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Abstract

We prove that the function

Fλ(x) :=

 x

0
(x − t)λ sin t dt

is logarithmically concave on (0, ∞) if and only if λ ≥ 2. As a consequence, a Turán type inequality
for certain Lommel functions of the first kind is obtained. Furthermore, some monotonicity properties of
functions involving the remainders of the Taylor series expansion of the functions sin x and cos x are given.
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1. Introduction and results

A function f : I → (0, ∞) is called logarithmically concave (or log-concave, for short) on
the interval I if log f is a concave function on I . If f is twice differentiable, the log-concavity
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of f on I is equivalent to [ f ′(x)/ f (x)]′ ≤ 0 and, in turn, f ′′(x) f (x) − [ f ′(x)]2
≤ 0 for all

x ∈ I . Clearly, every positive and concave function is log-concave. The product of log-concave
functions is log-concave, too. However, the sum of log-concave functions is not, in general, log-
concave.

Log-concave functions appear frequently in many problems of classical analysis, probability
theory and convex optimization. As it happens, many common probability distributions are log-
concave [6]. The log-concavity of probability densities and of integrals involving probability
densities has interesting qualitative implications in many areas of economics, in political science,
in biology and in industrial engineering [4]. For further background information and applications
of log-concave functions in both discrete and continuous setting, we refer to the recent survey
paper [13].

Let f : [0, ∞) → R be a locally integrable function. The fractional integral Iα , α > 0, of f
is defined by the formula

(Iα f )(x) :=
1

Γ (α)

 x

0
(x − t)α−1 f (t) dt,

where Γ (α) is Euler’s Gamma function. We refer to [3, p. 111] and [11, p. 98] for the definition,
properties and applications of fractional integrals in the theory of special functions.

For λ > 0 we consider the fractional integral

Fλ(x) :=

 x

0
(x − t)λ sin t dt, x > 0.

It should be mentioned that this is a positive function for all x > 0 and that Fλ(x) can also be
defined for −1 < λ ≤ 0, but it is not strictly positive on (0, ∞) for this range of λ, see Section 2.

The main result of this paper is the following.

Theorem 1.1. The function Fλ(x) is logarithmically concave on (0, ∞), that is,

F ′′
λ (x) Fλ(x) − [F ′

λ(x)]2
≤ 0, for all x > 0, (1.1)

precisely when λ ≥ 2. For λ ≥ 2, equality occurs in (1.1) only when λ = 2 and tan x
2 =

x
2 .

We observe that

Fλ(x) = xλ+1
 1

0
(1 − t)λ sin xt dt, (1.2)

from which it follows that Fλ(x) is infinitely often differentiable on (0, ∞) for λ > −1.
We also have

Fλ(x) =

 x

0
tλ sin(x − t) dt =

√
x s

λ+
1
2 , 1

2
(x), (1.3)

where sµ,ν(z) is the Lommel function of the first kind. We recall that sµ,ν(z) is a particular
solution of the inhomogeneous Bessel differential equation

z2 y′′
+ zy′

+ (z2
− ν2)y = zµ+1.

It can be expressed in terms of a hypergeometric series

sµ,ν(z) =
zµ+1

(µ − ν + 1)(µ + ν + 1)
1 F2


1;

µ − ν + 3
2

,
µ + ν + 3

2
; −

z2

4


.
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For µ, ν ∈ C with ℜ (µ ± ν + 1) > 0 and z ∈ A := C \ (−∞, 0] we have the following integral
representation

sµ,ν(z) =
π

2


Yν(z)

 z

0
tµ Jν(t) dt − Jν(z)

 z

0
tµYν(t) dt


, (1.4)

where Jν(z) and Yν(z) are the usual Bessel functions (cf. [17, Sec. 10.7]).
Theorem 1.1 enables us to give a proof of the following Turán type inequality for some

Lommel functions of the first kind.

Theorem 1.2. The inequality
sa, 1

2
(x)

2
− sa−1, 1

2
(x)sa+1, 1

2
(x) ≥

1
1
2 − a


sa, 1

2
(x)

2
(1.5)

holds true for all x > 0 when a ≥
3
2 . This inequality fails to hold for appropriate x > 0 when

−
1
2 < a < 3

2 , a ≠
1
2 .

