish this, we will borrow extensively from [5]. Indeed, to conform to the
notation of this paper, let L̂ i and n̂i denote the positive integers such that

L i = L̂ i + mi and ni = n̂i + mi .

Then (as in Theorems 2.3, 2.4 and 2.5 from [5]) Pmi ,n̂i+mi denotes the operator obtained by mi
applications of

(Pj+1,n̂i+1 f )(x) =
f (0)+ f (1)

2
+

∫ x

0
(Pj,n̂i f ′)(t) dt −

1
2

∫ 1

0
(Pj,n̂i f ′)(t) dt

starting with P0,n̂i given by

P0,n̂i = δ0 ⊗ 1+ δ1
0 ⊗

x

1!
+ · · · + δ

n̂i−1
0 ⊗

(
x n̂i−1

(n̂i − 1)!
−

x n̂i

(n̂i )!

)
+ δ

n̂i−1
1 ⊗

x n̂i

(n̂i )!
.

From Theorem 2.5 of [5] we know Pmi ,n̂i+mi is minimal in PSi and thus

‖Pi‖ = ‖Pmi ,n̂i+mi ‖ (32)

for i = 1, 2. Now let Pi = Qi + Ri (compare with Theorem 4.2). Notice that for any L ∈ Wi
we have

‖Qi − L‖ = sup
f ∈B(X i )

max{|(Qi f − L f )( j)(x)| : j = 0, . . . , ni , x ∈ [0, 1]} (33)

≥ sup
f ∈B(X i )

max{|(Qi f − L f )(mi )(x)| : x ∈ [0, 1]} (34)

= sup
f ∈B(X i )

max{|(L f )(mi )(x)| : x ∈ [0, 1]}. (35)

Note that L ∈ Wi implies we can write L = Λ− R where

Λ ∈ L(X i ,Wi0) and R ∈ PSi ,Wi1 .
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Additionally, notice that for any f ∈ X i we have

max{|(L f )(mi )(x)| : x ∈ [0, 1]} = max{|(R f )(mi )(x)| : x ∈ [0, 1]}. (36)

Finally, choose any P ∈ PWi1(X i ,Wi0) and define Q = P + R. From the definition of Q we
have for every f ∈ B(X i ),

max{|(R f )(mi )(x)| : x ∈ [0, 1]} = max{|(Q f )(mi )(x)| : x ∈ [0, 1]}. (37)

Moreover, it is clear that Q ∈ PSi and thus (as a consequence of equations (34), (35) and (36)
from [5]) we also find

sup
f ∈B(X i )

max{|(Q f )(mi )(x)| : x ∈ [0, 1]} = ‖Pmi ,n̂i+mi ‖. (38)

Combining (33)–(38) with (32) we are led to conclude that

‖Qi − L‖ ≥ ‖Pi‖

and therefore ‖Pi‖ = dist (Qi ,Wi ). Now define for b ∈ N and i = 1, 2X i
b = πb. Observe

that for i = 1, 2{X i
b}b>ni satisfies the assumptions of Lemmas 4.6, 4.7 and Theorem 4.2. Conse-

quently all the assumptions of Theorem 4.4 are satisfied. The proof is complete. �

By Theorem 4.6 and ([5], Th. 2.3 and 2.5) and (31) we immediately get

Theorem 4.7.

λS(πn1 ⊗α πn2 ,C L1 [0, 1]⊗α C L2 [0, 1]) =

(
n1−m1−1∑

j=0

1/j !

)(
n2−m2−1∑

j=0

1/j !

)
.

Note 4.1. By ([5], Th. 2.3 and 2.4) Theorems 4.6 and 4.7 remain true for a large class of norms
in C L i [0, 1] different from ‖ ·‖L i for i = 1, 2. Indeed, if {ti } is a countable, dense subset of [0, 1]
such that to = 0 and t1 = 1, then for i = 1, 2 we can define ‖ · ‖L i ,k by:

‖ f ‖L i ,k = max
j=0,...,L i

A jk( f ),

where

A jk( f ) = max
u=0,...,k

{| f ( j)(tu)| : j = 0, . . . , L i − 1}

and

AL i k = ‖ f (L i )‖sup.

Note 4.2. Theorems 4.2–4.4, 4.6 and 4.7 can be easily generalized by induction to the case of
tensor product of more than two Banach spaces.
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