This quite settles a Conjecture posed and discussed in [5]. We note that inequality (1.5) is
valid for all x > 0 when a ∈ (− 5

2 , −
1
2 ), a ≠ −

3
2 according to the main result of [5]. The proof

in this case is based on several properties of entire functions in the Laguerre–Pólya class. Results
on Turán inequalities go back to the seminal work of Turán [16] and Szegő [15] for the case of
Legendre polynomials. Since then various inequalities of this type for orthogonal polynomials
and special functions have been obtained by many researchers. We refer the reader to [5,10] and
the references given therein for background information and several results on Turán inequalities.

In the case where λ is a positive integer the function Fλ(x) is closely related to the remainders
of the Maclaurin series expansion of the functions sin x and cos x . More specifically, we have

Tn(x) :=
1

(2n)!

 x

0
(x − t)2n sin t dt = (−1)n−1


cos x −

n
k=0

(−1)k x2k

(2k)!


,

Sn(x) :=
1

(2n + 1)!

 x

0
(x − t)2n+1 sin t dt = (−1)n−1


sin x −

n
k=0

(−1)k x2k+1

(2k + 1)!


.

As an application of Theorem 1.1 we have the following.

Corollary 1.3. For all n ≥ 1 the functions Tn(x) and Sn(x) are positive, strictly increasing,
convex and log-concave on (0, ∞).

Proof. It follows from Theorem 1.1 and the discussion in the beginning of Section 2. �

Corollary 1.4. For all n ≥ 1 the functions Tn(x)/Sn(x), Tn−1(x)/Tn(x) and Sn−1(x)/Sn(x) are
strictly decreasing on (0, ∞).

Proof. It follows from Corollary 1.3 that for n ≥ 1 the function S′
n(x)/Sn(x) is positive and

strictly decreasing. Since S′
n(x) = Tn(x) we infer that Tn(x)/Sn(x) is strictly decreasing.

Notice also that T ′
n(x) = Sn−1(x). Hence Tn−1(x)/Tn(x) =


S′

n−1(x)/Sn−1(x)
 

T ′
n(x)/Tn(x)


is strictly decreasing by Corollary 1.3. We similarly have Sn−1(x)/Sn(x) =


T ′

n(x)/Tn(x)


S′
n(x)/Sn(x)


is a strictly decreasing function. �

Since F ′
λ(x) = λ Fλ−1(x), for all λ > 0, Theorem 1.1 yields the following.
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Corollary 1.5. For all µ ≥ 1 we have that
1 +

1
µ


F2

µ(x) − Fµ−1(x) Fµ+1(x) ≥ 0, for all x > 0. (1.6)

Equality occurs in the above only when µ = 1 and tan x
2 =

x
2 .

In the case where µ is a positive integer the Turán type inequality (1.6) involves the remainders
in the Maclaurin series expansions of the functions sin x and cos x . It should be noted that
inequality (1.6) fails to hold if the factor 1 +

1
µ

is replaced by 1.
This paper is organized as follows. In the next section we give some preliminary reductions

and proofs of some special cases of (1.1). In Section 3, we present a proof of Theorem 1.1. In
Section 4, we prove Theorem 1.2.

2. Preliminary reductions

It is shown in [14,7] that inequality s
µ, 1

2
(x) > 0 holds for all x > 0 precisely when µ > 1/2.

Using (1.3) we deduce that Fλ(x) > 0 for all x > 0 when λ > 0. Now by the elementary
relation F ′

λ(x) = λ Fλ−1(x), it can be seen that for λ ≥ 2 the function Fλ(x) is positive, strictly
increasing and convex on (0, ∞).

The conclusion concerning the positivity of Fλ(x), that is, the inequality x

0
tλ sin(x − t) dt > 0, x > 0, λ > 0, (2.1)

has also been proved in [9, Prop. 3.1] in a simple and direct way.
It is relatively easy to see that the function Fλ(x) is log-concave on (0, π). Indeed, it follows

readily that

g(x) :=

 1

0
(1 − t)λ sin xt dt > 0, g′′(x) = −

 1

0
(1 − t)λ t2 sin xt dt < 0,

0 < x < π.

Therefore the function g(x) is log-concave on (0, π). It is straightforward that the function
h(x) := xλ+1 is log-concave. By (1.2) we conclude that Fλ(x) is log-concave on (0, π) as a
product of log-concave functions.

In the case where λ = 2, inequality (1.1) reduces to an elementary one, viz.,

4 − 4 x sin x + x2 cos x − 4 cos x + x2
≥ 0, for x > 0,

which, in turn, is equivalent to
2 sin

x

2
− x cos

x

2

2
≥ 0.

We shall see in the next section that this is the only case where equality occurs in (1.1).
It is easy to verify the following recurrence relations

F ′
λ(x)

Fλ(x)
= λ

Fλ−1(x)

Fλ(x)
,

F ′

λ−1(x)

F ′
λ(x)

=
λ − 1

λ

Fλ−2(x)

Fλ−1(x)
. (2.2)

The monotone form of l’Hospital rule, see [2,1,12] enables us to make one more reduction to the
proof of Theorem 1.1 and it is given in Lemma 2.1.
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Lemma 2.1. Let −∞ ≤ a < b ≤ ∞ and let f and g be differentiable functions on (a, b).
Assume that either g′ > 0 everywhere on (a, b) or g′ < 0 on (a, b). Furthermore, suppose that
f (a+) = g(a+) = 0 or f (b−) = g(b−) = 0 and f ′/g′ is (strictly) increasing (decreasing) on
(a, b). Then the ratio f/g is (strictly) increasing (decreasing) too on (a, b).

In view of this lemma and relations (2.2) we see that it is sufficient to prove Theorem 1.1 only
for 2 < λ < 3. The same reduction can be deduced in an equivalent way by applying Lemma 3
of [4, p. 466] quoted below.

Lemma 2.2. Let f : (a, b) → (0, ∞) be a continuously differentiable function, f (a) =

limx→a f (x) and F(x) =
 x

a f (t) dt. If f is log-concave on (a, b), then F is also log-concave
on (a, b).

On account of this, our reduction simply follows from the observation that

Fλ+1(x) = (λ + 1)

 x

0
Fλ(t) dt.

3. Proof of Theorem 1.1

We first prove that Fλ(x) is log-concave on [π, ∞), when 2 < λ < 3. To this end, we use the
following formula. For 0 < a < 1 and x > 0 we have x

0
ta sin(x − t) dt = xa

− Γ (a + 1) cos


x −
aπ

2


+

a

Γ (1 − a)


∞

0
e−xs s1−a

s2 + 1
ds.

(3.1)

This is obtained by combining formulas [8, p. 352, 3.389.6] and [8, p. 440, 3.768.5]. A short and
direct proof of (3.1) is given in [9, Lemma 3.4].

Setting λ = a + 2, 0 < a < 1, integrating twice by parts and using (3.1), we obtain

Fλ(x) = xa+2
− (a + 1)(a + 2)

 x

0
ta sin(x − t) dt

= (a + 1)(a + 2)
 xa+2

(a + 1)(a + 2)
− xa

+ Γ (a + 1) cos


x −
aπ

2


−

a

Γ (1 − a)


∞

0
e−xs s1−a

s2 + 1
ds


. (3.2)

It is therefore sufficient to prove the log-concavity of the function in the square brackets in (3.2).
For this purpose we shall apply the following elementary lemma.

Lemma 3.1. Suppose that for all x in the interval I , we have that

f (x) > 0, f ′(x) > 0, f ′′(x) > 0

and that the function f is log-concave on I . If for all x in I the function ϕ satisfies

ϕ(x) > 0, ϕ′(x) < 0, ϕ′′(x) > 0

and f (x) − ϕ(x) > 0, then f − ϕ is log-concave on I .
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Proof. We have
f ′′(x) − ϕ′′(x)


f (x) − ϕ(x)


−


f ′(x) − ϕ′(x)

2

=


f ′′(x) f (x) − ( f ′(x))2
− f ′′(x)ϕ(x) − ( f (x) − ϕ(x))ϕ′′(x) − (ϕ′(x))2

+ 2 f ′(x)ϕ′(x) < 0, ∀x ∈ I,

because every term in the second member of the equality above is negative in the interval in
question. The proof is complete. �

Taking into account (3.2) we see that we have only to verify that the functions

f (x) :=
xa+2

(a + 1)(a + 2)
− xa

+ Γ (a + 1) cos


x −
aπ

2


(3.3)

and

ϕ(x) :=
a

Γ (1 − a)


∞

0
e−xs s1−a

s2 + 1
ds, (3.4)

satisfy the properties of Lemma 3.1 for x ∈ [π, ∞).
We recall that a function ϕ : I → R is called completely monotonic on I , if it has derivatives

of all orders on I and satisfies (−1)n ϕ(n)(x) > 0 for all x ∈ I and n ≥ 0. In the case where I =

(0, ∞), S. N. Bernstein [18, p. 160–161], gave the following characterization: ϕ is completely
monotonic on (0, ∞) if and only if there exists a nonnegative Borel measure m on [0, ∞) such
that t → e−xt is integrable with respect to m for all x > 0 and ϕ(x) =


∞

0 e−xt dm(t).
It is readily seen that the function ϕ(x) defined in (3.4) is completely monotonic and therefore

strictly positive, decreasing and convex on (0, ∞). The positivity of Fλ(x) for x > 0 implies
that f (x) − ϕ(x) > 0. This also gives that f (x) > 0 for all x > 0. On the other hand,

f ′′(x) = xa
+ a(1 − a)xa−2

− Γ (a + 1) cos


x −
aπ

2


> xa

− 1 > 0, for all x ≥ π.

We have used the fact that Γ (a + 1) < 1, for 0 < a < 1, which is well known.
Hence f ′(x) is strictly increasing on [π, ∞), so that

f ′(x) =
xa+1

a + 1
− axa−1

− Γ (a + 1) sin


x −
aπ

2


≥ f ′(π) >

πa+1

a + 1
− aπa−1

− 1 > 0,

for 0 < a < 1.
Next, we shall prove that the function f (x) defined in (3.3) is log-concave on [π, ∞).
Let

p(x) :=
xa+2

(a + 1)(a + 2)
− xa .

It is easy to see that p(x) is positive for x ≥ π and that

p′′(x)p(x) − (p′(x))2
= −

x2a+2

(a + 1)2(a + 2)
−

(2 − 2a)x2a

(a + 1)(a + 2)
− ax2a−2 < 0, (3.5)

for all x > 0 and 0 < a < 1. However, a stronger result holds true for x ≥ π and it is given in
the lemma below.
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Lemma 3.2. For all x ≥ π we have
p′(x)

2
− p′′(x)p(x) − 1 > p(x) + p′′(x) > 0. (3.6)

Proof. Plainly, we have

p(x) + p′′(x) =
xa+2

(a + 1)(a + 2)
+ a(1 − a)xa−2 > 0,

for x > 0 and 0 < a < 1. Let

K (x) :=
x2a+2

(a + 1)2(a + 2)
+

(2 − 2a)x2a

(a + 1)(a + 2)
+ ax2a−2

− 1

−
xa+2

(a + 1)(a + 2)
− a(1 − a)xa−2. (3.7)

The first inequality in (3.6) amounts to showing that K (x) > 0 for x ≥ π and 0 < a < 1. We
have, in fact, that

K (x) >
x2a+2

(a + 1)2(a + 2)
+

(2 − 2a)x2a

(a + 1)(a + 2)
− 1

−
xa+2

(a + 1)(a + 2)
− a(1 − a)xa−2

:= L(x). (3.8)

It is clear that L(x) is a strictly increasing function of x in [π, ∞). It is therefore sufficient to
show that L(π) > 0 for 0 < a < 1.

We have

Φ(a) : = π2−a (a + 1)2 (a + 2) L(π) = πa+4
+ 2(1 − a2)πa+2

− π2−a (a + 1)2(a + 2)

− π4(a + 1) − a(1 − a)(a + 1)2(a + 2).

In order to prove that Φ(a) > 0 for 0 < a < 1, we distinguish two cases: (I) 0 < a ≤ 0.8 and
(II) 0.8 < a < 1.

In the first case we write

Φ(a) = πaρ(a) − π−a σ(a) − τ(a),

where

ρ(a) := π4
+ 2π2(1 − a2),

σ (a) := π2(a + 1)2 (a + 2),

τ (a) := π4(a + 1) + a(1 − a2)(a + 1)(a + 2).

A simple computation gives

ρ(a) − σ(a) = −π2 a3
− 6π2 a2

− 5π2 a + π4.

This is clearly strictly decreasing for a ∈ (0, 1) and ρ(0.8)−σ(0.8) = 14.97 . . . . Consequently,
we have that

ρ(a) − σ(a) > 0, 0 < a ≤ 0.8. (3.9)
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Using this, it is not hard to see that

Φ(a) =

ρ(a) − σ(a)


cosh(a log π) +


ρ(a) + σ(a)


sinh(a log π) − τ(a)

≥ ρ(a) − σ(a) +

ρ(a) + σ(a)


(a log π) − τ(a)

= a

a4

+ (3 + π2 log π) a3
+ (−π2

+ 1 + 2 π2 log π) a2

+ (−3 − 6π2
+ 5π2 log π) a − 2 − 5π2

− π4
+ (4π2

+ π4) log π


> 0.

In the case where 0.8 < a < 1, we have

Φ(a) ≥ πa+4
− π2−a (a + 1)2(a + 2) − π4(a + 1) − (a + 1)2(a + 2) =: ω(a).

We observe that

πa ω(a) ≥ πa+4(πa
− a − 1) − (a + 1)2(a + 2)(π2

+ π)

≥ πa+4(πa
− a − 1) − 12 (π2

+ π) =: ξ(a).

It is easily seen that the function ξ(a) is strictly increasing on (0, 1) with ξ(0.8) = 13.936 . . . .
Combining the above we conclude that Φ(a) > 0 for all 0 < a < 1 and complete the proof

of the lemma. �

We now turn to establish the log-concavity of the function f (x) of (3.3) on the interval
[π, ∞). For simplicity we set κ := Γ (a + 1) and X := x −

aπ
2 . Recall that for 0 < a < 1

we have 0 < κ < 1.
An elementary computation yields

f ′′(x) f (x) − ( f ′(x))2
= p′′(x)p(x) − (p′(x))2

− κ2

+ κ


p′′(x) − p(x)


cos X + 2 p′(x) sin X


≤ p′′(x)p(x) − (p′(x))2
− κ2

+ κ


p′′(x) − p(x)

2
+ 4(p′(x))2. (3.10)

Taking into account Eq. (3.5) we see that, in order to prove that the last expression in (3.10) is
negative, it suffices to prove that

(p′(x))2
− p′′(x)p(x) + κ22

> κ2 
p′′(x) − p(x)

2
+ 4(p′(x))2. (3.11)

Some elementary manipulations show that (3.11) is equivalent to
(p′(x))2

− p′′(x)p(x) − κ22
> κ2 

p(x) + p′′(x)
2

. (3.12)

According to Lemma 3.2 we have that
p′(x)

2
− p′′(x)p(x) − κ2 >


p′(x)

2
− p′′(x)p(x) − 1 > 0, for x ≥ π.

Therefore, the desired inequality (3.12) is equivalent to
p′(x)

2
− p′′(x)p(x) − κ2 > κ


p(x) + p′′(x)


. (3.13)

Using again Lemma 3.2 we obtain

κ2
+ κ


p(x) + p′′(x)


< 1 + p(x) + p′′(x) <


p′(x)

2
− p′′(x)p(x),
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which establishes (3.13) and completes the proof of (1.1). It follows from the above that (1.1)
holds as strict inequality when λ > 2.

Finally, we need to verify that (1.1) fails to hold for 1 < λ < 2 and appropriate x > 0. Indeed,
from the first equality in (3.2) we have

Fλ(x) = xλ
− λ (λ − 1) Fλ−2(x).

For 0 < µ < 1 we have a formula similar to (3.1), viz., x

0

sin(x − t)

tµ
dt = −Γ (1 − µ) cos


x +

π

2
µ


+

1
Γ (µ)


∞

0
e−xs sµ−1

s2 + 1
ds,

(cf. [9, Lemma 3.3]). Setting µ = 2 − λ we find that

x−λ

F ′′

λ (x) Fλ(x) − [F ′
λ(x)]2

∼ −λ xλ−2
+ Γ (λ + 1) cos


x −

λπ

2


, as x → ∞.

Therefore (1.1) cannot hold for all x > 0 in the case where 1 < λ < 2.
The proof of Theorem 1.1 is complete.

Remark 3.3. In the case where 0 < λ < 1, the function Fλ−1(x) is well defined and by (1.3) we
have Fλ−1(x) =

√
x s

λ−
1
2 , 1

2
(x), but, this function has infinitely many changes of sign in (0, ∞)

according to a Theorem of J. Steinig in [14]. The latter can also be seen by (3.1), which for
0 < λ < 1 yields

Fλ−1(x) ∼ Γ (λ) sin


x −
λπ

2


, as x → ∞.

On the other hand, (2.1) implies that Fλ(x) > 0 for all x > 0. Therefore, the ratio

Fλ−1(x)

Fλ(x)
,

cannot be monotonic on (0, ∞) for this range of λ. For λ = 1, this ratio is equal to the elementary
function 1−cos x

x−sin x , which is clearly nonnegative and it is easy to see that it is not monotonic on
(0, ∞).

4. Proof of Theorem 1.2

Using the recurrence relation

s′
µ,ν(z) +

ν

z
sµ,ν(z) = (µ + ν − 1)sµ−1,ν−1(z),

and the symmetry property

sµ,−ν(z) = sµ,ν(z),

[17, p. 348], we obtain for a > −
1
2 , a ≠

1
2

s′

a, 1
2
(x) sa+1, 1

2
(x) − sa, 1

2
(x) s′

a+1, 1
2
(x) =


a −

1
2


sa−1, 1

2
(x) sa+1, 1

2
(x)

−


a +

1
2


sa, 1

2
(x)

2

=

1
2

− a
 

∆a(x) −
1

1
2 − a


sa, 1

2
(x)

2
,
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where

∆a(x) :=


sa, 1

2
(x)

2
− sa−1, 1

2
(x)sa+1, 1

2
(x).

Hence, sa, 1
2
(x)

sa+1, 1
2
(x)

′

=

1
2 − a

sa+1, 1
2
(x)

2


∆a(x) −

1
1
2 − a


sa, 1

2
(x)

2
.

Accordingly, for a > 1
2 inequality (1.5) is equivalent to

 sa, 1
2
(x)

sa+1, 1
2
(x)

′

≤ 0, for all x > 0. (4.1)

In view of (1.3) and (2.2) we have

√
x sa, 1

2
(x)

√
x sa+1, 1

2
(x)

=

Fa−
1
2
(x)

Fa+
1
2
(x)

=
1

a +
1
2

F ′

a+
1
2
(x)

Fa+
1
2
(x)

. (4.2)

This shows that the desired inequality (4.1) follows from (1.1) for all a ≥
3
2 . Theorem 1.1 also

implies that inequality (1.5) fails to hold for appropriate positive values of x when a ∈ ( 1
2 , 3

2 ).
Finally, for −

1
2 < a < 1

2 inequality (1.5) is equivalent to the reverse inequality (4.1). But, the

ratio
s
a, 1

2
(x)

s
a+1, 1

2
(x)

cannot be monotonic on (0, ∞) because sa+1, 1
2
(x) > 0, for all x > 0, while

sa, 1
2
(x) has infinitely many changes of sign in (0, ∞) according to the aforementioned Theorem

of Steinig.
The proof of Theorem 1.2 is complete.

Remark 4.1. The functional bound for the determinant ∆a(x) provided by (1.5) is clearly
negative for a ≥

3
2 . However, the function ∆a(x) itself, changes sign infinitely often in (0, ∞)

for all a > −
1
2 , a ≠

1
2 .

Indeed, setting λ = a +
1
2 and using the asymptotic formulas, as x → ∞, for the Lommel

functions of the first kind, see [14, p. 126], together with the recurrence formula

sa+2, 1
2
(x) = xa+1

−


(a + 1)2

−
1
4


sa, 1

2
(x),

see [17, p. 348], we find that for all λ > 0, λ ≠ 1 we have

x1−λ ∆
λ−

1
2
(x) ∼

Γ (λ)

1 − λ
cos


x −

λπ

2


, as x → ∞.

Set µ = λ − 1 and notice that for all µ > 0 we have

x ∆
λ−

1
2
(x) = F2

µ(x) − Fµ−1(x) Fµ+1(x).

Consequently, inequality (1.6) fails to hold for appropriate x > 0 and µ ≥ 1, when the factor
1 +

1
µ

is replaced by 1.
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